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Abstract 
 
We review the pricing of synthetic CDO tranches from the point of view of factor models. 
Thanks to the factor framework, we can handle a wide range of well-know pricing models. 
This includes pricing approaches based on copulas, but also structural, multivariate Poisson 
and affine intensity models. Factor models have become increasingly popular since there are 
associated with efficient semi-analytical methods and parsimonious parameterization. 
Moreover, the approach is not restrictive at all in the case of homogeneous credit portfolios. 
Easy to compute and to handle large portfolio approximations can be provided. In factor 
models, the distribution of conditional default probabilities is the key input for the pricing of 
CDO tranches. These conditional default probabilities are also closely related to the 
distribution of large portfolios. Therefore, we can compare different factor models by simply 
comparing the distribution functions of the corresponding conditional default probabilities. 
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Introduction 
 
When looking at the pricing methodologies for credit derivatives, a striking feature is 
the profusion of competing approaches, none of them could be seen as an academic 
and practitioner’s standard. This contrasts with equity or interest rate derivatives to set 
some examples. Despite rather negative appreciation from the academic world, the 
industry relies on the one factor Gaussian copula for the pricing of CDO tranches, 
possibly amended with base correlation approaches. Among the usual critics, one can 
quote the poor dynamics of the credit loss process, of the credit spreads and the 
disconnection between the pricing and the hedging, while pricing at the cost of the 
hedge is a cornerstone of modern finance. Given the likelihood of plain static 
arbitrage opportunities when “massaging” correlations without caution, the variety 
and complexity of mapping procedures for the pricing of bespoke portfolios, a purist 
might assert that base correlations are simply a way to express CDO tranche quotes. 
Even from that minimal view, the computation of base correlations from market 
quotes is not an easy task due to the amortization scheme of premium legs and the 
dependence on more or less arbitrary assumptions on recovery rates. 
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Unsurprisingly, there are many ways to assess model quality, such as the ability to fit 
market quotes, tractability, parsimony, hedging efficiency and of course economic 
relevance and theoretical consistency. One should keep in mind that different models 
may be suitable for different payoffs. As discussed below, standard CDO tranche 
premiums only depend upon the marginal distributions of portfolio losses at different 
dates, and not on the temporal dependence between losses. This may not be the case 
for more exotic products such as leverage tranches, forward starting CDOs. Therefore, 
copula models might be well suited for the former plain vanilla products while a 
direct modelling of the loss process, as in the top-down approach, tackles the latter. 
Standard tranches on iTraxx or CDX have almost become asset classes on their own. 
Though the market directly provides their premium at the current date, a modelling of 
the corresponding dynamics might be required when risk managing non standard 
tranches. Let us remark that the informational content of standard tranches is not fully 
satisfactory, especially when considering the pricing of tranchelets corresponding to 
first losses (e.g. a [ ]0,1%  tranche) or senior tranches associated with the right tail of 

the loss distribution. There are also some difficulties when dealing with short maturity 
tranches. Whatever the chosen approach, a purely numerical smoothing of base 
correlations or a pricing model based interpolation, there is usually a lot of model risk: 
models that are properly calibrated to liquid tranches prices may lead to significantly 
different prices for non standard tranches. 
 
In the remainder of the paper, we will focus on pricing models for typical synthetic 
CDO tranches, either based on standard indexes or related to bespoke portfolios and 
we will not further consider products that involve the joint distribution of losses and 
credit spreads such as options on tranches. We will focus on model based pricing 
approaches, such that the premium of the tranche can be obtained by equalling the 
present value of the premium and the default legs of the tranches, computed under a 
given risk neutral measure. At least, this rules out static arbitrage opportunities, such 
as negative tranchelet prices. Thus, we will leave aside comparisons between base 
correlation and model based approaches that might be important in some cases. 
Though we will discuss the ability of different models to be well calibrated to 
standard liquid tranches, we will not further consider the various and sometimes rather 
proprietary mapping methodologies that aim at pricing bespoke CDO tranches given 
the correlation smiles on standard indexes. Such practical issues are addressed in 
Gregory and Laurent (2008) and in the references therein. 
 
Fortunately, there remain enough models to leave anyone with an encyclopaedic 
tendency more than happy. When so many academic approaches contest, there is a 
need to categorize, which obviously does not mean to write down a catalogue.  
 
Recently, there has been a discussion about the relative merits of bottom-up and top-
down approaches. In the actuarial field, these are also labelled as the individual and 
the collective models. In a bottom-up approach, also known as a name per name 
approach, one starts from a description of the dynamics (credit spreads, defaults) of 
the names within a basket, from which the dynamics of the aggregate loss process is 
derived. Some aggregating procedure involving the modelling of dependence between 
the default events is required to derive the loss distribution. The bottom-up approach 
has some clear advantages over the top-down approach, such as the possibility to 
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easily account for name heterogeneity: for instance the trouble with GMAC and the 
corresponding widening of spreads had a salient impact on CDX equity tranche 
quotes. It can be easily seen that the heterogeneity of individual default probabilities 
breaks down the Markov property of the loss process. One needs to know the current 
structure of the portfolio, for example the proportion of risky names, and not only the 
current losses to further simulate appropriately further losses. This issue is analogous 
to the well-known burnout effect in mortgage prepayment modelling. The random 
thinning approach only provides a partial answer to the heterogeneity issue: names 
with higher marginal default probabilities actually tend to default first, but the change 
in the loss intensity does not depend upon the defaulted name, as one should expect. 
The concept of idiosyncratic gamma which is quite important in the applied risk 
management of equity tranches is thus difficult to handle in a top-down approach. 
Also, a number of models belonging to this class do not account for the convergence 
to zero of the loss intensity as the portfolio is exhausted. This leads to positive, albeit 
small, probabilities that the loss exceeds the nominal of the portfolio. Another 
practical and paramount topic is the risk management of CDO tranches at the book 
level. Since most investment banks deal with numerous credit portfolios, they need to 
model a number of aggregate loss processes, which obviously are not independent. 
While such a global risk management approach is amenable to the bottom-up 
approach, it remains an open issue for its contender. 
 
On the other hand, there are some other major drawbacks when relying on bottom-up 
approaches. A popular family within the bottom-up approaches, relying on Cox 
processes bores its own burden. On theoretical grounds, it fails to account for 
contagion effects, also known as informative defaults: default of one name may be 
associated with jumps, usually of positive magnitude, of the credit spreads of the 
surviving names. Though some progress has recently been completed, the numerical 
implementation, especially with respect to calibration on liquid tranches is 
cumbersome. In factor copula approaches, the dynamics of the aggregate loss is 
usually quite poor, with high dependence between losses at different time horizons 
and even comonotonic losses in the large portfolio approximation. Thus, factor copula 
approaches fall into disrepute when dealing with some forward starting tranches 
where the dependence between losses at two different time horizons is a key input.  
 
Nevertheless, the pricing of synthetic CDO tranches only involves marginal 
distribution of losses and is likely to be better handled in the bottom-up approach. 
Since this paper is focused on CDO tranches, when discussing pricing issues, we will 
favour the name per name perspective. 
 
As mentioned above, due to the number of pricing models at hand3, there is the need 
of a unifying perspective, especially with respect to the dependence between default 
dates. In the following, we will privilege a factor approach: default dates will be 
independent given a low dimensional factor. This framework is not that restrictive 
since it encompasses factor copulas, but also multivariate Poisson, structural models 
and some intensity models within the affine class. Moreover, in the homogeneous 
case, where the names are indistinguishable, on a technical ground this corresponds to 
                                                           
3 See Duffie and Singleton (2003), Schönbucher (2003), Bielecki and Rutkowski (2004) or Lando 
(2004) textbooks for a detailed account of the different approaches to credit risk.  
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the exchangeability assumption, the existence of a single factor is a mere consequence 
of de Finetti’s theorem as explained below. From a theoretical point of view, the key 
inputs in a single factor model are the distributions of the conditional (on the factor) 
default probabilities. Given these, one can unambiguously compute CDO tranche 
premiums in a semi-analytical way. It is also fairly easy to derive large portfolio 
approximations under which the pricing of CDO tranche premiums reduces to a 
simple numerical integration. The factor approach also allows some model taxonomy 
by comparing the conditional default probabilities through the so-called convex order. 
This yields some useful results on the ordering of tranche premiums. The factor 
assumption is also almost necessary to deal with large portfolios and avoid over-
fitting. As an example, let us consider the Gaussian copula; the number of correlation 
parameters evolves as 2n , where n  is the number of names, without any factor 
assumption, while it increase linearly in a one factor model. 
 
In section I, we will present some general features of factor models with respect to the 
pricing of CDO tranches. This includes the derivation of CDO tranche premiums from 
marginal loss distributions, the computation of loss distributions in factor models, the 
factor representation associated with de Finetti’s theorem for homogeneous portfolios, 
large portfolio approximations and an introduction to the use of stochastic orders as a 
way to compare different models. Section II details various factor pricing models, 
including factor copula models, structural, multivariate Poisson, and Cox process 
based models. As for the factor copula models, we deal with additive factor copula 
models and some extensions involving stochastic or local correlation. We also 
consider Archimedean copulas and eventually “perfect” copulas that are implied from 
market quotes. Multivariate Poisson models include the so-called common shock 
models. Examples based on Cox processes are related to affine intensities while 
structural models are multivariate extensions of the Black and Cox first hitting time of 
a default barrier. 
 
I Factor models for the pricing of CDO tranches 
 
Factor models have been used for a long time with respect to stock or mutual fund 
returns. As far as credit risk management is concerned, factor models also appear as 
an important tool. They underlie the IRB approach in the Basel II regulatory 
framework: see Crouhy et al. (2000), Finger (2001), Gordy (2000, 2003), Wilson 
(1997a, 1997b) or Frey and McNeil (2003) for some illustrations. The idea of 
computing loss distributions from the associated characteristic function in factor 
models can be found in Pykhtin and Dev (2002). The application of such ideas to the 
pricing of CDOs is discussed in Gregory and Laurent (2003), Andersen, Sidenius and 
Basu (2003), Hull and White (2004), Andersen and Sidenius (2005a) and Laurent and 
Gregory (2005). Various discussions and extensions about the factor approach for the 
pricing of CDO tranches can be found in a number of papers, including, Finger 
(2005), Burtschell et al. (2008).  
 

I.1 Computation of CDO tranche premiums from marginal loss 

distributions 
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A synthetic CDO tranche is a structured product based on an underlying portfolio of 
equally weighted reference entities subject to credit risk4. Let us denote by n  the 
number of references in the credit portfolio and by ( )1, , nτ τ…  the random vector of 

default times. If name i  defaults, it drives a loss of ( )1i iM E δ= −  where E  denotes 

the nominal amount (which is usually name independent for a synthetic CDO) and iδ  

the recovery rate. iM  is also referred as the loss given default of name i . The key 

quantity for the pricing of CDO tranches is the cumulative loss 
1

n

t i i
i

L M D
=

=∑ , where 

{ }1
ii tD

τ ≤
=  is a Bernoulli random variable indicating whether name i  defaults before 

time t . tL  is a pure jump process and follows a discrete distribution at any time t. 

 
The cash-flows associated with a synthetic CDO tranche only depend upon the 
realized path of the cumulative losses on the reference portfolio. Default losses on the 
credit portfolio are split along some thresholds (attachment and detachment points) 
and allocated to the various tranches. Let us consider a CDO tranche with attachment 
point a , detachment point b  and maturity T . It is sometimes convenient to see a 
CDO tranche as a bilateral contract between a protection seller and a protection buyer. 
We describe below the cash-flows associated with the default payment leg (payments 
received by the protection buyer) and the premium payment leg (payments received 
by the protection seller).. 
 
Default payments leg  

 
The protection seller agrees to pay the protection buyer default losses each time they 
impact the tranche [ , ]a b  of the reference portfolio. More precisely, the cumulative 

default payment [ , ]a b
tL on the tranche [ , ]a b  is equal to zero if tL a≤ , to tL a−  if 

ta L b≤ ≤ and to b a−  if tL b≥ . Let us remark that [ , ]a b
tL  has a call spread payoff with 

respect to tL  (see Figure 1) and can be expressed as ( ) ( )[ , ]a b
t t tL L a L b

+ +
= − − − .  

tL

[ , ]a b
tL

a b

b a−

tL

[ , ]a b
tL

a b

b a−

 
Figure 1. Cumulative loss on CDO tranche [ , ]a b  with respect to tL  

 

                                                           
4 We refer the reader to Das (2005) textbook or Kakodkar et al. (2006) for a detailed analysis of the 
CDO market and credit derivatives cash-flows. 
 



 6 

Default payments are simply the increment of [ , ]a b
tL , i.e. there is a payment of 

[ , ] [ , ]a b a b
t tL L −−  from the protection seller at every jump time of [ , ]a b

tL  occurring before 

contract maturity T . Figure 2 shows a realized path of the loss process tL  and 
consequences on CDO tranche [ , ]a b  cumulative losses.   
 

tL

a

b

t

b a−
[ , ]a b
tL

[ , ], b
tt
aL L

tL

a

b

t

b a−
[ , ]a b
tL

[ , ], b
tt
aL L

 
Figure 2. A realized path of the reference portfolio losses in blue and the corresponding path of losses 

affecting CDO tranche [ , ]a b  in red.  Jumps occur at default times. 

 
For simplicity we further assume that the continuously compounded default free 

interest rate tr  is deterministic and denote by 
0

exp
t

t sB r ds
 

= − 
 
∫  the discount factor. 

Then, the discounted payoff corresponding to default payments can written as: 

 ( ) { }
[ , ] [ , ] [ , ]

10

1
t i i i i

T n
a b a b a b

t T
i

B dL B L Lτ τ τ τ− ≤
=

= −∑∫ . 

Thanks to Stieltjes integration by parts formula and Fubini theorem, the price of the 
default payment leg can be expressed as:  

 [ , ] [ , ] [ , ]

0 0

T T
a b a b a b

t t T T t t tE B dL B E L r B E L dt
 

   = −     
 
∫ ∫ . 

 
Premium payments leg 
 
The protection buyer has to pay the protection seller a periodic premium payment 
(quarterly for standardized indexes) based on a fixed spread or premium S  and 
proportional to the current outstanding nominal of the tranche [ , ]a b

tb a L− − . Let us 

denote by , 1, ,it i I= …  the premium payment dates with It T=  and by i∆  the length 

of the i th period [ ]1,i it t−  (in fractions of a year and with 0 0t = ). The CDO premium 

payments are equal to ( )[ , ]

i

a b
i tS b a L∆ − −  at regular payment dates , 1, ,it i I= … . 

Moreover, when a default occurs between two premium payment dates and when it 
affects the tranche, an additional payment (the accrued coupon) must be made at 
default time to compensate the change in value of the tranche outstanding nominal. 
For example, if name j  defaults between 1it −  and it , the associated accrued coupon is 
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equal to ( )( )[ , ] [ , ]
1 j j

a b a b
j iS t L Lτ ττ − −− − . Eventually, the discounted payoff corresponding to 

premium payments can be expressed as:  

 ( ) ( )
1

[ , ] [ , ]
1

1

i

i i

i

tI
a b a b

t i t t i t
i t

B S b a L B S t t dL
−

−
=

 
∆ − − + − 

 
 

∑ ∫ . 

Using same computational methods as for the default leg, it is possible to derive the 
price of the premium payment leg, that is 

( ) ( ) ( )( )
1

[ , ] [ , ] [ , ]
1 1

1

1
i

i i i i

i

tI
a b a b a b

t i t t i i t t t i t
i t

S B b a E L B t t E L B r t t E L dt
−

− −
=

 
     ∆ − − + − − − +      

 
∑ ∫ . 

The CDO tranche premium S  is chosen such that the contract is fair at inception, i.e. 
such that the default payment leg is equal to the premium payment leg. S  is quoted in 
basis point per annum5. Figure 3 shows the dynamics of credit spreads on the five 
year Itraxx index (series 7) between May and November 2007. It is interesting to 
observe a wide bump corresponding to the summer 2007 crisis.  
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Figure 3. Credit spreads on the five years iTraxx index (Series 7) in bps 

 
 
Let us remark that the computation of CDO tranche premiums only involves the 

expected losses on the tranche, [ , ]a b
tE L    at different time horizons. These can readily 

be derived from the marginal distributions of the aggregate loss on the reference 

                                                           
5 Let us remark that market conventions are quite different for the pricing of equity tranches (CDO 
tranches [0, ]b  with 0 1b< < ). Due to the high level of risk embedded in these “first losses tranches”, 

the premium S  is fixed beforehand at 500 bps per annum and the protection seller receive an 
additional payment at inception based on an “upfront premium” and proportional to the size b of the 
tranche. This “upfront premium” is quoted in percentage. 
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portfolio. In the next section, we describe some numerical methods for the 
computation of the aggregate loss distribution within factor models.  
 
I.3 Computation of loss distributions 
 
In a factor framework, one can easily derive marginal loss distributions. We will 
assume that default times are conditionally independent given a one dimensional 
factor V . The key inputs for the computation of loss distribution are the conditional 

default probabilities ( )i V
t ip P t Vτ= ≤  associated with names 1, ,i n= … . Extensions 

to multiple factors are straightforward but are computationally more involved. 
However the one factor assumption is not that restrictive as explained in Gössl (2007)  
where computation of the loss distribution is performed with an admissible loss of 
accuracy using some dimensional reduction techniques. In some examples detailed 
below, the factor V  may be time dependent. This is of great importance when pricing 
correlation products that involve the joint distribution of losses at different time 
horizons such as leverage tranches or forward starting CDOs. Since this paper is 
focused on the pricing of standard CDO tranches, which only involve marginal 
distributions of cumulative losses, omitting the time dependence is a matter of 
notational simplicity. 
 
Unless otherwise stated, we will thereafter assume that recovery rates are 
deterministic and concentrate upon the dependence among default times. 
 
Two approaches can be used for the computation of loss distributions, one based on 
the inversion of the characteristic function and another one based on recursions.  
 
FFT approach 
 
The first approach deals with the characteristic function of the aggregate loss tL  
which can be derived thanks to the conditional independence assumption: 

 ( )|

1
( ) 1 1t

t

iiuMiuL i V
tL

i n

u E e E p eϕ
≤ ≤

           
= = + −∏ . 

 
The previous expectation can be computed using a numerical integration over the 
distribution of the factor V . This can be achieved for example using a Gaussian 
quadrature. The computation of the loss distribution can then be accomplished thanks 
to the inversion formula and some Fast Fourier Transform algorithm. Let us remark 
that the former approach can be adapted without extra complication when losses given 
default iM , 1, ,i n= …  are stochastic but (jointly) independent together with default 
times. This method is described in Gregory and Laurent (2003) or Laurent and 
Gregory (2005). Gregory and Laurent (2004) investigate a richer correlation structure 
in which credit references are grouped in several sectors. They specify an inter-sector 
and an intra-sector dependence structure based on a factor approach and show that the 
computation of the loss distribution can be performed easily using the FFT approach.   
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Recursion approaches 
 
An alternative approach, based on recursions is discussed in Andersen, Sidenius and 
Basu (2003) and Hull and White (2004)6. 
 
The first step is to split up the support of the loss distribution into constant width loss 
units. The width u  of each loss unit is chosen such that each potential loss given 
default iM  can be approximated by a multiple of u . The support of the loss 

distribution is thus turned into a sequence max0, , ,l u n u= …  where maxn n>  and 

maxn u  corresponds to the maximal potential loss 
1

i
i n

M
≤ ≤

∑ . Clearly, the simplest case is 

associated with constant losses given default, for instance 
1

iM
n

δ−
=  with 40%δ =  

and 125n =  which is a reasonable assumption for standard tranches. We can then 
choose maxn n= . 

 
The second step is performed thanks to the conditional independence of default events 
given the factor V . The algorithm starts from the conditional loss distribution 
associated with a portfolio set up with only one name, then it performs the 
computation of the conditional loss distribution when another name is added, and so 
on. Let us denote by ( )k

tq i , 0, ,i n= …  the conditional probability that the loss is 

equal to iu  in the thk portfolio where names 1, 2, , k…  ( k n≤ ) have been 
successively added. Let us start with a portfolio set up with only name number 1 with 
conditional default probability 1|V

tp , then 

 

( )

( )
( )

11

11

1

0 1 ,

1 ,

0, 1.

V
t t

V
t t

t

q p

q p

q i i

 = −


=
 = >


 

Assume now that (.)k
tq  has been computed after successive inclusion of names 

2, ,k…  in the pool. We then add firm 1k +  in the portfolio with conditional default 

probability 1|k V
tp + .  The loss distribution of the th( 1)k +  portfolio can be computed 

with the following recursive relation: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1|

1 1| 1|

1

0 1 0 ,

1 1 , 1, , 1,

0, 1.

k k V k
t t t

k k V k k V k
t t t t t

k
t

q p q

q i p q i p q i i k

q i i k

+ +

+ + +

+

 = −



= − + − = +


= > +

…  

In the new portfolio, the loss can be iu  either by being iu  in the original portfolio if 
firm 1k +  has not defaulted or by being ( 1)i u−  if firm 1k + has defaulted.  The 
required loss distribution is the one obtained after all names have been added in the 
                                                           
6 Let us remark that similar recursion methods have first been investigated by actuaries to compute the 
distribution of aggregate claims within individual life models. Several recursion algorithms originated 
from White and Greville (1959) have been developed such as the Z-method or the Newton method 
based on development of the loss generating function. 
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pool. It corresponds to ( )n
tq i , 0, ,i n= … . Let us remark that even though intermediate 

loss distributions obviously depend on the ordering of names added in the pool, the 
loss distribution associated to the entire portfolio is unique.  
 
The last step consists of computing the unconditional loss distribution using a 
numerical integration over the distribution of the factor V . It is straightforward to 
extend the latter method to the case of stochastic and name dependent recovery rates.  
However, one of the key issues is to find a loss unit u  which both allows getting 
enough accuracy on the loss distribution and driving low computational time. Hull 
and White (2004) present an extension of the former approach in which computation 
efforts are focused on pieces of the loss distribution associated with positive CDO 
tranche cash flows, allowing the algorithm to cope with non-constant width loss 
subdivisions. Other extensions based on approximation methods are discussed by 
Peretyatkin (2006). 
 
Other approximation methods used by actuaries in the individual life model have also 
been adapted to the pricing of CDO tranches. For example, De Prisco et al. (2005) 
investigate the compound Poisson approximation, Jackson et al. (2007) propose to 
approximate the loss distribution by a Normal Power distribution. 
 
Glasserman and Suchintabandid (2007) propose an approximation method based on 
power series expansions. These expansions express a CDO tranche price in a 
multifactor model as a series of prices computed within an independent default time 
model, which are easy to compute.   
 
A new method based on Stein’s approximation has been developed recently by Jiao 
(2007) and seems to be more efficient than standard approximation methods. In 
practical implementation, the conditional loss distribution (conditional to the factor) 
can be approximated either by a Gaussian or a Poisson random variable. Then CDO 
tranche premiums can be computed in each case using an additional corrector term 
known in closed form.   
 
When considering CDO tranches on standardized indices, it is sometimes convenient 
to consider a homogeneous credit portfolio. In that case, the computation of the loss 
distribution reduces to a simple numerical integration. 
 
I.3 Factor models in the case of homogeneous credit risk portfolios 
 
In the case of a homogeneous credit risk portfolio, all names have the same nominal 
E  and the same recovery rate δ . Consequently, the aggregate loss is proportional to 
the number of defaults tN , i.e. ( )1t tL E Nδ= − . Let us moreover assume that default 

times 1, , nτ τ…  are exchangeable, i.e. any permutation of default times leads to the 
same multivariate distribution function. Particularly, it means that all names have the 
same marginal distribution function, say F .  
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As a consequence of de Finetti’s theorem7, default indicators 1, , nD D…  are Bernoulli 

mixtures8 at any time horizon t . There exists a random mixture probability tp�  such 

that conditionally on tp� , 1, , nD D…  are independent. More formally, if we denote by 

tν  the distribution function of tp� , then for all 0, ,k n= … ,  

 
1

( )

0

( ) (1 ) ( )k n k
t t

n
P N k p p dp

k
ν− 

= = − 
 
∫ . 

As a result, the aggregate loss distribution has a very simple form in the homogeneous 
case. Its computation only requires a numerical integration over tν  which can be 
achieved using a Gaussian quadrature. Moreover, it can be seen that the factor 
assumption is not restrictive at all in the case of homogeneous portfolios. 
Homogeneity of credit risk portfolios can be viewed as a reasonable assumption for 
CDO tranches on large indices, although this is obviously an issue with equity 
tranches for which idiosyncratic risk is an important feature. A further step is to 
approximate the loss on large homogeneous portfolios with the mixture probability 
itself. 
 
I.4 Large portfolio approximations 
 
As CDO tranches are related to large credit portfolios, a standard assumption is to 
approximate the loss distribution with the one of an “infinitely granular portfolio”9. 
This fictive portfolio can be viewed as the limit of a sequence of aggregate losses on 
homogeneous portfolios, where the maximum loss has been normalized to 

unity:
1

1 n
n
t i

i

L D
n =

= ∑ , 1n ≥ .  

Let us recall that when default indicators 1, , ,...nD D…  form a sequence of 

exchangeable Bernoulli random variables and thanks to de Finetti’s theorem, the 
normalized loss n

tL  converges almost surely to the mixture probability tp�  as the 

number of names tends to infinity. tp�  is also called the large (homogeneous) portfolio 

approximation. In a factor framework where default times are conditionally 
independent given a factor V , it can be shown that the mixture probability tp�  

coincides with the conditional default probability ( )iP t Vτ ≤ 10. In the credit risk 

context this idea was firstly put in practice by Vasicek (2002). This approximation has 
also been studied by Gordy and Jones (2003), Greenberg et al. (2004a), Schloegl and 
O’Kane (2005) for the pricing of CDO tranches. Burtschell et al. (2008) compare the 
prices of CDO tranches based on the large portfolio approximation and on exact 

                                                           
7  Aldous (1984) textbook gives a general account of de Finetti’s theorem and some straightforward 
consequences. 
8 One needs that the default indicators are part of an infinite sequence of exchangeable default 
indicators. 
9 This terminology is taken from the Basel II agreement as it is the standard approach proposed by the 
Basel committee to determinate the regulatory capital related to bank credit risk management. 
10 The proof relies on a generalization of the strong law of large number. See Vasicek (2002) for more 
details. 
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computations. The large portfolio approximation can also be used to compare CDO 
tranche premiums on finite portfolios.  
 
I.5 Comparing different factor models 
 
Exchangeability of default times is a nice framework to study the impact of 
dependence on CDO tranche premiums. We have seen that the factor approach is 
legitimate in this context and we have exhibited a mixture probability tp�  such that, 

given tp� , default indicators 1, , nD D…  are conditionally independent. Thanks to the 

theory of stochastic orders, it is possible to compare CDO tranche premiums 
associated with portfolios with different mixture probabilities. Let us compare two 
portfolios with default indicators 1, , nD D…  and * *

1 , , nD D…  and with (respectively) 

mixture probabilities tp�  and *
tp� . If tp�  is smaller than *

tp�  in the convex order11, then 

the aggregate loss associated with tp� , 
1

n

t i i
i

L M D
=

=∑  is smaller than the aggregate loss 

associated with *
tp� , * *

1

n

t i i
i

L M D
=

=∑  in the convex order12. See Cousin and Laurent 

(2007) for more details about this comparison method. Then, it can be proved (see 
Burtschell et al. (2008)) that when the mixture probabilities increase in the convex 
order, [0, ]b  equity tranche premiums decrease and [ ,100%]a  senior tranche 
premiums increase13.  
 

II) A review of factor approaches to the pricing of CDOs 
 
In the previous section, we stressed the key role played by the distribution of 
conditional probabilities of default when pricing CDO tranches. Loosely speaking, 
specifying a multivariate default time distribution amounts to specifying a mixture 
distribution on default probabilities. We thereafter review a wide range of popular 
default risk models – factor copulas models, structural, multivariate Poisson, and Cox 
process based models – through a meticulous analysis of their mixture distributions.  
 
II.1 Factor copula models 
 
In copula models, the joint distribution of default times is coupled to its one-
dimensional marginal distributions through a copula function C 14: 
 ( ) ( ) ( )( )1 1 1 1, , , ,n n n nP t t C F t F tτ τ≤ ≤ =… … . 
                                                           
11 Let X  and Y  be two scalar integrable positive random variables. We say that X  precedes Y  in 

convex order if [ ] [ ]E X E Y=  and ( ) ( )E X K E Y K
+ +   − ≤ −

   
 for all 0K ≥ .  

12 Losses given default 1, , nM M…  must be jointly independent from 1, , nD D… and * *
1 , , nD D… . 

13 As for the mezzanine tranche [ ],a b  with 0 1a b< < < , it is not possible to infer such a comparison 

result. For example, it is well known that the present value of a mezzanine tranche may not be 
monotonic with respect to the compound correlation. 
14 For an introduction to copula functions with applications to finance, we refer to Cherubini et al. 
(2004) textbook. 
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In such a framework, the dependence structure and the marginal distribution functions 
can be handled separately. Usually, the marginal default probabilities ( )i iF t  are 

inferred from the credit default swap premiums on the different names. Thus, they 
appear as market inputs. The dependence structure does not interfere with the pricing 
of single name credit default swaps and is only involved in the pricing of correlation 
products such as CDO tranches. In the credit risk field, this approach has been 
introduced by Li (2000) and further developed by Schönbucher and Schubert (2001). 
 
Factor copula models are particular copula models for which the dependence structure 
of default times follows a factor framework. More specifically, the dependence 
structure is driven by some latent variables 1, , nV V… . Each variable iV  is expressed as 

a bivariate function of a common systemic risk factor V  and an idiosyncratic risk 
factor iV : 

 ( ), , 1, ,i iV f V V i n= = … , 

where V and iV , 1, ,i n= …  are assumed to be independent. In most applications, the 

specified function f , the factors V  and iV , 1, ,i n= …  are selected such that latent 

variables iV , 1, ,i n= …  form an exchangeable sequence of random variables. 

Consequently, iV , 1, ,i n= …  must follow the same distribution function, say H . 

Eventually, default times are defined by ( )( )1
i i iF H Vτ −= 15 where iF  are the 

distribution functions of default times and H  the marginal distribution of latent 
variables iV , 1, ,i n= … . For simplicity, we will thereafter restrict to the case where 

the marginal distributions of default times do not depend upon the name in the 
reference portfolio and denote the common distribution function by .F  
 
In a general copula framework, computation of loss distributions requires n  
successive numerical integrations. The main interest of factor copula approach lies in 
its tractability as computational complexity is related to the factor dimension. Hence, 
factor copula models have been intensely used by market participants. In the 
following, we will review some popular factor copula approaches. 
 
Additive factor copulas 

 
The family of additive factor copulas is the most widely used as far as the pricing of 
CDO tranches is concerned. In this class of models, the function f  is additive and 

latent variables 1, , nV V…  are related through a dependence parameter ρ  taking values 

in [0,1] : 

 21 , 1, ,i iV V V i nρ ρ= + − = … . 

                                                           
15 Let us remark that default times in a factor copula model can be viewed as first passage times in a 
multivariate static structural model where iV , 1, ,i n= …  correspond to some correlated asset values 

and where ( )F t drives the dynamics of the default threshold. In fact, default times can be expressed as 

( )( ){ }1inf 0i i it V H F tτ −= ≥ ≤ , 1, ,i n= … . 



 14 

From what was stated in previous sections, the conditional default probability or 
mixture probability tp�  can be expressed as: 

 
( )1

2

( )

1
t

V H F t
p H

ρ

ρ

− − +
 =
 − 

� . 

 

In most applications, V and iV , 1, ,i n= …  belong to the same class of probability 

distributions which is chosen to be closed under convolution. 
 
The most popular form of the model is the so-called factor Gaussian copula which 
relies on some independent standard Gaussian random variables V and iV , 1, ,i n= …  

and leads to Gaussian latent variables 1, , nV V… . It has been introduced by Vasicek 

(2002) in the credit risk field and is known as the multivariate probit model in 
statistics16. Thanks to its tractability, the one factor Gaussian copula has become the 
financial industry benchmark despite of some well known drawbacks. For example, it 
is not possible to fit all market quotes of standard CDO tranches of the same maturity. 
This deficiency is related to the so-called correlation skew. 
 
An alternative approach is the Student- t copula which embeds the Gaussian copula as 
a limit case. It has been considered for credit risk issues by a number of authors, 
including Andersen et al. (2003), Embrechts et al. (2003), Frey and McNeil (2003), 
Mashal et al. (2003), Greenberg et al. (2004b), Demarta and McNeil (2005), Schloegl 
and O’Kane (2005). Nevertheless, the Student- t copula features the same deficiency 
as the Gaussian copula. 
 
For this reason, a number of additive factor copulas such as the double- t  copula (Hull 
and White (2004)), the NIG copula (Guegan and Houdain (2005)), the double-NIG 
copula (Kalemanova et al. (2007)), the double Variance Gamma copula (Moosbrucker 
(2006)) and the α -stable copula (Prange and Scherer (2006)) have been investigated. 
Other heavy-tailed factor copula models are discussed in Wang et al. (2007). For a 
comparison of factor copula approaches in terms of pricing of CDO tranches, we refer 
to Burtschell et al. (2008). We plot in Figure 4 the mixture distributions associated 
with some of the previous additive factor copula approaches. Let us recall that 
mixture distributions correspond to the loss distribution of large homogeneous 
portfolios (see Section I.4).  

                                                           
16 The multivariate probit model is a popular extension of the linear regression model in statistics. For a 
description of the model with applications to econometrics, we refer the reader to Gourieroux (2000). 



 15 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

independence

comonotonic

Gaussian

double t 4/4

double NIG 1/1

 
Figure 4 The graph shows the cumulative density functions of the mixture probability tp�  for the 

Gaussian, the double- t (4/4) and the double NIG (1/1) factor copula approaches. The marginal default 

probability is ( ) 2.96%F t =  and we choose 2 30%ρ =  as the correlation between defaults. Eventually, 

we also plot the mixture distributions associated with the independence case ( 2 0ρ = ) and the 

comonotonic case ( 2 1ρ = ). 

 
Stochastic correlation 
 
Stochastic correlation models are other extensions of the factor Gaussian copula 
model. In this approach, the dependence parameter is stochastic. The latent variables 
are then expressed as: 

 21 , 1, ,i i i iV V V i nρ ρ= + − =� � … , 

where V and iV , 1, ,i n= …  are independent standard Gaussian random variables and 

iρ� , 1, ,i n= …  are identically distributed random variables taking values in [0,1]  and 

independent from V , iV , 1, ,i n= … . A suitable feature of this approach is that the 

latent variables iV , 1, ,i n= …  follow a multivariate Gaussian distribution17. This eases 

calibration and implementation of the model.  
Let us remark that in this framework, default times are exchangeable. Then, the 
conditional default probability tp�  can be expressed as: 

 
( )

( )
11

2
0

( )

1
t

V F t
p G d

ρ
ρ

ρ

− − + Φ
 = Φ
 − 

∫� , 

where G  denotes the distribution function of iρ� , 1, ,i n= …  and Φ  is the Gaussian 

cumulative density function. 
 

                                                           
17 Thanks to the independence between iρ� , V , iV , 1, ,i n= … , given iρ� , iV  follows a standard 

Gaussian distribution. Thus, after an integration over the distribution of iρ� , the marginal distribution of 

iV  is also standard Gaussian.  
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Burtschell et al. (2008) investigated a two states stochastic correlation parameter. 
Tavares et al. (2004) also investigate a model with different states including a 
possibly catastrophic one. It has been shown by Burtschell et al. (2007) that a three 
states stochastic correlation model is enough to fit market quotes of CDO tranches for 
a given maturity. In their framework, the stochastic correlation parameters iρ , 

1, ,i n= …  have also a factor representation: 

 ( )( )1 1i s i sB B Bρ ρ= − − +�  

where sB , 1, , nB B…  are independent Bernoulli random variables independent from 

V , iV , 1, ,i n= … . Consequently, if we denote by ( )1s sp P B= =  and ( )1ip P B= = , 

1, ,i n= … , default times are comonotonic ( iV V= ) with probability sp , independent 

( i iV V= ) with probability (1 )sp p−  and have a standard Gaussian factor 

representation with probability (1 )(1 )sp p− − .  

 
Mean-variance Gaussian mixtures 
 
In this class of factor models, latent variables are simply expressed as mean-variance 
Gaussian mixtures: 
 ( ) ( ) , 1, ,i iV m V V V i nσ= + = … , 

where V and iV , 1, ,i n= …  are independent standard Gaussian random variables. Two 

popular CDO pricing models have been derived from this class, namely the random 
factor loading and the local correlation model. 
 
The random factor loading model has been introduced by Andersen and Sidenius 
(2005b). In this approach, latent variables are modelled by: 

 { } { }( )1 1 , 1, ,i iV e V eV m l h V V i nν
< ≥

= + + + = … , 

where , ,l h e  are some input parameters such that , 0l h > . m  and ν  are chosen such 

that [ ] 0iE V =  and 2 1iE V  =  . This can be seen as a random factor loading model, 

since the risk exposure { } { }1 1V e V el h
< ≥

+ is state dependent. It is consistent with 

empirical researches showing that default correlation changes with respect to some 
macroeconomic random variables (see Das et al. (2006) and references therein). The 
conditional default probability can be written as: 

 ( ) { } { }( )( )11
( ) 1 1t V e V ep H F t m l h V

ν
−

< ≥

 
= Φ − − + 

 
� ,  

where H  is the marginal distribution function of latent variables iV , 1, ,i n= … . Let 

us remark that contrary to the previous approaches, latent variables here are not 
Gaussian and the distribution function H  depends upon the model parameters.  
 
We compare in Figure 5 the mixture distribution functions obtained under a random 
factor loading model and a three states stochastic correlation model. 
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Figure 5 The graph shows the mixture distribution functions associated with the three states stochastic 
correlation model of Burtschell et al. (2007) and the random factor loading model of Andersen and 
Sidenius (2005b). The marginal default probability, ( ) 2.96%F t =  holds to be the same for both 

approaches. As for the stochastic correlation model, the parameters are respectively 0.14sp = , 

0.81p = , 2 58%ρ = . As for the random factor loading model, we took 85%l = , 5%h = and 2e = − . 

The graph also shows the mixture distribution functions associated with the independence and the 
comonotonic case. 
 
Like the three states version of the stochastic correlation model, this approach has the 
ability to fit perfectly market quotes of standardized CDO tranche spreads for a given 
maturity. 
 
The local correlation model proposed by Turc et al. (2005) is associated with the 
following parametric modelling of latent variables:  

 ( ) 21 ( ) , 1, ,i iV V V V V i nρ ρ= − + − = … , 

where V and iV , 1, ,i n= …  are independent standard Gaussian random variables and 

(.)ρ  is some function of V  taking values in [ ]0,1 . (.)ρ  is known as the local 

correlation function. The conditional default probabilities can be written as: 

( ) ( )

( )

1

2

( )

1
t

V V H F t
p

V

ρ

ρ

− +
 = Φ
 − 

� , 

where H is the marginal distribution function of latent variables iV , 1, ,i n= … . 
 
The local correlation can be used in a way which parallels the local volatility 
modelling in the equity derivatives market. This consists in a non parametric 
calibration of (.)ρ  on market CDO tranche premiums. The local correlation function 
has the advantage to be a model based implied correlation when compared to some 
standard market practice such as the compound and the base correlation. Moreover, 
there is a simple relationship between (.)ρ  and market compound correlations 
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implied from CDO tranchlets18 (marginal compound correlation) as explained in Turc 
et al. (2005) or Burtschell et al. (2007). But the trouble with this approach is that the 
existence and uniqueness of a local correlation function is not guarantied given an 
admissible loss distribution function possibly inferred from market quotes.  
 
Archimedean copulas 

 
Archimedean copulas have been widely used in credit risk modelling as they represent 
a direct alternative to the Gaussian copula approach. In most cases, there exists an 
effective and tractable way of generating random vectors with this dependence 
structure. Moreover, Archimedean copulas are inherently exchangeable and thus 
admit a factor representation. Marshall and Olkin (1988) first exhibit this factor 
representation in their famous simulation algorithm. More precisely, each 
Archimedean copula can be associated with a positive random factor V  with inverse 
Laplace transform (.)ϕ  (and Laplace transform 1(.)ϕ − ). In this framework,  the latent 
variables can be expressed as: 

 1 ln
, 1, ,i

i

V
V i n

V
ϕ −  −

= = 
 

… , 

where iV , 1, ,i n= …  are independent uniform random variables. Then, the joint 

distribution of the random vector ( )1, , nV V…  is the ϕ -Archimedean copula19. In 

particular, each latent variable is a uniform random variable. Then the conditional 
default probability can be written as: 

 ( )( )( )exptp F t Vϕ= −� . 

Let us remark that the previous framework corresponds to frailty models in the 
reliability theory or survival data analysis20. In these models, V  is called a frailty 
since low levels of V are associated with shorter survival default times. The most 
popular Archimedean copula is probably the Clayton copula. In a credit risk context, 
it has been considered by, among others, Schönbucher and Schubert (2001), Gregory 
and Laurent (2003), Laurent and Gregory (2003), Madan et al. (2004), Friend and 
Rogge (2005). In addition, Rogge and Schönbucher (2003), Schloegl and O’Kane 
(2005) have investigated other Archimedean copulas such as the Gumbel or the Frank 
copula. 
 
 
 
 
 
 
 

                                                           
18 CDO tranches [ , 1%]a a +  with 0 1a≤ <  
19 A random vector ( )1, , nV V…  follows a ϕ -Archimedean copula if for all 1, , nv v…  in [ ]0,1

n
:  

( ) ( ) ( )( )1
1 1 1, , n n nP V v V v v vϕ ϕ ϕ−≤ ≤ = + +… … . 

20 We refer the reader to Hougaard (2000) textbook for an introduction to multivariate survival data 
analysis and a detailed description of frailty models. 
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Copula  Generator ϕ  Parameter 

Clayton 1t θ− −  0θ ≥  

Gumbel ( )( )ln t
θ

−  1θ ≥  

Frank ( ) ( )ln 1 1te eθ θ− − − − −   *
�  

Table 1 Some examples of Archimedean copulas with their generators. 
 
In Figure 6, we compare the mixture distribution functions associated with a Clayton 
copula and a Gaussian factor copula. The dependence parameter θ  of the Clayton 
copula has been chosen to get the same equity tranche premiums as with the one 
factor Gaussian copula model.  
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Figure 6 The graph shows the mixture distribution functions associated with a Clayton copula and a 
factor Gaussian copula. ( ) 2.96%F t = , 2 30%ρ = , 0.18θ = . 

 
It can be seen that the distribution functions are very similar. Unsurprisingly, the 
resulting premiums for the mezzanine and senior tranches are also very similar in both 
approaches21. 
 
Perfect copula approach 
 
As we saw in previous sections, much of the effort has focused on the research of a 
factor copula which best fits CDO tranche premiums. Let us recall that specifying a 
factor copula dependence structure is equivalent to specifying a mixture probability 

tp� . Hull and White (2006) exploit this remark and propose a direct estimation of the 

mixture probability distribution from market quotes. In their approach, for the sake of 
intuition on spread dynamics, the mixture probability is expressed through a hazard 

rate random variable λ�  with a discrete distribution: 

 ( ) ( )1 exp , 1, ,i k kP t t k Lτ λ λ λ≤ = = − − =� … . 

                                                           
21 See Burtschell et al. (2008), Table 8, for more details about correspondence between parameters and 
assumptions on the underlying credit risk portfolio. 
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Then, defaults occur according to a mixture Poisson process (or a Cox Process) with 

hazard rate λ� . Once a grid has been chosen for λ� , the probability ( )k kPπ λ λ= =�  can 

be calibrated in order to match market quotes of CDO tranches. Hull and White 
(2006) have shown that this last step is not possible in general. Consequently, they 
allow recovery rate to be a decreasing function of default rates, as suggested in some 
empirical researches such as Altman et al. (2005). 
 
II.2 Multivariate structural models 
 
Multivariate structural or firm value models are multi-name extensions of the so-
called Black and Cox model where the firm default time corresponds to the first 
passage time of its asset dynamics below a certain threshold. This approach has first 
been proposed by Arvanitis and Gregory (2001) (chapter 5) in a general multivariate 
Gaussian setting for the pricing of basket credit derivatives. More recently, Hull et al. 
(2005) investigate the pricing of CDO tranche within a factor version of the Gaussian 
multivariate structural model. In the following, we follow the latter framework. We 
are concerned with n  firms which may default in a time interval [ ]0,T . Their asset 

dynamics 1, , nV V…  are simply expressed as n  correlated Brownian motions: 

 2
, ,1 , 1, ,i t t i tV V V i nρ ρ= + − = … , 

where V , iV , 1, ,i n= …  are independent standard Wiener processes. Default of firm 

i  is triggered whenever the process iV  falls below a constant threshold a  which is 

here assumed to be the same for all names. The corresponding default dates are then 
expressed as: 

 { },inf 0 , 1, ,i i tt V a i nτ = ≥ ≤ = … . 

Clearly, default dates are independent conditionally on the process V . Let us remark 
that as the default indicators are exchangeable, the existence of a mixture probability 
is guarantied thanks to the de Finetti’s theorem. We are thus in a one factor 
framework, though the factor depends on the time horizon contrary to the factor 
copula case. No mixture distribution can be expressed in closed form in the 
multivariate structural model. But, it is still possible to simulate losses on a large 
homogeneous portfolio (and then approximate the mixture probability tp� ) in order to 

estimate the mixture distribution. Figure 7 shows that the latter happens to be very 
similar to the one generated within a factor Gaussian copula model. This is not 
surprising given the result of Hull et al. (2005) where CDO tranche premiums are 
very close in both frameworks. Moreover, the factor Gaussian copula can be seen as 
the static counterpart of the structural model developed above.  
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Figure 7 The graph shows empirical estimation of one year mixture distributions corresponding to 
structural models with correlation parameters 2 30%ρ = and 2 60%ρ = . The barrier level is set at 

2a = −  such that the marginal default probability (before 1t =  year) is the same in both approaches 
and is equal to ( ) 3.94%F t = . We then make a comparison with the mixture distribution associated 

with factor Gaussian copula models with the same correlation parameters and the same default 
probability. 
 
The trouble with the first passage time models is that computation of CDO tranche 
premiums exclusively relies on Monte Carlo simulations and can be very time 
consuming. Kiesel and Scherer (2007) propose an efficient Monte Carlo estimation of 
CDO tranche spreads in a multivariate jump-diffusion setting. Other contributions 
such as Luciano and Schoutens (2006), Baxter (2007) and Willeman (2007)  
investigate the classical Merton model where default at a particular time t  occurs if 
the value of assets is below the barrier at that particular point in time. In this 
framework, default indicators at time t  are independent given the systemic asset value 

tV  and semi-analytical techniques as explained in part 1 can be used to compute CDO 

tranche premiums. Moreover, several empirical researches claim that the Merton 
structural model is a reasonable approximation of the more general Black-Cox 
structural model when considering the pricing of CDO tranches. Luciano and 
Schoutens (2006) consider a multivariate Variance Gamma model and show that it 
can be easily calibrated from market quotes. Baxter (2007) proposes to model the 
dynamics of assets with multivariate Lévy processes based on the Gamma process and 
Willeman (2007) investigate a multivariate structural model as in Hull et al. (2005) 
and adds a common jump component in the dynamic of assets.  
 
II.3 Multivariate Poisson models 
 
These models originate from the theory of reliability where they are also called shock 
models. In multivariate Poisson models, default times correspond to the first jump 

instants of a multivariate Poisson process ( )1, , n
t tN N… . For example, when the 

Poisson process i
tN  jumps for the first time, it triggers the default of name i . The 

dependence between default events derives from the arrival of some independent 
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systemic events or common shocks leading to the default of a group of names with a 
given probability. For the sake of simplicity, we limit ourselves to the case where only 
two independent shocks can affect the economy. In this framework, each default can 
be triggered either by an idiosyncratic fatal shock or by a systemic but not necessarily 
fatal shock. The Poisson process which drives default of name i  can be expressed as: 

 
1

tN
i i i
t t j

j

N N B
=

= +∑  

where tN  and i
tN  are independent Poisson processes with respectively parameter λ  

and λ 22. We further assume that i
jB , 1, ,i n= … , 1j ≥  are independent Bernoulli 

random variables with mean p  independent of tN  and i
tN , 1, ,i n= … . Eventually, 

default times are described by: 

 { }inf 0 0 , 1, ,i
i tt N i nτ = ≥ > = … . 

The background event (new jump of tN ) affects each name (independently) with 

probability p . A specificity of the multivariate Poisson framework is to allow for 
more than one default occurring in small time intervals. It also includes the possibility 
of some Armageddon phenomena where all names may default at the same time, then 
leading to fatten the tail of the aggregate loss distribution as required by market 
quotes. Let us stress that default dates are independent conditionally on the process 
N , while default indicators 1, , nD D…  are independent given tN .  

 
By the independence of all sources of randomness, i

tN , 1, ,i n= …  are Poisson 

processes with parameter pλ λ+ . As a result, default times are exponentially 
distributed with the same parameter. It can be shown that the dependence structure of 
default times is the one of the Marshall-Olkin copula (see Lindskog and McNeil 
(2003) or Elouerkhaoui (2006) for more details about this copula function). The 
Marshall-Olkin multivariate exponential distribution (Marshall and Olkin (1967)) has 
been introduced to the credit domain by Duffie and Singleton (1998) and also 
discussed by Li (2000) and Wong (2000). More recently, analytical results on the 
aggregate loss distribution have been derived by Lindskog and McNeil (2003) within 
a multivariate Poisson model. Some extensions are presented by Giesecke (2003), 
Elouerkhaoui (2006), Brigo et al. (2007a, 2007b). 
 
In this multivariate Poisson model, default times and thus default indicators are 
exchangeable. The corresponding mixture probability can be expressed as: 

 ( ) ( )1 1 exptN

tp p tλ= − − −� . 

As in the case of multivariate structural models, we are still in a one factor 
framework, where the factor depends on the time horizon. We plot in Figure 4, the 
distribution function associated to a Multivariate Poisson model. As the mixture 
probability is a discrete random variable, its distribution function is stepwise constant.  
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Figure 8 The graph shows the mixture distribution functions associated with a Multivariate Poisson 

model with 0.5%λ = , 2%λ = and 5%p = . These parameters have been chosen such the marginal 

default probability before 5t =  years is ( ) 2.96%F t = . For the sake of comparison, we also plot the 

mixture distribution function of the factor Gaussian copula with 2 30%ρ = . 

  
II.4 Affine intensity models  
 

In affine intensity models, the default date of a given name, say i , corresponds to the 
first jump time of a doubly stochastic Poisson process23 with intensity i

tλ . The latter 

follows an affine jump diffusion stochastic process which is assumed to be 
independent of the history of default times: there are no contagion effects of default 
events on the survival name intensities. Let us remark that, given the history of the 
process iλ , survival distribution functions of default dates can be expressed as: 

 ( )
0

, 0 exp , 1, ,
t

i i
i s sP t s t ds i nτ λ λ

 
≥ ≤ ≤ = − = 

 
∫ …

24. 

In affine models, dependence among default dates is concentrated upon dependence 
among default intensities. In the following, we follow the approach of Duffie and 
Gârleanu (2001) where the dependence among default intensities is driven by a factor 
representation: 
 , 1, ,i i

t t tax x i nλ = + = … . 

a  is a non negative parameter accounting for the importance of the common factor 
and governing the dependence. The processes x , ix , 1, ,i n= …  are assumed to be 
independent copies of an affine jump diffusion (AJD) process. The choice of AJD 

                                                           
23 Also know as a Cox process. 
24 Conditionally on the history of default intensity i

tλ , the default date iτ  is the first jump time of a non 

homogeneous Poisson process with intensity i
tλ . Moreover, as far as simulations are concerned, default 

times are often expressed using some independent uniformly distributed random variables 1, , nU U…  

independent of default intensities: 
0

inf 0 exp
t

i
i s it ds Uτ λ

   
= ≥ − ≤   

   
∫ , 1, ,i n= … . 
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processes is not innocuous. First, the intensities i
tλ , 1, ,i n= …  remain in the class of 

AJD processes which allow to derive marginal default probabilities in closed form25. 
It results into a flexible dynamics of default intensities while letting the prospect for 
numerical implementations. Unlike copula models, this approach does not guarantee a 
perfect fit to CDS quotes for all maturities. Moreover, the same parameters drive the 
marginal distributions and the dependence structure of default times, which makes the 
calibration process more complicated. 
 
Let us remark that default times are exchangeable in this framework. Moreover, 

conditionally on 
0

t

t sV x ds= ∫ , the default indicators { }1
ii tD

τ ≤
= , 1, ,i n= …  are 

independent. It is then possible to express the mixture probability tp�  associated with 
this exchangeable Bernoulli sequence: 

 ( )
0 0

, 0 1 exp exp
t t

i
t i s s sp P t x s t E x ds a x dsτ

    
= ≤ ≤ ≤ = − − −    

     
∫ ∫� . 

As in the two previous examples, multivariate structural and Poisson models, we are 
in a one factor framework though a different factor is required to compute the loss 
distribution for each time horizon. Gregory and Laurent (2003) first exhibited the 
form of the mixture probability stressing the factor representation in affine models. 
Thanks to what stated above, it is possible to compute the characteristic function of 

tp�  and derive its density function using some inversion techniques. Mortensen (2006) 

and subsequently Eckner (2007) gradually extended the approach, providing more 
flexibility in the choice of parameters, and developed efficient numerical methods for 
the calibration and the pricing of CDO tranches. Chapovsky et al. (2007) provided a 
slightly different specification that guarantees a perfect calibration onto CDS quotes, 
but have to deal with positivity constraints on default intensities. Feldhütter (2007) 
performed an empirical analysis of the model using a large data set of CDS and CDO 
tranche spreads. He shows that when calibrated to daily CDS spreads, the model has a 
good ability to match marked-to-market of risky CDO tranche spreads over time 
while it does not capture properly the variability of senior tranches spreads.  
 
Conclusion 
 
The factor representation leads to efficient computational methods for the pricing of 
CDO tranches. It encompasses a wide range of CDO pricing models and also provides 
a suitable framework for portfolio risk analysis thanks to the theory of stochastic 
orders. Besides, when considering homogeneous credit risk portfolios, the factor 
approach is not restrictive thanks to de Finetti’s theorem. We stressed the key role 
played by the mixture probability or the conditional default probability in factor 
models in terms of pricing CDO tranches and in deriving large portfolio 
approximations.  
                                                           
25 There exists some complex valued function (.,.)α  and (.,.)β  depending on the process parameters 

such that ( )( )0

0

exp exp , ( , )
t

sE iu x ds u t u t xα β
  

= +   
   

∫ . See Lando (2004) textbook for more details. 
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However, there are still a number of open questions to be dealt with among which we 
can mention: 

- The calibration to CDO tranche quotes with different maturities and the same 
set of parameters is usually difficult. 

- Whether one should choose a non parametric approach such as an implied 
copula or a properly specified parametric model is still unclear. 

- Dealing with heterogeneity between names or linking factors related to 
different geographical regions or sectors, which is especially important for the 
pricing of bespoke CDOs. 

 
Hopefully, there is still room for further improvements of the factor approach both on 
theoretical and practical grounds. 
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