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1 Introduction

In this paper (see [1 - 3] for long versions with detailed proofs and numerics, respectively), we present

a common shock model of portfolio credit risk where one can build a consistent picture of bottom up

defaults that are also manageable in a top down aggregate loss space. In this sense this model solves

the bottom-up top-down puzzle [4], which the CDO industry had been trying to do for a long time

and basically failed. Then the CDO market died and the problem remained standing. The result of

this paper, however, can be applied well beyond the space of, say, consistent valuation and hedging of

CDSs and CDOs. In particular it is used in [5 - 7] for valuation and hedging of counterparty risk on

credit derivatives.

The common shock aspect of our model is related to the work by Elouerkhaoui [8] and Brigo et

al. [9 - 10] (see also [11 - 12]). The innovative breakthrough is a suitable decoupling property between

the dependence structure and the individual names [13], so that the model can be jointly calibrated

to single-name and portfolio data in two steps (as opposed to a global joint optimization procedures

involving all the model parameters at the same time in the above references, which is untractable

numerically).

2 Model of Default Times

In our model, defaults are the consequence of some “shocks” associated with groups of obligors. We

define the following pre-specified set of groups

Y = {{1}, . . . , {n}, I1, . . . , Im},

where I1, . . . , Im are subsets of N = {1, . . . , n}, and each group Ij contains at least two obligors or

more. The shocks are divided in two categories: the “idiosyncratic” shocks associated with singletons

{1}, . . . , {n} can only trigger the default of name 1, . . . , n individually, while the “systemic” shocks

associated with multi-name groups I1, . . . , Im may simultaneously trigger the default of all names in

these groups. Note that several groups Ij may contain a given name i, so that only the shock occurring

first effectively triggers the default of that name. As a result, when a shock associated with a specific

group occurs at time t, it only triggers the default of names that are still alive in that group at time t.
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In the following, the elements Y of Y will be used to designate shocks and we let I = (Il)1≤l≤m denote

the pre-specified set of multi-name groups of obligors. Shock intensities λY (t,Xt) will be specified later

in terms of a Markovian factor process Xt. Letting ΛYt =
∫ t
0
λY (s,Xs)ds, we define

τY = inf{t > 0; ΛYt > EY }, (1)

where the random variables EY are i.i.d. and exponentially distributed with parameter 1. For every

obligor i we let

τi = min
{Y ∈Y; i∈Y }

τY , (2)

which defines the default time of obligor i in the common shocks model. The model filtration is given

as F = X ∨ H, the filtration generated by the factor process X and the point process H = (Hi)1≤i≤n

with Hi
t = 1τi≤t.

This model can be viewed as a doubly stochastic (via the stochastic intensities ΛY ) and dynamized

(via the introduction of the filtration F) generalization of the Marshall-Olkin model [12]. The purpose

of the factor process X is to more realistically model diffusive randomness of credit spreads. Note that

in [1], we construct the model the reverse way round, i.e. we first construct a suitable Markov process

(Xt,Ht) and then define the τi as the jump times of the Hi.

Figure 1 shows one possible defaults path in our model with n = 5 and

Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

The inner oval shows which common-shock happened and caused the observed default scenarios at

successive default times. At the first instant, default of name 2 is observed as the consequence of the

idiosyncratic shock {2}. At the second instant, names 4 and 5 have defaulted simultaneously as a

consequence of the systemic shock {4, 5}. At the fourth instant, the systemic shock {2, 3, 4} triggers

the default of name 3 alone as name 2 and 4 have already defaulted. At the fifth instant, default of

name 1 alone is observed as the consequence of the systemic shock {1, 2}.
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Fig. 1 One possible defaults path in a model with n = 5 and Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

The set of obligors alive (resp. in default) at time t is denoted by Jt = suppc(Ht) (resp. It =

supp(Ht)). For every Y ∈ Y and every set of non-negative constants t, t1, . . . , tn, we define

θYt = t ∨ max
i∈Y ∩Jt

ti

(with the convention that max ∅ = 0). Note that Y ∩ Jt in θYt represents the set of survivors in Y at

time t. We also write

ΛYs,t =

∫ t

s

λY (u,XY
u )du, λit =

∑
{Y ∈Y; i∈Y }

λY (t,Xt).

The following result is proved in the Appendix.

Proposition 2.1 For any fixed non-negative constants t, t1, . . . , tn, we have:

P (τ1 > t1, . . . , τn > tn | Ft) = 1{ti<τi , i∈It}E

{
exp

(
−
∑
Y ∈Y

ΛYt,θYt

) ∣∣∣Xt

}
. (3)

In particular, for every obligor i and ti ≥ t,

P(τi > ti | Ft) = 1{τi>t}E
{

exp
(
−
∫ ti

t

λisds
)
|Xt

}
. (4)

Thanks to formula (3), efficient convolution recursion procedures are available for pricing multi-

name credit derivatives like CDO tranches (see [2] for more details). Thanks to formula (4) and under

an additional affine structure postulated below on each individual pre-default intensity process λi,

affine methodologies can be used to price single-name credit derivatives like CDSs, as CDS spreads can

be derived from each individual survival distribution function. Additionally, the hedging issue can be
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dealt with numerically in this framework (see Section 3) since the pricing can be done conditionally

on any given state of the dynamic model (Xt,Ht). Another key interest of this framework is the fact

that model parameters can be calibrated in two steps: individual λi-parameters are first calibrated to

individual CDSs and the model dependence λI -parameters are then calibrated to CDO tranches (as

opposed to a global joint optimization procedures involving all the model parameters at the same time,

which would be untractable numerically). See [2] for the details. One can then consistently consider

in this dynamic model issues like hedging CDO tranches by CDSs, or counterparty risk on credit

derivatives.

Moreover, as announced above, in order to ensure the Markov consistency and Markov copula

feature of the setup (see [13]), we assume further that every individual process λi is an affine process

(in particular, a Markov process), as in either specification below. Consequently the conditioning with

respect to Xt can be replaced by a conditioning with respect to λit in (4), hence exponential-affine

methodogies for computing (4) follow.

Example 2.1 (i) (Deterministic group intensities). The idiosyncratic intensities λ{i}(t,Xt) are

affine, and the systemic intensities λY (t,Xt) are deterministic functions of time, i.e. the functions

λY (t,x) do not depend on x, for Y ∈ Y that are not singletons.

(ii) (Extended CIR intensities). Xt = (XY
t )Y ∈Y and for every Y ∈ Y, λY (t,Xt) = XY

t , where XY
t is

an extended CIR process

dXY
t = a(bY (t)−XY

t )dt+ c

√
XY
t dW

Y
t , (5)

for non-negative constants a, c (independent of Y ) and a non-negative function bY (t), and where the

WY are independent standard Brownian motions.

In the second specification, affinity of λi (which is trivial in the first specification) arises from

the fact that the SDE for the factors XY have the same coefficients except for the bY (t). Thus,

Xi :=
∑

{Y ∈Y; i∈Y }

XY satisfies the following extended CIR SDE:

dXi
t = a(bi(t)−Xi

t)dt+ c

√
Xi
tdW

i
t , (6)
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for the function bi(t) =
∑

{Y ∈Y; i∈Y }

bY (t) and the Brownian motion

dW i
t =

∑
i∈Y

√
XY
t√∑

i∈Y X
Y
t

dWY
t .

3 Numerical Results

In this section we briefly discuss the calibration of the model and some few numerical results connected

to the loss-distributions and the min-variance hedging of a CDO tranche by a portfolio of CDSs. See

[2] for the details and [5 - 7] for further applications to counterparty risk modeling. Note that we only

use piecewise-constant intensities λY (t) here (see [3] for numerical studies with stochastic intensities

and random revoveries).

The model parameters are calibrated in two steps. First, the individual λi-parameters are cali-

brated to corresponding CDS spreads and we use piecewise-constant intensities on the time intervals

[0, 3] and [3, 5] which yield perfect fits due to the bootstrapping algorithm.

In the second step we calibrate the common shock intensities λIj (t) for the m groups, which also

are piecewise constant functions of time, so that λIj (t) = λ
(1)
Ij

for t ∈ [0, 3] and λIj (t) = λ
(2)
Ij

for t ∈ [3, 5]

and for every group j. More specific, λIj (t) = λ
(1)
Ij

are calibrated so that the five-year model spread

Sal,bl(λ) =: Sl(λ) will coincide with the corresponding market spread S∗l for each tranche l. Thus, the

parameters λ = (λ
(k)
Ij

)j,k are obtained according to

λ = argmin
λ̂

∑
l

(
Sl(λ̂)− S∗l

S∗l

)2

(7)

under the constraints that all elements in λ are non-negative and that λ satisfies the inequalities

specified by the individual CDS calibrations (see [2] for the details) for every group Il and in each time

interval [0, 3] and [3, 5]. We use Matlab in our numerical calculations and the objective function (7)

is minimized by using the built in optimization routine fmincon together with the above mentioned

constraints (see [2]).

When calibrating the joint default intensities λ = (λ
(k)
Ij

)j,k for the CDX.NA.IG Series 9, December

17, 2007 we used 5 groups I1, I2, . . . , I5 where Ij =
{

1, . . . , ij
}

for ij = 6, 19, 25, 61, 125. We label the
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obligors by decreasing level of riskiness and use the average over 3-year and 5-year CDS spreads as a

measure of riskiness. Consequently, obligor 1 has the highest average CDS spread while company 125

has the lowest average CDS spread. Moreover, the obligors in the set I5 \ I4 consisting of the 64 safest

companies are assumed to never default individually, and the corresponding CDSs are excluded from

the calibration, which in turn relaxes the constraints for λ (see [2]). Hence, the obligors in I5 \ I4 can

only bankrupt due to a simultaneous default of the companies in the group I5 = {1, . . . , 125}, i.e., in an

Armageddon event. With this structure the calibration against the December 17, 2007 data-set is very

good as can be seen in Table 1. Note that by resorting to stochastic recoveries, we can get a perfect

fit of the same data-set (see [2]).

Table 1 CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31, 2008. The market and

model spreads and the corresponding absolute errors, both in bp and in percent of the market spread. The [0, 3]

spread is quoted in %. All maturities are for five years.

CDX 2007-12-17

CDO tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00

Model spread 48.07 254.0 124.0 61.00 38.94

Absolute error in bp 0.010 0.000 0.000 0.000 2.061

Relative error in % 0.0001 0.000 0.000 0.000 5.027

iTraxx Europe 2008-03-3

CDO tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4

Model spread 41.68 429.7 309.4 215.1 103.7

Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711

Relative error in % 3.812 10.39 0.0142 0.0154 5.218

The calibration of the joint default intensities λ = (λ
(k)
Ij

)j,k for the data sampled at March

31, 2008 is more demanding. This time we use 18 groups I1, I2, . . . , I18 where Ij =
{

1, . . . , ij
}

for

ij = 1, 2, . . . , 11, 13, 14, 15, 19, 25, 79, 125. In order to improve the fit, as in the 2007-case, we relax the
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constraints for λ by excluding from the calibration the CDSs corresponding to the obligors in I18 \ I17.

Hence, we assume that the obligors in I18 \I17 never default individually, but can only bankrupt due to

an simultaneous default of all companies in the group I18 = {1, . . . , 125}. In this setting, the calibration

of the 2008 data-set with constant recoveries yields an acceptable fit except for the [3, 6] tranche, as

can be seen in Table 1. However, by including stochastic recoveries, as illustrated in [2], the fit is

substantially improved.
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Fig. 2 The implied distribution P [N5 = k] on {0, 1, . . . , `} where ` = 125 (top left) and ` = 35 (top right) when the

model is calibrated against CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31, 2008.

The corresponding log distributions ln(P [N5 = k]) on {0, 1, . . . , `} are displayed bottom left (` = 125) and bottom

right (` = 35).

After the fit of the model against market spreads we can use the calibrated portfolio parame-

ters λ = (λ
(k)
Ij

)j,k together with the calibrated individual default intensities, to study the credit-loss

distribution in the portfolio. In this paper we only focus on some few examples derived from the loss

distribution with constant recoveries evaluated at T = 5 years.
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The allowance of joint defaults of the obligors in the groups Ij together with the restriction of

the most safest obligors not being able to default individually, will lead to some interesting effects of

the loss distribution, as can be seen in Figure 2. For example, we clearly see that the support of the

loss-distributions will in practice be limited to a rather compact set. To be more specific, the upper

graphs in Figure 2 indicate that P [N5 = k] roughly has support on the set {1, . . . , 35} ∪ {61} ∪ {125}

for the 2007 case and on {1, . . . , 40} ∪ {79} ∪ {125} for the 2008 data-set. This becomes even more

clear in a log-loss distribution, as is seen in the lower graphs in Figure 2. From the bottom graphs in

Figure 2 we see that the default-distribution is nonzero on {36, . . . , 61} in the 2007-case and nonzero

on {41, . . . , 79} for the 2008-sample, but the actual size of the loss-probabilities are in the range 10−10

to 10−70. Such low values will obviously be treated as zero in any practically relevant computation.

Furthermore, the reasons for the empty gap in the bottom left graph in Figure 2 on the interval

{62, . . . , 124} for the 2007-case is due to the fact that we forced the obligors in the set I5 \ I4 to never

default individually, but only due to an simultaneous common shock default of the companies in the

group I5 = {1, . . . , 125}. This Armageddon event is displayed as an isolated nonzero ‘dot’ at default

nr 125 in the lower left graph of Figure 2. The gap on {80, . . . , 124} in the 2008 case is explained

similarly due to our assumption on the companies in the set I19 \ I18. Also note that the two ‘dots’

at default nr 125 in the lower left plot of are manifested as spikes in the upper left graph displayed

in Figure 2. The shape of the multimodal loss distributions presented in Figure 2 are typical for mod-

els allowing simultaneous defaults, see for example Figure 2, page 59 in [9] and Figure 2, page 710 in [8].

We then use the CDX.NA.IG fitted model of December 17, 2007 to compute implied min-variance

hedging strategies for CDO tranches when a portfolio of CDSs is used as hedging instrument. By min-

variance we mean a hedge that minimizes the variance of the hedging error (risk-neutral variance

relatively to the pricing measure, for tractability reasons). The aim is to analyze the behavior of

hedging strategies when the riskiest names of the index are used for hedging standard CDO tranches.

Figure 3 displays the nominal exposure for the 3 (resp. 4, 5 and 6) most riskiest CDSs when

hedging one unit of nominal exposure in a CDO tranche. The hedging exposure are derived from

the min-variance hedging strategy computed in [1] (see [2] for additional numerical experiments).
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Furthermore, Table 2 displays the names and sizes of the 3-year CDS spreads used in the hedging

strategy. Each plot in Figure 3 should be interpreted as follows: in every pair (x, y) the x-component

represents the size of the 3-year CDS spread at the hedging time t = 0 while the y-component is

the corresponding nominal CDS-exposure required for hedging. The graphs are ordered from top left

to bottom right, where the top panel corresponds to hedging with the d = 3 riskiest CDS and the

bottom panel corresponds to hedging with the d = 6 riskiest names. Note that the x-axes are displayed

from the riskiest obligor to the safest. Thus, hedge-sizes y for riskier CDSs are aligned to the left in

each plot while y-values for safer CDSs are consequently displayed more to the right. In doing this,

going from the topleft to the bottom right panel consists in observing the effect of including new

safer CDSs from the right part of the graphs. We have connected the pairs (x, y) with lines forming

graphs that visualizes possible trends of the min-variance hedging strategies for the d most riskiest

CDSs. When the three riskiest names are used for hedging (top panel), we observe that the amount of

nominal exposure in hedging instruments decreases with the degree of subordination, i.e., the [0-3%]

equity tranche requires more nominal exposure in CDSs to be hedged than the upper tranches. Note

moreover that the min-variance hedging portfolio contains more CDSs on names with lower spreads.

When lower-spread CDSs are added in the portfolio, the picture remains almost the same for the 3

riskiest names. For the remaining safer names however, the picture depends on the characteristics of

the tranche. For the [0-3%] equity tranche, the quantity of the remaining CDSs required for hedging

sharply decrease as additional safer names are added. One possible explanation is that adding too many

names in the hedging strategy will be useless when hedging the equity tranche. This is intuitively clear

since one expects that the most riskiest obligors will default first and consequently reduce the equity

tranche substantially, explaining the higher hedge-ratios for riskier names, while it is less likely that

the more safer names will default first and thus incur losses on the first tranche which explains the

lower hedge ratios for the safer names. We observe the opposite trend for the senior (safer) tranches:

adding new (safer) names in the hedging portfolio seems to be useful for “non equity” tranches since

the nominal exposure required for these names increases when they are successively added.



A Markov Copula Model of Portfolio Credit Risk 11

600700800900100011001200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.40.4
Hedging with the 3 riskiest names 

3−year CDS spread

C
D

S
 n

o
m

in
a

l 
e

x
p

o
s
u

re

 

 

[0−3%] tranche

[3−7%] tranche

[7−10%] tranche

[10−15%] tranche

[15−30%] tranche

400500600700800900100011001200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Hedging with the 4 riskiest names

3−year CDS spread

C
D

S
 n

o
m

in
a

l 
e

x
p

o
s
u

re

 

 

[0−3%] tranche

[3−7%] tranche

[7−10%] tranche

[10−15%] tranche

[15−30%] tranche

400500600700800900100011001200
0

0.05

0.1

0.15

0.2

0.25
Hedging with the 5 riskiest names

3−year CDS spread

C
D

S
 n

o
m

in
a

l 
e

x
p

o
s
u

re

 

 

[0−3%] tranche

[3−7%] tranche

[7−10%] tranche

[10−15%] tranche

[15−30%] tranche

400500600700800900100011001200
0

0.05

0.1

0.15

0.2
Hedging with the 6 riskiest names (group 1)

3−year CDS spread

C
D

S
 n

o
m

in
a

l 
e

x
p

o
s
u

re

 

 

[0−3%] tranche

[3−7%] tranche

[7−10%] tranche

[10−15%] tranche

[15−30%] tranche

Fig. 3 Min-variance hedging strategies associated with the d riskiest CDS, d = 3, 4, 5, 6 for one unit of nominal

exposure of different CDO tranches in a model calibrated to market spreads of CDX.NA.IG Series 9 on December 17,

2007.

Table 2 The names and CDS spreads (in bp) of the six riskiest obligors used in the hedging strategy displayed by

Figure 3.

Company (Ticker) CCR-HomeLoans RDN LEN SFI PHM CTX

3-year CDS spread 1190 723 624 414 404 393

4 Conclusions

We construct a bottom-up dynamic model of portfolio credit risk in which pricing, hedging and coun-

terparty risk valuation can be made in a theoretical sound and practical convenient way. This boils

down to two possible equivalent perspectives of the model. The Markov copula perspective (see [1])

allows us to derive min-variance hedging strategies for portfolio credit derivatives and to propose a
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two-step efficient calibration procedure of individual default marginals and dependence structure. The

common-shock perspective (see [2]) underlies semi-explicit convolution-based pricing schemes to assess

the credit portfolio loss distribution at several time horizons. Then, calibration of model parameters

on both single-name and portfolio credit derivative products, hedging or CVA computations are nu-

merically tractable in this setting.

Appendix

Here is the proof of Proposition 2.1. For I ⊆ N, we define the filtration XI = (X It )t≥0 as the initial

enlargement of X by the τi for i ∈ I, i.e. for every t :

X It = Xt ∨
∨
i∈I

σ(τi).

By an application of Lemma 2.5 in [14], writing J = N \ I for every I ⊆ N , we obtain:

P (τ1 > t1, . . . , τn > tn | Ft) =
∑
I N

1{It=I}1{τi>ti, i∈I}
P(τj > t ∨ tj , j ∈ J | X It )

P(τj > t, j ∈ J | X It )
. (8)

Now, in the common shocks model of this paper, writing

YJ = {Y ∈ Y; Y ∩ J 6= ∅}, ȲJ = Y \ YJ

τJi = min
{Y ∈ȲJ ; i∈Y }

τY , X̄ It = Xt ∨
∨
i∈I

σ(τJi )

t̄Y = max
j∈Y ∩J

(t ∨ tj), t̄ = max
Y ∈Y

t̄Y = max
Y ∈YJ

t̄Y ,

we have on {It = I} (and therefore {τi = τJi , i ∈ I}):

P(τj >t ∨ tj , j ∈ J | X It ) = P(τj > t ∨ tj , j ∈ J | X̄ It )

= P(τY > t̄Y , Y ∈ YJ | X̄ It ) = P
(
EY > Λt̄Y , Y ∈ YJ | X̄

I
t

)
= E

(
P
(
EY > Λt̄Y , Y ∈ YJ | X̄

I
t̄

)
| X̄ It

)
= E

exp

− ∑
Y ∈YJ

ΛYt̄Y

 ∣∣∣ X̄ It


where P
(
EY > Λt̄Y , Y ∈ YJ | X̄

I
t̄

)
= exp

(
−
∑
Y ∈YJ

ΛYt̄Y

)
in the last identity holds by independence of

(EY )Y ∈YJ
from X̄ It̄ and by X̄ It̄ - (in fact, Xt̄-) measurability of (ΛYt̄Y )Y ∈YJ

.

Note moreover that we have on {It = I}:

Xt ⊆ X̄ It ⊆ Xt ∨
∨

Y ∈ȲJ

σ(EY ),
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where the EY , Y ∈ ȲJ are independent from X. We thus have on {It = I}:

E

exp

− ∑
Y ∈YJ

ΛYt̄Y

 ∣∣∣Xt
 = E

exp

− ∑
Y ∈YJ

ΛYt̄Y

 ∣∣∣Xt ∨ ∨
Y ∈ȲJ

σ(EY )


= E

exp

− ∑
Y ∈YJ

ΛYt̄Y

 ∣∣∣ X̄ It
 = P

(
τj > t ∨ tj , j ∈ J | X It

)
.

The Markov property of Xt finally yields that

P
(
τj > t ∨ tj , j ∈ J | X It

)
= exp

− ∑
Y ∈YJ

ΛYt

E

exp

− ∑
Y ∈YJ

ΛYt,t̄Y

 ∣∣∣Xt


= P(τj > t, j ∈ J | X It )E

exp

− ∑
Y ∈YJ

ΛYt,t̄Y

 ∣∣∣Xt

 .

Plugging this into (8) yields that

P (τ1 > t1, . . . , τn > tn | Ft) =
∑
I N

1{It=I}1{τi>ti, i∈I}E

{
exp

(
−
∑
Y ∈Y

ΛYt,t̄Y
) ∣∣∣Xt

}
,

which is (3). Setting all tj but ti equal to 0, we deduce (4) from (3), for ti ≥ t.
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Ast&Risk. The research of S. Crépey benefited from the support of the “Chaire Risque de Crédit” and

of the “Chaire Marchés en Mutation”, Fédération Bancaire Française. The research of A. Herbertsson

was supported by the Jan Wallander and Tom Hedelius Foundation and by Vinnova.

References
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5. Assefa, S., Bielecki, T.R., Crépey, S., Jeanblanc, M.: CVA computation for counterparty risk as-

sessment in credit portfolios. In: Bielecki, T.R., Brigo, D., Patras, F. (eds.): Credit Risk Frontiers,

pp. 397–436, Wiley/Bloomberg-Press (2011).
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