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Abstract

We consider a bottom-up Markovian copula model of portfolio credit risk where
instantaneous contagion is possible in the form of simultaneous defaults. Due to the
Markovian copula nature of the model, calibration of marginals and dependence param-
eters can be performed separately using a two-steps procedure, much like in a standard
static copula set-up. In this sense this model solves the bottom-up top-down puzzle
which the CDO industry had been trying to do for a long time. It can be applied to
any dynamic credit issue like consistent valuation and hedging of CDSs, CDOs and
counterparty risk on credit portfolios.
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1 Introduction

The CDO market have been deeply and adversely impacted by the crisis. In particular,
CDO issuances have become quite rare. Nevertheless, there are huge notionals of CDO
contracts outstanding and market participants continue to be confronted with the task
to hedge their positions in these contracts up to maturity date. Moreover, according to
the regulation (see [2]), tranches on standard indices and their associated liquid hedging
positions continue to be charged as hedge-sets under internal VaR-based method. About
the CDO hedging issue we refer the reader to Laurent, Cousin and Fermanian [28], Frey and
Backhaus [23], Cont and Kan [15] or Cousin, Crépey and Kan [17]. In particular it has been
established empirically in [15] and [17] that a single-instrument hedge of a CDO tranche by
the corresponding credit index is often not good enough. In this and the companion paper
[5], we deal with a bottom-up Markovian copula model, in which hedging loss derivatives
by single-name instruments can be performed in a theoretically sound and practical way.
There are two major theoretical contributions of these papers:

• In this paper, we construct a Markov model where dependence between default risks
derives from the possibility of joint defaults. The Markovian structure of the model
is adequate for the problem at hand, that is for the problem of dynamic hedging of
portfolio credit risk. The (dynamic) copula property of the model allows for separa-
tion of calibration of the univariate marginals of the underlying multivariate Markov
process, from calibration of the dependence structure between the components of the
process. This is of critical importance from the practical point of view.

• We show that the conditional dependence structure of default times belongs to the
class of Marshall-Olkin copulas (see Prop 2.9). This result is exploited in [5] to
construct an equivalent conditional factor representation of our Markovian model
which relies on “common shocks”, the latter being represented by Cox processes likely
to trigger defaults simultaneously in some pre-specifed group of obligors. This is
important from the practical point of view as this interpretation underlies semi-explicit
convolution-based pricing schemes to assess the credit portfolio loss distribution at
several time horizons. Such numerical schemes play a crucial role when calibrating
credit portfolio models and in related applications such as hedging portfolio credit
derivatives by individual names, or counterparty risk valuation for portfolios (see
[1, 7]).

The common shock aspect of our model is related to the work by Elouerkhaoui [21] (see
also Brigo et al. [12, 13, 14]). Consequently, some results derived in this and the companion
paper are consistent with results derived in [21]. However, there are major differences
between our study and the one presented in [21]:

• Firstly, the approach of [21] suffers from the “curse of dimensionality” due to the
need of summation (integration) over the set denoted by Πn in [21] (see for example
equation (2.6) therein, and compare with our own result (17) below), the set of all
subsets of the set {1, 2, . . . , n}. By contrast, the complexity of our formula (7) for
the generator of our Markov process, or of our common shock algorithms described
in Subsection 2.1 of the companion paper [5], are controlled by the cardinality of our
shocks set Y, typically a few units in applications (see [5]).

• Secondly, as already stated, our methodology allows for separation of calibration of
idiosyncratic (marginal) laws of the underlying Markov process, from the calibration of
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the dependence structure of the process. The calibration really amounts to calibrating
the infinitesimal generator of the underlying Markov process, and once this is done, the
model can be used for consistent pricing and hedging of both the underlying products,
such as CDO tranches, as well as options on such with future expiration dates (e.g.
in the context of CVA computations); this feature obviously contributes to increased
practical use of our methodology. In this sense, our Markov copula model is a genuine
dynamic model, as a model of dependence between underlying stochastic processes.
This not really the case with the model developed in [21], where the “dynamic copula”
feature is in the sense of Patton’s conditional copula [31], which is a stochastic process
itself, and as such can’t be calibrated to initial data.

• Last, but not least, the Markov copula approach of this paper is generic in the sense
that, as demonstrated in [10, 11], it also applies to modeling of dynamics of credit
ratings. This is not the case with the approach of [21].

Comparing now our methodology to the what is done in Brigo et al. [12, 13, 14], we
see that the major differences can be summarized as follows:

• Our approach is a bottom-up approach, hence an approach applicable for hedging
basket products using individual names, whereas the approach taken in [12, 13] is a
top-down approach, and, as such, is not applicable for hedging basket products using
individual names;

– This also applies to the so-called GPCL extension of the model of [14] in which
individual names are represented of the model so that, in principle, hedging bas-
ket products using individual names could be considered in this setup. This is
not practical however because fault of a suitable decoupling property between
the dependence structure and the individual names in the model, the calibration
of the model can only be addressed through a global joint optimization proce-
dures involving all the model parameters at the same time, which is untractable
numerically.

• Again, our approach is generic in the sense that it also applies to modeling of dynamics
of credit ratings. This is not the case with the approach of [12, 13, 14].

This paper is organized as follows. In Section 2 we formulate a bottom-up Markovian
copula model, in which individual default processes for various credit names are coupled
together by means of simultaneous defaults. In Section 3 we exploit the dynamic structure
of the model to derive explicit dynamic min-variance hedging formulas. The more technical
proofs are deferred to Appendix A. The algorithmic aspects of the model based on the
common-shock representation, as well as illustrative numerics, are provided in the compan-
ion paper [5]. Fine features of the modeling of the default marginals (single-name modeling
in different kinds of affine setups) are considered in [6]. A short announcing version of these
results can be found in [4].

In the rest of the paper we consider a risk neutral pricing model (Ω,F ,P), for a filtration
F = (Ft)t∈[0,T ] which will be specified below and where T ≥ 0 is a fixed time horizon. We
denote Nn = {1, . . . , n} and let Nn denote the set of all subsets of Nn where n represents
the number of obligors in the underlying credit portfolio. Further, we set max ∅ = −∞.
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2 Model of Default Times

In this section we construct a bottom-up Markovian model consisting of a multivariate
factor process X and a vector H representing the default indicator processes in a pool of n
different credit names. More specifically, Ht is a vector in {0, 1}n where the i-th entry of
Ht is the indicator function for the event of a default of obligor i up to time t. The purpose
of the factor process X is to more realistically model diffusive randomness of credit spreads.

In our model, defaults are the consequence of some “shocks” associated with groups
of obligors. We define the following pre-specified set of groups

Y = {{1}, . . . , {n}, I1, . . . , Im},

where I1, . . . , Im are subsets of {1, . . . , n}, and each group Ij contains at least two obligors or
more. The shocks are divided in two categories: the “idiosyncratic” shocks associated with
singletons {1}, . . . , {n} can only trigger the default of name 1, . . . , n individually, while the
“systemic” shocks associated with multi-name groups I1, . . . , Im may simultaneously trigger
the default of all names in these groups. Note that several groups Ij may contain a given
name i, so that only the shock occurring first effectively triggers the default of that name.
As a result, when a shock associated with a specific group occurs at time t, it only triggers
the default of names that are still alive in that group at time t. In the following, the elements
Y of Y will be used to designate shocks and we let I = (Il)1≤l≤m denote the pre-specified
set of multi-name groups of obligors.

Let ν = |Y| = n + m denote the cardinality of Y. Given a multivariate Brownian
motion W = (W Y )Y ∈Y with independent components, we assume that the factor process
X = (XY )Y ∈Y is a strong solution to

dXY
t = bY (t,XY

t ) dt+ σY (t,XY
t ) dW Y

t , (1)

for suitable drift and diffusion functions bY = bY (t, x) and σY = σY (t, x). By application of
Theorem 32 page 100 of Protter [32], this makes X an FW-Markov process admitting the
following generator acting on functions v = v(t,x) with x = (xY )Y ∈Y

Atv(t,x) =
∑

Y ∈Y

(
bY (t, xY )∂xY v(t,x) + 1

2σ
2
Y (t, xY )∂2

x2Y
v(t,x)

)
. (2)

Let F := F (W,H) be the filtration generated by the Brownian motion W and the point
process H. Given the “intensity functions” of shocks, say λY = λY (t, xY ) for every shock
Y ∈ Y, we would like to construct a model in which the F-predictable intensity of a jump
of H = (H i)1≤i≤n from Ht− = k to Ht = l, with l 6= k in {0, 1}n, is given by

λ(t,Xt,k, l) :=
∑

{Y ∈Y;kY =l}

λY (t,XY
t ), (3)

where, for any Z ∈ Nn, the expression kZ denotes the vector obtained from k = (k1, . . . , kn)
by replacing the components ki, i ∈ Z, by numbers one (whenever ki is not equal to one
already). The intensity of a jump of H from k to l at time t is thus equal to the sum of the
intensities of the shocks Y ∈ Y such that, if the joint default of the survivors in group Y
occurred at time t, then the state of H would move from k to l.

Example 2.1 Figure 1 shows one possible defaults path in our model with n = 5 and
Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}. The inner oval shows which common-
shock happened and caused the observed default scenarios at successive default times. At
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the first instant, default of name 2 is observed as the consequence of the idiosyncratic shock
{2}. At the second instant, names 4 and 5 have defaulted simultaneously as a consequence
of the systemic shock {4, 5}. At the fourth instant, the systemic shock {2, 3, 4} triggers
the default of name 3 alone as name 2 and 4 have already defaulted. At the fifth instant,
default of name 1 alone is observed as the consequence of the systemic shock {1, 2}. Note
that the information produced by the arrival of the shock-events cannot be deduced from
the mere observation of the sequence of states followed by Ht.

Figure 1: One possible defaults path in a model with n = 5 and Y =
{{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

To achieve (3) we follow the classical methodology: we construct H by an X-related
change of probability measure, starting from a continuous-time Markov chain with intensity
one. This construction is detailed in Appendix A.1.

2.1 Itô Formula

In this subsection we state the Itô formula for functions of the Markov process (X,H).
For any set Z ∈ Nn, let the set-event indicator process HZ denote the indicator

process of a joint default of the names in Z and only in Z. For k = (k1, . . . , kn) ∈ {0, 1}n,
we introduce supp(k) = {i ∈ Nn; ki = 1} and suppc(k) = {i ∈ Nn; ki = 0}. Hence, supp(k)
denotes the obligors who have defaulted in state k and similarly suppc(k) are the survived
names in the portfolio-state k.

The following lemma provides the structure of the so called compensated set-event
martingales MZ , which we will use later as fundamental martingales to represent the pure
jump martingale components of the various price processes involved.

Lemma 2.2 For every set Z ∈ Nn the intensity of HZ is given by `Z(t,Xt,Ht), so

dMZ
t = dHZ

t − `Z(t,Xt,Ht)dt

is a martingale, and the set-event intensity function `Z(t,x,k) is defined as

`Z(t,x,k) =
∑

Y ∈Y;Y ∩suppc(k)=Z

λY (t, xY ). (4)
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Proof. See Appendix A.1.1.

So `Z(t,Xt,Ht−) =
∑

Y ∈Y;Yt=Z λY (t,XY
t ), where for every Y in Y = {{1}, . . . , {n}, I1, . . . , Im}

we define

Yt = Y ∩ suppc(Ht−), (5)

the set-valued process representing the survived obligors in Y right before time t. Let also
Zt = {Z ∈ Nn;Z = Yt for at least one Y ∈ Y} \ ∅ denote the set of all non-empty sets of
survivors of sets Y in Y right before time t.

We now derive a version of the Itô formula, which is relevant for our model. It will be
used below for establishing the Markov properties of our set-up, as well as for deriving price
dynamics. Let σ(t,x) denote the diagonal matrix with diagonal (σY (t, xY ))Y ∈Y . Given
a function u = u(t,x,k) with x = (xY )Y ∈Y and k = (ki)1≤i≤n in {0, 1}n, we denote
∇u(t,x,k) = (∂xY u(t,x,k), Y ∈ Y), the (row-)gradient of u with respect to x. Let also δuZ

represent the sensitivity of u to the event Z ∈ Nn, so

δuZ(t,x,k) = u(t,x,kZ)− u(t,x,k).

Proposition 2.3 Given a regular enough function u = u(t,x,k), one has

du(t,Xt,Ht) =
(
∂t +At

)
u(t,Xt,Ht)dt + ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑
Z∈Zt

δuZ(t,Xt,Ht−)dMZ
t ,

(6)

where

Atu(t,x,k) =
∑
Y ∈Y

(
bY (t, xY )∂xY u(t,x,k) +

1

2
σ2Y (t, xY )∂2x2Y

u(t,x,k)
)

+
∑
Y ∈Y

λY (t, xY )δuY (t,x,k).
(7)

Proof. See Appendix A.1.2.

In the Itô formula (6), the jump term may involve any of the 2n set-events martingales
MZ for Z ∈ Nn. This suggests that the martingale dimension1 of the model is ν + 2n,
where ν = n + m corresponds to the dimension of the Brownian motion W driving the
factor process X and 2n corresponds to the jump component H. Yet by a reduction which
is due to specific structure of the intensities in our set-up, the jump term of At in (7) is a
sum over the set of shocks Y, which has cardinality ν.

Note that our model excludes direct contagion effects in which intensities of surviving
names would be affected by past defaults, as opposed to the bottom-up contagion models
treated by e.g. [16, 24, 25, 28]. To provide some understanding in this regard, we give a
simple illustrative example.

1Minimal number of fundamental martingales which can be used as integrators to represent all the
martingales in the model, see Appendix A.1.
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Example 2.4 Take Nn = {1, 2, 3}, so that the state space of H contains 8 elements:

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} .

Now, let Y be given as Y = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}. This is an example of the nested
structure of I with I1 = {1, 2} ⊂ I2 = {1, 2, 3}. Suppose for simplicity that λY does not
depend either on t or on x (dependence in t,x will be dealt with in Subsection 2.2). Then,
the generator A of the chain H is given in matrix-form by

A ≡



· λ{1} λ{2} λ{3} λ{1,2} 0 0 λ{1,2,3}

0 · 0 0 λ{2} + λ{1,2} λ{3} 0 λ{1,2,3}

0 0 · 0 λ{1} + λ{1,2} 0 λ{3} λ{1,2,3}

0 0 0 · 0 λ{1} λ{2} λ{1,2,3} + λ{1,2}

0 0 0 0 · 0 0 λ{3} + λ{1,2,3}

0 0 0 0 0 · 0 λ{2} + λ{1,2,3} + λ{1,2}

0 0 0 0 0 0 · λ{1} + λ{1,2,3} + λ{1,2}

0 0 0 0 0 0 0 0


(8)

where ‘·’ represents the sum of all other elements in the row multiplied with −1. Now,
consider group {1, 2, 3}. Suppose, that at some point of time obligor 2 is defaulted, but
obligors 1 and 3 are still alive, so that process H is in state (0, 1, 0). In this case the
two survivors in the group {1, 2, 3} may default simultaneously with intensity λ{1,2,3}. Of
course, here λ{1,2,3} cannot be interpreted as intensity of all three defaulting simultaneously,
as obligor 2 has already defaulted. In fact, the only state of the model in which λ{1,2,3} can
be interpreted as the intensity of all three defaulting, is state (0, 0, 0). Note that obligor
1 defaults with intensity λ{1} + λ{1,2,3} + λ{1,2} regardless of the state of the pool, as long
company 1 is alive. Similarly, obligor 2 will default with intensity λ{2} + λ{1,2,3} + λ{1,2}
regardless of the state of the pool, as long company 1 is alive. Also, obligors 1 and 2 will
default together with intensity λ{1,2,3} + λ{1,2} regardless of the state of the pool, as long
as company 1 and 2 still are alive.

2.2 Markov Copula Properties

Below, for every obligor i, a real-valued marginal factor process Xi will be defined as a
suitable function of the above multivariate factor process X = (XY )Y ∈Y . We shall then
state conditions on the intensities under which the marginal pair (Xi, H i) is a Markov
process. Markovianity of the model marginals (Xi, H i) is crucial at the stage of calibration
of the model, so that these marginals can be calibrated independently.

Observe that in view of (3), the intensity of a jump of H i from H i
t− = 0 to 1 is given

by, for t ∈ [0, T ], ∑
{Y ∈Y; i∈Y }

λY (t,XY
t ), (9)

where the sum in this expression is taken over all pre-specified shocks that can affect name i.
We define the marginal factor Xi as a linear functional ϕi of the multivariate factor process
X = (XY )Y ∈Y so that Xi

t := ϕi(Xt). In general the transition intensity (9) implies non-
Markovianity of the marginal (Xi, H i). Hence, in order to make the process (Xi, H i) to be
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Markov, one needs to impose a more specified parametrization of (9) as well as conditions
on the mapping ϕi. To be more specific:

Assumption 2.5 For every obligor i, there exists a linear form ϕi(x) and a real-valued
function λi(t, x) such that for every (t,x) with x = (xY )Y ∈Y∑

{Y ∈Y; i∈Y }

λY (t, xY ) = λi(t, ϕi(x)), (10)

where, in addition, Xi
t := ϕi(Xt) is a Markov-process with respect to the filtration F =

F (W,H), with the following generator acting on functions vi = vi(t, x) with x ∈ R

Aitvi(t, x) = bi(t, x)∂xvi(t, x) +
1

2
σ2i (t, x)∂2x2vi(t, x) (11)

for suitable drift and diffusion coefficients bi(t, x) and σi(t, x).

Note that under such a specification of the intensities, dependence between defaults in
the model does not only stem from the possibility of common jumps as in Example 2.4 but
it can also come from the factor process X as in Example 2.7 below.

In the above assumption we require that Xi
t = ϕi(Xt) is a Markov process. This

assumption is a non-trivial in general, as a process which is a measurable function of a
Markov process does not have to be a Markov process itself. We refer to Pitman and Rogers
[33] for some discussion of this issue. In our model set-up one, one can show that under
appropriate regularity conditions, if for every (t,x, x) with x = (xY )Y ∈Y and x = ϕi(x),
one has ∑

{Y ∈Y}

bY (t,x)∂xY ϕi(x) = bi(t, x)

∑
{Y ∈Y}

σ2Y (t,x)(∂xY ϕi(x))2 = σ2i (t, x)
(12)

then Xi
t = ϕi(Xt) is an F-Markov process with generator Ai in (11). The proof follows

from Lemma A.2 (up to the reservation which is made right after the lemma regarding
technicalities about the domain of the generators) since for every regular test-function
vi = vi(t, x), one has with u(t,x) := vi(t, ϕ

i(x))

vi(t,X
i
t)−

∫ t

0

(
∂s +Ais

)
vi(s,X

i
s)ds

= u(t,Xt)−
∫ t

0

(
∂s +As

)
u(s,Xs)ds.

In the two examples given below, the F-Markov property of Xi
t = ϕi(Xt) also rigorously

follows, in case of Example 2.6 where ϕi is a coordinate projection operator, from the Markov
consistency results of [9], or, in case of Example 2.7, from the semimartingale representation
of Xi provided by the SDE (14). The F-Markov property of Xi in Example 2.7 thus follows
from the fact that a strong solution to the Markovian SDE (14) driven by the F-Brownian
motion W i, is an F-Markov process, by application of Theorem 32 page 100 of Protter
[32]. Example 2.7 is important, as it goes beyond the case of Example 2.6 where the λI
are deterministic functions of time, and it provides a fully stochastic specification of the λY
(including the λI).
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Example 2.6 (Deterministic Group Intensities) For every group I ∈ I, the intensity
λI(t, xI) does not depend on xI .

Letting ϕi(x) = x{i}, then (10) and (12) hold with

λi(t, x) := λ{i}(t, x) +
∑

{I∈I; i∈I}

λI(t)

bi(t, x) := b{i}(t, x)

σi(t, x) := σ{i}(t, x).

So, Xi = X{i} is F-Markov with drift and diffusion coefficients bi(t, x) and generator σi(t, x)
thus specified.

Example 2.7 (Extended CIR Intensities) For every Y ∈ Y, the pre-specified group
intensities are given by λY (t,XY

t ) = XY
t , where the factor XY is an extended CIR process

dXY
t = a(bY (t)−XY

t )dt+ c
√
XY
t dW

Y
t (13)

for non-negative constants a, c and non-negative functions bY (t). The SDEs for the factors
XY have thus the same coefficients except for the bY (t).

Letting ϕi(x) =
∑

{Y ∈Y; i∈Y }

xY = x{i} +
∑

{I∈I; i∈I}

xI , and denoting likewise bi(t) =∑
{Y ∈Y; i∈Y }

bY (t) = b{i}(t) +
∑

{I∈I; i∈I}

bI(t), then (10) and (12) hold with

λi(t, x) := x

bi(t, x) := a(bi(t)− x)

σi(t, x) := c
√
x.

So, Xi =
∑

{Y ∈Y; i∈Y }

XY is an F-Markov process with drift and diffusion coefficients bi(t, x)

and generator σi(t, x) thus specified.
Note that Xi satisfies the following extended CIR SDE with parameters a, bi(t) and c

as

dXi
t = a(bi(t)−Xi

t)dt+ c
√
Xi
tdW

i
t (14)

for the F-Brownian motion W i such that√
Xi
tdW

i
t =

∑
i∈Y

√
XY
t dW

Y
t , dW

i
t =

∑
i∈Y

√
XY
t√∑

i∈Y X
Y
t

dW Y
t .

Remark 2.8 Both the time-deterministic group intensities specification of Example 2.6
and the affine intensities specification of Example 2.7 are used for counterparty credit risk
applications in [8, 1, 7] (anticipating the theoretical aspects of the model which are dealt
with in the present paper).
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The set of obligors alive (resp. in default) at time t is denoted by Jt = suppc(Ht)
(resp. Ht = supp(Ht)). For every Y ∈ Y and every set of non-negative constants ti, we
define the quantities ΛYs,t,Λ

Y
t and θYt as

ΛYs,t =

∫ t

s
λY (s,XY

s )ds , ΛYt = ΛY0,t =

∫ t

0
λY (s,XY

s )ds and θYt = max
i∈Y ∩Jt

ti

where Y ∩ Jt in θYt is the set of survivors in Y at time t (and we use in θYt our convention
that max ∅ = −∞). Let τi denote the default time for obligor i. Since H i is the default
indicator of name i, we have

τi = inf{t > 0 ;H i
t = 1}, H i

t = 1{τi≤t}.

The following Proposition gathers the Markov properties of the model.

Proposition 2.9 (i) (X,H) is an F-Markov process with infinitesimal generator given by
A.
(ii) For every obligor i, (Xi, H i) is an F-Markov process2 admitting the following generator
acting on functions ui = ui(t, xi, ki) with (xi, ki) ∈ R× {0, 1}

Aitui(t, xi, ki) = bi(t, xi)∂xiui(t, xi, ki) +
1

2
σ2i (t, xi)∂

2
x2i
ui(t, xi, ki)

+λi(t, xi)
(
ui(t, xi, 1)− ui(t, xi, ki)

)
. (15)

Moreover, the F-intensity process3 of H i is given by 1{τi>t}λi(t,X
i
t). In other words, the

process M i defined by

M i
t = 1{τi≤t} −

∫ t

0
1{τi>s}λi(s,X

i
s)ds, (16)

is an F-martingale.4

(iii) For any fixed non-negative constants t, t1, . . . , tn, one has

P (τ1 > t1, . . . , τn > tn | Ft) = P (τ1 > t1, . . . , τn > tn | Ht,Xt) (17)

= 1{ti<τi , i∈Ht}E

{
exp

(
−
∑
Y ∈Y

ΛY
t,θYt

) ∣∣∣Xt

}
.

The conditional survival probability function of every obligor i is given by, for every ti ≥ t,

P(τi > ti | Ft) = P(τi > ti |Ht,Xt)

= 1{τi>t}E

exp
(
−

∑
Y ∈Y, i∈Y

ΛYt,ti
) ∣∣∣Xt


= 1{τi>t}E

{
exp

(
−
∫ ti

t
λi(s,X

i
s)ds

)
|Xi

t

}
= 1{τi>t}G

i
t(ti),

(18)

2And hence an F (Xi,Hi)-Markov process.
3And hence, F (Xi,Hi)-intensity process.
4And hence, an F (Xi,Hi)-martingale.
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with

Git(ti) = E
{

exp
(
−
∫ ti

t
λi(s,X

i
s)ds

)
|Xi

t

}
. (19)

Proof. See Appendix A.2.1.

We shall illustrate part (iii) of the above proposition using the following example.

Example 2.10 In case of two obligors and Y = {{1}, {2}, {1, 2}}, one can easily check that
(17) boils down to

P (τ1 > t1, τ2 > t2 | Ft) = 1{τ1>t}1{τ2>t}E

{
exp

(
−
∑
Y ∈Y

∫ t1∨t2

t
λY (s,XY

s )
) ∣∣∣Xt

}

+1{t2<τ2≤t}1{τ1>t}E
{

exp
(
−
∫ t1

t
λ1(s,X

1
s ) ds

) ∣∣∣X1
t

}
+1{t1<τ1≤t}1{τ2>t}E

{
exp

(
−
∫ t2

t
λ2(s,X

2
s ) ds

) ∣∣∣X2
t

}
+1{t1<τ1≤t}1{t2<τ2≤t}.

3 Pricing and Hedging Issues

This section treats the pricing, calibration and hedging issues in the Markov copula model
of Section 2. First, in Subsection 3.1 we derive the price dynamics for CDS contracts and
for CDO tranches in this model. In Subsection 3.2 we use dynamics of Subsection 3.1 to
derive min-variance hedging strategies in the Markov copula model.

For notational convenience, we assume zero interest rates. The extension of all theo-
retical results to time dependent, deterministic interest rates is straightforward but more
cumbersome notationally, especially regarding hedging. Time-dependent deterministic in-
terest rates will be used in the numerical part.

3.1 Pricing Equations

In this subsection we derive price dynamics formulas for CDS contracts and CDO tranches in
the Markov model; all prices are considered from perspective of the protection buyers. These
dynamics will be useful when deriving the min-variance hedging strategies in Subsection 3.2.

In a zero interest-rates environment, the (ex-dividend) price process of an asset is
simply given by the risk neutral conditional expectation of future cash flows associated
with the asset; the cumulative value process is the sum of the price process and of the
cumulative cash-flows process. The cumulative value process is a martingale, as opposed
to the price process. When it comes to hedging, the cumulative value process is the main
quantity of interest.

For a fixed maturity T , we let Si denote the T -year CDS spread for obligor i, with
recovery rate Ri. Similarly, we let S denote the T -year model CDO tranche spread for the
tranche [a, b], with payoff process

La,bt = La,b(Ht) = (Lt − a)+ − (Lt − b)+ , (20)
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where Lt = 1
n

∑n
i=1(1 − Ri)H i

t is the credit loss process for the underlying portfolio. The
premium legs in these products are payed at t1 < t2 < . . . < tp = T where tj − tj−1 = h
and h is typically a quarter. Below, the notation is the same as in the Itô formula (6).

Proposition 3.1 (i) The price P i and the cumulative value P̂ i at time t ∈ [0, T ] of the
single-name CDS on obligor i with contractual spread Si are given by

P it = vi(t,Xt,Ht)

dP̂ it = ∇vi(t,Xt,Ht)σ(t,Xt)dWt +
∑
Z∈Zt

1i∈Z (1−Ri − vi(t,Xt,Ht)) dM
Z
t

(21)

for a pre-default pricing function vi(t,x,k) such that

vi(t,Xt,Ht) = E[−Sih
∑

t<tj≤T
1{τi>tj} + (1−Ri)1{t<τi≤T}|Ft].

(ii) The price process Π and cumulative value Π̂ at time t ∈ [0, T ] of a CDO tranche [a, b]
with contractual spread S are given by

Πt = u(t,Xt,Ht)

dΠ̂t = ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑
Z∈Zt

(
La,b(H

Z
t−)− La,b(Ht−) + δuZ(t,Xt,Ht−)

)
dMZ

t

(22)

for a pricing function u(t,x,k) such that

u(t,Xt,Ht) = E
[
− S h

∑
t<tj≤T

(
b− a− La,btj

)
+ La,bT − L

a,b
t

∣∣∣Ft].
Proof. See Appendix A.2.2.
Regarding part (i), note that in view of the marginal Markov properties of the model:

• the pricing function vi(t,x,k) can essentially be reduced to a “univariate” pre-default
pricing function ṽi(t, xi);

• the compensated jump martingale in P̂ i can be reduced to a “univariate” martingale
representation based on the compensated martingale M i of H i in (16).

However, as will be clear from Subsection 3.2, the “multivariate” representations of part (i)
are more useful in order to handle the hedging issue.

The pricing functions vi and u can be characterized as the unique solutions to the
related Kolmogorov equation (42) in Appendix A.2.2 (or, in the CDS case, a “univariate”
Kolmogorov equation can be derived to characterize ṽi). If the pricing functions are known,
the prices at a given time are recovered by plugging the corresponding state of the model
into the right-hand-side of the first lines of (21) or (22). But the pricing equation (42) for
a CDO tranche leads to a huge system of PDEs which in practice is impossible to handle
numerically as soon as n is larger than a few units. As a remedy for this, in Subsection
2.1 of the companion paper [5], we will instead use the translation to a Marshall-Olkin
framework which allows us to derive practical recursive pricing schemes for CDO tranche
price processes (whereas in practice CDS computations will be based on exponential-affine
methodologies).
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3.2 Min-Variance Hedging

In this subsection we use the price dynamics from Subsection 3.1 to derive min-variance
hedging strategies in the Markov copula model. By min-variance hedging strategies we
mean strategies that minimize the variance of the hedging error. Note that in principle
one would prefer to minimize the variance relatively to the historical probability measure,
however in this paper we minimize the risk-neutral variance for simplicity: see Schweizer
[34] for a survey about various quadratic hedging approaches. The hedging strategies are
theoretically sound due to our bottom-up Markovian framework and they will be shown
in the companion paper [5] to be computationally tractable thanks to the Marshall-Olkin
copula interpretation of the model.

Consider a CDO tranche [a, b] with pricing function u specified in Proposition 3.1.
Our aim is to find explicit min-variance hedging formulas when hedging this CDO tranche
by using the savings account and d single-name CDSs with pricing functions vi given by
Proposition 3.1. First we introduce the CDS cumulative value vector-function

v(t,x,k) = (1k1=0v1(t,x,k) + 1k1=1(1−R1), . . . ,1kd=0vdt,x,k) + 1kd=1(1−Rd))T .

Let ∇v denote the Jacobian matrix of v with respect to x in the sense of the d× ν-matrix
such that ∇v(t,x,k)Yi = ∂xY vi(t,x,k), for every 1 ≤ i ≤ d and Y ∈ Y. Let ∆vZ represent
the vector-function of the sensitivities of v with respect to the event Z ∈ Nn, so

∆vZ(t,x,k) = (11∈Z, k1=0 ((1−R1)− v1(t,x,k)) , . . . ,1d∈Z, kd=0 ((1−Rd)− vd(t,x,k)))T.

By using the vector notation P̂ = (P̂ i)1≤i≤d, one has in view of Proposition 3.1(i)

dP̂t = ∇v(t,Xt,Ht)σ(t,Xt)dWt +
∑
Z∈Zt

∆vZ(t,Xt,Ht−)dMZ
t . (23)

Let

∆uZ(t,x,k) = δZu(t,x,k) + La,b(k
Z)− La,b(k)

represent the function of sensitivity of the CDO tranche [a, b] cumulative value process with
respect to the event Z ∈ Nn. Let ζ be an d-dimensional row-vector process, representing
the number of units held in the first d CDSs which are used in a self-financing5 hedging
strategy for the CDO tranche [a, b]. Given (22) and (23), the tracking error (et) of the
hedged portfolio satisfies e0 = 0 and, for t ∈ [0, T ]

det = dΠ̂t − ζtdP̂t

=
(
∇u(t,Xt,Ht)− ζt∇v(t,Xt,Ht)

)
σ(t,Xt)dWt

+
∑
Z∈Zt

(
∆uZ(t,Xt,Ht−)− ζt∆vZ(t,Xt,Ht−)

)
dMZ

t .

(24)

Since the martingale dimension of the model is ν + 2n, replication is typically out-of-reach6

in the Markov model. However, in view of (24), we can find min-variance hedging formulas.

5Using also the savings account (constant asset).
6See the comments following Proposition 2.3.
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Proposition 3.2 The min-variance hedging strategy ζ is

ζt =
d〈Π̂, P̂〉t

dt

(
d〈P̂〉t
dt

)−1
= ζ (t,Xt,Ht−) (25)

where ζ = (u,v)(v,v)−1, with

(u,v) = (∇u)σ2(∇v)T +
∑
Y ∈Y

λY ∆uY (∆vY )T

(v,v) = (∇v)σ2(∇v)T +
∑
Y ∈Y

λY ∆vY (∆vY )T.
(26)

Proof. The first identity in (25) is a classical risk neutral min-variance hedging7 formula,
derived for instance in Section 4.2.3.1 of Crépey [18]. Moreover, one has by computation of
the oblique brackets based on the second lines in (21) and (22):

d〈Π̂, P̂〉t
dt

=

(
(∇u)σ2(∇v)T +

∑
Z∈Zt

λZ∆uZ(∆vZ)T

)
(t,Xt,Ht−) = (u,v)(t,Xt,Ht−)

d〈P̂〉t
dt

=

(
(∇v)σ2(∇v)T +

∑
Z∈Zt

λZ∆vZ(∆vZ)T

)
(t,Xt,Ht−) = (v,v)(t,Xt,Ht−)

(27)

where the second identities in both lines of (27) use simplifications similar to those used in
the proof of the Itô formula (6) in Appendix A.1.2. 2

In (26), the u-related terms can be computed by using the conditional convolution-
recursion procedures developed in the companion paper [5]; the vi-related terms can be
computed very quickly (actually semi-explicitly in either of the specifications of examples
2.6 and 2.7). We will illustrate in [5] the tractability of this approach for computing min-
variance hedging deltas.

We refer the reader to Elouerkhaoui [21] for analogous formulas. A nice feature of our
set-up however is that due to the specific structure of the intensities, the sums in (26) are
over the set Y of shocks Y which is of cardinality ν = n + m, as opposed to the set Nn of
all set-events Z in [21].

We also refer the reader to Frey and Backhaus [23] for other related min-variance
hedging formulas.

A Appendix

A.1 Model Construction

The point process H with intensity depending on the factor process X in (3), is constructed
by an X-related change of probability measure, starting from an independent continuous-
time Markov chain under an auxiliary probability measure P̂. So, given a factor process X
as in (1) where W is a P̂-Brownian motion, let H denote a continuous-time Markov chain
with P̂-intensity one of transition from k to l, for every l 6= k. Let then the P̂-martingale8

7See Schweizer [34]
8Under suitable regularity and growth assumptions on the model coefficients, see Ethier and Kurtz [22]

or Crépey [18].



15

Γ be defined by Γ0 = 1 and, for t ∈ [0, T ],

dΓt
Γt−

=
∑

l∈{0,1}n
(λ(t,Xt,Ht−, l)− 1)

(
dNt(Ht−, l)− 1l6=Ht−dt

)
=
∑

l6=Ht−

(λ(t,Xt,Ht−, l)− 1) (dNt(Ht−, l)− dt),

where the functions λ(t,x,k, l) are those of (3), and where Nt(k, l) is the point process with
P̂-intensity 1{k=Ht−,l6=k} counting the transitions of H from k to l, for every k, l ∈ {0, 1}n.
Defining the measure P by dP

dP̂
= ΓT , it is then standard to check9 that the point process H

has intensity (3) under P. To be precise the intensity of Nt(k, l) is given by (3), with respect
to the model filtration F = F (W,H), and the probability measure P. Moreover, process W
remains a Brownian motion under P, the measure-change preserves Markov property of X
with respect to filtration F , and the generator of X under the new measure is still At.

Note that since martingale representation holds under P̂,10 martingale representation
also holds under the equivalent measure P.

Remark A.1 The prevailing risk neutral probability measure in the paper is P, whereas
the auxiliary measure P̂ is only a mathematical tool used for constructing the model, with
no particular financial interpretation.

A.1.1 Proof of Lemma 2.2

By definition of the set-event indicator process HZ , where Z ∈ Nn, one has in our model,
for t ∈ [0, T ],

dHZ
t =

∑
{k,l∈{0,1}n ; supp(l)\supp(k)=Z}

dNt(k, l).

So, by (3),

`Zt =
∑

{k,l∈{0,1}n ; supp(l)\supp(k)=Z}

1{Ht−=k}
∑

{Y ∈Y;kY =l}

λY (t,XY
t )

=
∑

{l∈{0,1}n ; supp(l)\supp(Ht−)=Z}

∑
{Y ∈Y;HY

t−=l}

λY (t,XY
t )

=
∑

{Y ∈Y; supp(HY
t−)\supp(Ht−)=Z}

λY (t,XY
t )

=
∑

{Y ∈Y;Yt=Z}

λY (t,XY
t ).

9See for instance the proof of Lemma 12.3.5 in Crépey [18].
10In virtue of standard arguments, see for instance Chapter 10 of [27].
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A.1.2 Proof of Proposition 2.3

Observe that [MY ,MZ ] = 0 for Y 6= Z. One thus has the following Itô formula (see for
instance Theorem 3.89 page 109 of Jacod [26] or Crépey [18])

du(t,Xt,Ht) =
(
∂t +At

)
u(t,Xt,Ht)dt +∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑
Z∈Nn

δuZ(t,Xt,Ht−)dHZ
t

(28)

where we write

Atu(t,x,k) =
∑
Y ∈Y

(
bY (t, xY )∂xY u(t,x,k) +

1

2
σ2Y (t, xY )∂2x2Y

u(t,x,k)
)
. (29)

Moreover, the structure (4) of the set intensities implies that∑
Z∈Nn

δuZ(t,Xt,Ht−)dHZ
t =

∑
Z∈Zt

δuZ(t,Xt,Ht−)dHZ
t ,

which we may further rewrite as∑
Z∈Zt

`Z(t,Xt,Ht−)δuZ(t,Xt,Ht−)dt

+
∑
Z∈Zt

(
δuZ(t,Xt,Ht−)dHZ

t − `Z(t,Xt,Ht)δu
Z(t,Xt,Ht)dt

)
.

Here the second term is
∑

Z∈Zt
δuZ(t,Xt,Ht−)dMZ

t , whereas one has by (4) in the first
term: ∑

Z∈Zt

`Z(t,Xt,Ht−)δuZ(t,Xt,Ht−)

=
∑
Z∈Zt

∑
Y ∈Y;Yt=Z

λY (t,XY
t )δuZ(t,Xt,Ht−)

=
∑
Y ∈Y

λY (t,XY
t )δuY (t,Xt,Ht−)

using in the last identity that

δuZ(t,x,k) = δuY (t,x,k),

for every t,x,k, Y and Z such that Yt = Z. Thus (28) indeed reduces to (6).

A.2 Markov Properties

Let us first recall the following local martingale characterization of a Markov process with
generator L. We work under the standing assumption that uniqueness holds for the solution
of the martingale problem defined by L.

Lemma A.2 (See, e.g., Ethier and Kurtz [22]) Let X be a right-continuous process
with Euclidean state space E, adapted to some filtration F . For X to be an F-Markov
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process with infinitesimal generator L, it is necessary and sufficient that, for every real-
valued function ϕ in the domain of L,

ϕ(t,Xt)−
∫ t

0

(
∂s + Ls

)
ϕ(s,Xs)ds (30)

is an F- local martingale.

We shall use this characterization informally in this paper, ignoring the technicalities related
to the notion of domain of an operator. Furthermore, throughout the paper we work
under the standing assumption that the valuation equation associated to any infinitesimal
generator that we use, is well posed in an appropriate functional space. Finally, we assume
that uniqueness holds for the solution of the related martingale problem. The reader is
referred to Ethier and Kurtz [22] for more details and for specific conditions which can be
postulated in these regards.

A.2.1 Proof of Proposition 2.9

(i) In view of the Itô formula (6), (X,H) solves the martingale problem with generator A
in the filtration F , and is thus an F-Markov process.
(ii) By application of the local martingale characterization of an F-Markov process (X,H)
with generator A to test-functions of the form u(t,x,k) = vi(t, xi, ki), we get the local
martingale characterization of an F- Markov process with generator Ai for (Xi, H i). Con-
sidering vi(t, xi, ki) = 1ki=1 therein yields that M i in (16) is an F-local martingale.
(iii) We denote tZ = maxi∈Z ti, for every Z ∈ Nn. Formula (17) follows directly from
Lemma A.3 below since one has, for every t, t1, . . . , tn ≥ 0,

P (τ1 > t1, . . . , τn > tn | Ft) =
∑
Z∈Nn

1{Jt=Z}P (τ1 > t1, . . . , τn > tn | Ft)

=
∑
Z∈Nn

(∏
i/∈Z

1ti<τi≤t

)
E

{∏
i∈Z

1τi>ti∨t

∣∣∣Ft}

and

1{ti<τi , i∈Ht}E

{
exp

(
−
∑
Y ∈Y

ΛY
t,θYt

) ∣∣∣Xt

}

=
∑
Z∈Nn

1{Jt=Z}1{ti<τi , i/∈Z}E

{
exp

(
−
∑
Y ∈Y

ΛY
t,θYt

) ∣∣∣Xt

}

=
∑
Z∈Nn

(∏
i/∈Z

1ti<τi≤t

)(∏
i∈Z

1τi>t

)
E

{
exp

(
−
∑
Y ∈Y

ΛYt,tY ∩Z
) ∣∣∣Xt

}
.

Given (17), the other formulas of part (iii) in Proposition 2.9 are straightforward.

Lemma A.3 For every t, t1, . . . , tn ≥ 0, and for every Z ∈ Nn, one has,

E
{∏

i∈Z 1τi>ti∨t

∣∣∣Ft} =
(∏

i∈Z 1τi>t
)
E
{

exp
(
−
∑

Y ∈Y ; Y ∩Z 6=∅ ΛYt,tY
) ∣∣∣Xt

}
. (31)
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Proof. It is enough to prove that for ti ≥ t one has, for every Z ∈ Nn,

E

{∏
i∈Z

1τi>ti

∣∣∣Ft} =

(∏
i∈Z

1τi>t

)
E

{
exp

(
−
∑
Y ∈Y

ΛYt,tY ∩Z
) ∣∣∣Xt

}
. (32)

Indeed, for general ti, applying (32) to the ti ∨ t yields

E

{∏
i∈Z

1τi>ti∨t

∣∣∣Ft} =

(∏
i∈Z

1τi>t

)
E

{
exp

(
−
∑
Y ∈Y

ΛYt,maxi∈Y ∩Z ti∨t
) ∣∣∣Xt

}

=

(∏
i∈Z

1τi>t

)
E

exp

− ∑
Y ∈Y ; Y ∩Z 6=∅

ΛYt,maxi∈Z ti

 ∣∣∣Xt

 ,

which is (31). Let us thus show (32) for ti ≥ t, by induction on the cardinality d of Z. For
d = 0, the result is trivial. Assuming the result at rank d− 1 ≥ 0, let us show the result at
rank d. Let us suppose, without loss of generality, that Z = Nd and t1 ≥ t2 ≥ · · · ≥ td ≥ t.
One then needs to prove that, using the notation J l = 1−H l for every l ∈ Nd,

E(
d∏
l=1

J ltl | Ft) =
( d∏
l=1

J lt
)
E

{
exp

(
−
∑
Y ∈Y

ΛYt,tNd∩Y

) ∣∣∣Xt

}
. (33)

To establish (33) one first observes that

E(
∏d
l=1 J

l
tl
| Ft) = E

{
JdtdE

{∏d−1
l=1 J

l
tl

∣∣∣Ftd} ∣∣∣Ft} , (34)

where by the induction hypothesis at rank d − 1 the inner conditional expectation can be
represented as(∏d−1

l=1 J
l
td

)
E
{

exp
(
−
∑

Y ∈Y ΛYtd,tNd−1∩Y

) ∣∣∣Xtd

}
=
(∏d−1

l=1 J
l
td

)
v(td,Xtd) (35)

for a suitable function v = v(t,x) over [0, td−1] × RY , by the Markov property of X. Here
the upper bound td−1 for the domain of definition of the function v follows from the fact
that td ≤ td−1 ≤ tNd−1∩Y , for every Y ∈ Y with Nd−1 ∩ Y 6= ∅. Inserting (35) into (34)
yields by the Markov property of (X,H) that

E(
d∏
l=1

J ltl | Ft) = E

{( d∏
l=1

J ltd
)
v(td,Xtd)

∣∣∣Ft} = u(t,Xt,Ht),

for a function u = u(t,x,k) over [0, td]× RY × {0, 1}n characterized by:
u(td,x,k) =

( d∏
l=1

(1− kl)
)
v(td,x), x = (xY )Y ∈Y , k = (k1, . . . , kn) ∈ {0, 1}n(

∂t +At
)
u(t,x,k) = 0, t < td, x = (xY )Y ∈Y , k ∈ {0, 1}n.

(36)

One finally shows that the RHS in (33) admits a representation of the form
(∏d

l=1 J
l
t

)
w(t,Xt),

where the function ũ(t,x,k) =
(∏d

l=1(1− kl)
)
w(t,x) solves (36). By our standing assump-

tion in this paper equation (36) has a unique solution. Thus ũ = u, which proves (33).



19

Since X is Markov with generator A (cf. (i)), the conditional expectation in the RHS
of (33) can be represented as w(t,Xt), for a deterministic function w = w(t,x) over the
domain [0, td] × RY . In order to get the analytic characterization of w, first note that for
every Y ∈ Y, one has:

ΛYtd,tNd−1∩Y
= ΛYtd,tNd∩Y

= ΛYtd,tNd∩Y
.

This yields the terminal condition w(td,x) = v(td,x), x = (xY )Y ∈Y . One further has by an
application of the Feynman-Kac formula that (see, e.g., Jeanblanc et al. [27])(

∂t +At

)
w(t,x) =

( ∑
Y ∈Y ;Y ∩Z 6=∅

λY (t, xY )
)
w(t,x), t < td, x = (xY )Y ∈Y .

As a result the function w = w(t,x) is the solution on [0, td] × RY to the following Kol-
mogorov pricing PDE:

w(td,x) = v(td,x), x = (xY )Y ∈Y(
∂t +At

)
w(t,x) =

( ∑
Y ∈Y ;Y ∩Z 6=∅

λY (t, xY )
)
w(t,x), t < td, x = (xY )Y ∈Y . (37)

Denoting ũ(t,x,k) =
(∏

l∈Nd
(1−kl)

)
w(t,x), an application of the operator At of (7) yields:(

∂t +At
)
ũ(t,x,k) =

( ∏
l∈Nd

(1− kl)
)(
∂t +At

)
w(t,x) + w(t,x)×

×
∑
Y ∈Y

λY (t, xY )
(( ∏

l∈Nd

(1− kYl )
)
−
∏
l∈Nd

(1− kl)
)
, (38)

where we set, for Y ∈ Y and l ∈ Nd,

kYl =

{
1, Y 3 l,
kl, else.

Therefore ∑
Y ∈Y

λY (t, xY )
(( ∏

l∈Nd

(1− kYl )
)
−
∏
l∈Nd

(1− kl)
)

= −
∏
l∈Nd

(1− kl)
∑

Y ∈Y ;Y ∩Nd 6=∅

λY (t, xY ). (39)

Plugging (37) and (39) in the RHS of (38) yields that
(
∂t + At

)
ũ(t,x,k) = 0. Finally ũ

solves (36), which finishes the demonstration. 2

A.2.2 Proof of Proposition 3.1

Given a function f = f(t, y), let f(tj−, x) be a notation for the formal limit

lim
(t,y)→(tj ,x) with t<tj

f(t, y). (40)

In view of the Markov property of the model, the following lemma holds in virtue of the
Feynman-Kac formula.11

11See, e.g., Jeanblanc et al. [27].
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Lemma A.4 Given real-valued functions φ(k) and ψ(k), one has E[
∑

t<tj≤T φ(Htj ) +

ψ(HT )|Ft] = w(t,Xt,Ht) , where the function w(t,x,k) is the solution to the following
Kolmogorov pricing PDE system: w(T,x,k) = ψ(k), x = (xY )Y ∈Y , k ∈ {0, 1}n, and for j
decreasing from p to 1:
• At t = tj ,

w(tj−,x,k) = w(tj ,x,k) + φ(k), x = (xY )Y ∈Y , k ∈ {0, 1}n, (41)

• On the time interval [tj−1, tj),(
∂t +At

)
w(t,x,k) = 0, x = (xY )Y ∈Y , k ∈ {0, 1}n. (42)

Applying this lemma with

ψi = (1−Ri), φi = −Sih

for part (i) and

ψ = La,b, φ = −Sh
(
b− a− La,b

)
for part (ii) establishes the first lines in identities (21) and (22). Regarding the latter, note
that the ex-dividend pricing function u(t,k,x) in (22), is provided by w(t,k,x) − La,b(k)
here.

Moreover, in the filtration F = FW,H, a martingale can only jump at totally unpre-
dictable stopping times. In particular, the cumulative value processes cannot jump at the
fixed times tj . Given the first lines in (21) and (22), the second lines then readily follow
using the Itô formula (6).
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[18] Crépey, S.: Financial Modeling: A Backward Stochastic Differential Equations Per-
spective, Springer, 2013 (forthcoming).
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