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Abstract

In [5], the authors introduced a Markov copula model of portfolio credit risk where
pricing and hedging can be done in a sound theoretical and practical way. Further the-
oretical backgrounds and practical details are developped in [6] and [7] where numerical
illustrations assumed deterministic intensities and constant recoveries. In the present
paper, we show how to incorporate stochastic default intensities and random recoveries
in the bottom-up modeling framework of [5] while preserving numerical tractability.
These two features are of primary importance for applications like CVA computations
on credit derivatives [10, 3, 2], as CVA is sensitive to the stochastic nature of credit
spreads and random recoveries allow to achieve satisfactory calibration even for “badly
behaved” data sets. This paper is thus a complement to [5], [6] and [7].

Keywords: Portfolio credit risk, Markov copula model, Common shocks, Stochastic
spreads, Random recoveries.
Acknowledgements: We thank the anonymous referee for careful reading of the
manuscript, for helpful comments, and for bringing to our attention important ref-
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1 Introduction

In [5, 6, 7] we introduced a common-shock Markov copula model of default times providing an
effective joint calibration to single-name CDS and multi-name CDO tranches data. In this sense
this model solves the portfolio credit risk top-down bottom-up puzzle [9]. For earlier, partial progress
in this direction, see [17, 18, 19, 23] and the introductory discussion in [6]. The main model feature is
the use of common jumps to default, triggered by common shocks, as a powerful dependence device
also compatible with the Markov copula properties [12], the latter being required to decouple the
calibration of the individual (single-name) model parameters from the model dependence parameters.

The model presented in [5] is a fully dynamic model in which the critical issue of modeling
counterparty risk embedded in credit derivatives, and consequently the issue of computation and
hedging of CVA, can be consistently and practically addressed [3, 8, 10, 15, 2]. However, it was
emphasized in a June 2011 Bank of International Settlements press release that “During the financial
crisis of 2007-09, roughly two-thirds of losses attributed to counterparty credit risk were due to CVA
losses and only about one-third were due to actual defaults”. In other words, the volatility of CVA
matters as much as its level. Consequently (and also to be consistent with the optional nature of
the CVA), for CVA computations on credit derivatives, practitioners strongly advocate the use of
stochastic default intensities. Moreover, in case of some “badly behaved” data sets, a satisfying
calibration accuracy can only be achieved by resorting to random recoveries.

In order to respond to these considerations, in the present paper, which is a follow-up to
[5, 6, 7], we provide more background, implementation hints, as well as numerical illustration ac-
counting for these two features which are important for applications: stochastic spreads and random
recoveries. Section 2 reviews the model of default times which is used, including the specifica-
tion of the stochastic intensities and recoveries. Regarding the default intensities, we resort to
time-inhomogenous affine processes with time-dependent piecewise-constant mean-reversion level,
resulting in analytical tractability and calibration flexibility (of the term-structure of CDS spreads
in particular). For tractability reasons, random recoveries are taken to be independent between
them, as well as independent from everything else in the model. Section 3 is about pricing in this
setup. In particular pricing of CDS, as well as of CDO tranches, ultimately boils down here to
computations of Laplace transform for time-inhomogenous affine processes. Proposition 3.2 shows
how this can be done explicitly, exploiting the piecewise-constant mean-reversion structure of the
intensities. Again, effective joint calibration of this model to CDS and CDO data is an important
achievement. Section 4 reviews in detail and illustrates the calibration methodology, regarding in
particular the stochastic affine intensities and random recovery specifications which are used.

In the rest of the paper we consider a risk neutral pricing model (Ω,F ,P), for a filtration
F = (Ft)t∈[0,T ] which will be specified below, and where T ≥ 0 is a fixed time horizon. We denote
Nn = {1, . . . , n} and we let Nn denote the set of all subsets of Nn, where n represents the number of
obligors in the underlying credit portfolio. We also let τi and Hi

t = 1{τi≤t} denote the default time
of name i = 1, 2, . . . , n and the corresponding indicator process.

2 Model of Default Times

We recall a common shocks portfolio credit risk model of [5, 6, 7]. In order to describe the defaults
we define a certain number m (typically small: a few units) of groups Ij ⊆ Nn, of obligors who are
likely to default simultaneously, for j ∈ Nm. More precisely, the idea is that at every time t, there
will be a positive probability that the survivors of the group of obligors Ij (obligors of group Ij still
alive at time t) default simultaneously. Let I = {I1, . . . , Im}, Y = {{1}, . . . , {n}, I1, . . . , Im}. Given
non-negative constants a, c and non-negative deterministic functions bY (t) for Y ∈ Y, let a “shock
intensity process” XY be defined in the form of an extended CIR process as: XY

0 a given constant,
and for t ∈ [0, T ]

dXY
t = a

(
bY (t)−XY

t

)
dt+ c

√
XY

t dWY
t (1)

where the Brownian motions WY are independent.
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Remark 2.1 We refer the reader to [10] for a preliminary version of this model dedicated to valu-
ation and hedging of counterparty risk on a CDS. The use of extended CIR processes as drivers of
default intensities is motivated by the following arguments.

• The numerical results of [10] illustrate that such extended CIR specifications of the intensities,
with time dependent and piecewise constant functions bY (·),1 in addition to being compatible
with the underlying Markov copula structure of a portfolio credit risk model, are appropriate
for dealing with counterparty credit risk. In particular, as shown in Section 8.4 of [10], versions
of the model are capable of generating a large range of implied volatilities for CDS spread
options, broader and better behaved than with shifted CIR intensities (for results regarding
the latter model we refer to [13], [14] or [16]).

• Compared to shifted CIR, the extended CIR (with piecewise constant parameter) specification
allows for endogenous calibration of the term-structure of default probabilities whereas, with
shifted CIR, one has to rely on arbitrary reconstruction methods. For instance, [13] uses a
piecewise-linear specification of hazard rates to strip default probabilities from CDS spreads.

• The extended CIR model is very convenient when it turns to calibrate dependence parameters
on CDO tranche spreads since the optimization constraints are linear (see Section 4 for more
details).

Of course, extended CIR processes with piecewise constant coefficients can be seen as standard CIR
processes on each time interval where the coefficients are constant. All the literature regarding
simulation of standard CIR processes (in particular, how to cope with the numerical instabilities
that may arise if the parameters do not satisfy a suitable Feller condition, e.g., by exact simulation
based on chi-square distributions [24, Fig. 3.5 p.124]) can therefore be applied “piecewise” to such
extended CIR processes.

For k = (k1, . . . , kn) ∈ {0, 1}n, we introduce supp(k) = {i ∈ Nn; ki = 1} and suppc(k) =
{i ∈ Nn; ki = 0}. Hence, supp(k) denotes the obligors who have defaulted in the portfolio-state
k and similarly suppc(k) are the survived names in state k. Given X = (XY )Y ∈Y , we aim for a
model in which the predictable intensity of a jump of H = (Hi)i∈Nn

from Ht− = k to Ht = l, with
supp(k)  supp(l) in {0, 1}n, would be given by

∑

{Y ∈Y;kY =l}

XY
t , (2)

where kY denotes the vector obtained from k = (ki)i∈Nn
by replacing the components ki, i ∈ Y , by

numbers one. The intensity of a jump of H from k to l at time t is thus equal to the sum of the
intensities of the groups Y ∈ Y such that, if the default of the survivors in group Y occurred at time
t, the state of H would move from k to l.

This is achieved by constructing H through an X-related change of probability measure, start-
ing from a continuous-time Markov chain with intensity one (see [6]). As a result, the pair-process
(X,H) is a Markov process with respect to the filtration F generated by the Brownian Motion W

and the random measure counting the jumps of H, with infinitesimal generator A of (X,H) acting
on every function u = u(t,x,k) with t ∈ R+,x = (xY )Y ∈Y and k = (ki)i∈Nn

as

Atu(t,x,k) =
∑

Y ∈Y

(
a (bY (t)− xY ) ∂xY

u(t,x,k) +
1

2
c2 xY ∂

2
x2
Y
u(t,x,k) + xY δY u(t,x,k)

)
(3)

where we denote

δY u(t,x,k) = u(t,x,kY )− u(t,x,k).

1Note that in this regard our CIR model is a special version of the segmented square root model of [28],
where all three coefficients of the CIR diffusion are piecewise functions of time.
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2.1 Markov Copula Properties

Note that the SDEs for processes the XY have the same coefficients except for bY (t), to the effect
that for i ∈ Nn,

X i :=
∑

Y∋Y ∋i

XY = X{i} +
∑

I∋I∋i

XI (4)

is again an extended CIR process, with parameters a, c and

bi(t) :=
∑

Y∋Y ∋i

bY (t) = b{i}(t) +
∑

I∋I∋i

bI(t), (5)

driven by an F -Brownian motion W i such that

√
X i

tdW
i
t =

∑

Y ∋i

√
XY

t dWY
t , dW i

t =
∑

Y ∋i

√
XY

t√∑
Y ∋iX

Y
t

dWY
t . (6)

The fact that W i defined by (6) is an F -Brownian motion results from Paul Lévy’s characterization
of a Brownian motion as a continuous local martingale with bracket process equal to time t. One
can then check, as is done in [6], that the so-called Markov copula property holds (see [12]), in the
sense that for every i ∈ Nn, (X

i, Hi) is an F – Markov process admitting the following generator,
acting on functions vi = vi(t, xi, ki) with (xi, ki) ∈ R× {0, 1}:

Ai
tvi(t, xi, ki) = (7)

a(bi(t)− xi)∂xi
vi(t, xi, ki) +

1

2
c2 xi∂

2
x2
i
vi(t, xi, ki) + xi

(
vi(t, xi, 1)− vi(t, xi, ki)

)
.

Also, the F – intensity process of Hi is given by (1−Hi
t)X

i
t . In other words, the process M i defined

by,

M i
t = Hi

t −
∫ t

0

(1−Hi
s)X

i
sds, (8)

is an F -martingale. Finally, the conditional survival probability function of name i ∈ Nn is given
by, for every ti > t,

P(τi > ti | Ft) = E

{
exp

(
−
∫ ti

t

X i
sds
)
|X i

t

}
. (9)

3 Pricing

Regarding the dynamics of CIR intensity processes, we assume in the sequel that the mean-reversion
functions bY (t) are piecewise-constant with respect to a time tenor (Tk)k=1,...,M . So, for every
k = 1 . . .M,

bY (t) = b
(k)
Y , t ∈ [Tk−1, Tk). (10)

where b
(k)
Y is a non-negative constant and T0 = 0. The time tenor (Tk) is a set of pillars corresponding

to standard CDS maturities. In this framework, we are able to provide explicit expressions for
survival probabilities of triggering events, which are the main building blocks in the calculation of
CDS and CDO tranche spreads.

Remark 3.1 For comparison purposes, the (simpler) case of deterministic time-dependent inten-
sities will also be considered in the numerical experiments of Section 5. In that case, the default
intensities will be given as XY

t := λY (t) where λY is a piecewise-constant function of time with re-
spect to the same time tenor (Tk)k=1,...,M as for the mean-reversion function bY of the CIR intensity

case. Then, for every k = 1 . . .M , there exists a non-negative constant λ
(k)
Y such that

λY (t) = λ
(k)
Y , t ∈ [Tk−1, Tk). (11)



6

Survival probabilities (9) can be obtained explicitly in the case of piecewise-constant intensities
as defined by (11). We will show now that similar analytical formulas can be obtained when the un-
derlying intensities are driven by CIR processes with piecewise-constant mean-reversion parameters
(see Proposition 3.2 and Remark 3.4).

3.1 Survival Probabilities of Trigger-Events

In this subsection, we provide an analytical expression for survival probabilities in an extended CIR
intensity model with piecewise constant mean-reversion parameter. This allows us to compute CDS
and CDO tranche spreads almost as fast as in a (deterministic) piecewise constant intensity model.

Let X be an extended CIR process with dynamics

dXt = a(b(t)−Xt)dt+ c
√
XtdWt (12)

where a and c are positive constants and b(·) is a non-negative deterministic function. Let Φ and Ψ
satisfy the following Riccati system of ODE:

{
Φ̇y(t) = −aΦy(t)− c2

2 Φ
2
y(t) + 1, Φy(0) = y

Ψ̇y(t) = aΦy(t), Ψy(0) = 0.
(13)

It is a classical result that these ODEs can be solved explicitly, i.e.

Φy(t) =
1 +Dye

−Ayt

B + Cye−Ayt
(14)

Ψy(t) =
a

B

{Cy −BDy

AyCy

log
B + Cye

−Ayt

B + Cy

+ t
}
, (15)

where Ay, B, Cy and Dy are given by

B =
1

2

(
a+

√
a2 + 2c2

)
, Cy = (1−By)

a+ c2y −
√
a2 + 2c2

2ay + c2y − 2
,

Dy = (B + Cy)y − 1, Ay =
−Cy(2B − a) +Dy(c

2 + aB)

BDy − Cy

.

Proposition 3.2 For any s ≥ t and y ≥ 0, we have:

E
(
e−

∫
s

t
Xudu−yXs |Xt = x

)
= e−Is,y(t,x), (16)

where

Is,y(t, x) = xΦy(s− t) + a

∫ s

t

Φy(s− u)b(u)du, (17)

and
E
(
Xse

−
∫

s

t
Xudu|Xt = x

)
= ∂sIs,0(t, x)e

−Is,0(t,x), (18)

where the function Φ̇ which is implicit in ∂sI in (18) can be computed explicitly via the first line in
(13).

Proof. Formula (18) follows by differentiation in y and valuation at y = 0 from (16). The latter
formula, which is classical in the theory of (time-inhomogenous) affine processes, can also be verified
by checking that v(t, x) := e−Is,y(t,x) satisfies the following PDE, which characterizes the left-hand
side in (16) viewed as a function of t, x, for fixed s, y:

∂tv(t, x) +Av(t, x) − xv(t, x) = 0, v(s, x) = e−xy,
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where

Av(t, x) = a(b(t)− x)∂xv(t, x) +
1

2
c2x∂2

x2v(t, x)

is the infinitesimal generator of the affine process X in (12). 2

Remark 3.3 In case b(·) is piecewise-constant, such that b(t) = bk on every interval [Tk−1, Tk) of
a time-grid (Tk), then, defining i ≤ j such that t ∈ [Ti−1, Ti) and s ∈ [Tj−1, Tj), the second term in
(17) is given in view of the second line in (13) by

a

∫ s

t

Φy(s− u)b(u)du = (Ψy(s− t)−Ψy(s− Ti)) bi

+

j−1∑

k=i+1

(Ψy(s− Tk−1)−Ψy(s− Tk)) bk +Ψy(s− Tj−1)bj

(19)

if i < j, otherwise a
∫ s

t
Φy(s− u)b(u)du = Ψy(s− t)bi.

Remark 3.4 Note that the expression of survival probabilities as computed in a deterministic
piecewise-constant intensity set-up can be embedded in formulas (16), (17) and (19) for suitably
modified functions Φ and Ψ. Indeed, if we assume that Xt := λ(t) where λ(·) is a piecewise constant
function, i.e., λ(t) = λk whenever t ∈ [Tk−1, Tk), then the relevant expression for the function I in
(16) becomes

Is,y(t, x) := (Ti − t)λi +

j−1∑

k=i+1

(Tk − Tk−1)λk + (s− Tj−1 + y)λj , (20)

which corresponds to an expression of the form (17) with Φy(s) = 0 and Ψy(s) = s+ y.

3.2 CDS Pricing

We assume in the sequel that recovery rates are independent of default times. Under this assumption,
the CDS spread of a particular name can be expressed as deterministic functions of its survival
probabilities and of its expected recovery. Let t1 < · · · < tp = T be the remaining premium
payment dates where T stands for the maturity date. We assume for simplicity that the risk-free
interest rate is constant and equal to r and we denote β(t) = e−rt the corresponding discount factor.
In our numerical experiment, the current fair CDS spread of name i is approximated by the following
expression

Si(T ) = (1 −R∗
i )

∑p
j=1 β(tj) (P (τi > tj−1)− P (τi > tj))∑p

j=1 β(tj)(tj − tj−1)P (τi > tj)
(21)

where R∗
i denotes the expected recovery rate of name i. To derive the previous expression, we

implicitly assume that, if a default occur at time τi < T , the protection payment occurs at the
premium payment date that immediately follows τi.

Recall that (cf. (9))

P (τi > tj) = E exp
(
−
∫ tj

0

X i
sds
)

(22)

where X i is an extended CIR process with parameters a, c and piecewise-constant mean-reversion
function bi(·) in (5) (assuming piecewise-constant functions bY (·)). Hence, provided the expected
recovery is known, the CDS spread of name i can be efficiently calculated using part (i) of Proposition
3.2 with y = 0.
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3.3 CDO Tranche Pricing with Random Recoveries

In this subsection we outline how to modify the model to include stochastic recoveries. Let L =
(Li)1≤i≤n represent the [0, 1]n-valued vector process of the loss given defaults in the pool of names.
The process L is a multivariate process where L0 ∈ 0, and where each component Li

t represents the
fractional loss that name i may have suffered due to default until time t. Assuming unit notional
for each name, the cumulative loss process for the entire portfolio is defined as Lt :=

∑
i(1−Ri)H

i
t

where the variables Ri are random and independent fractional recoveries with values in [0, 1]. The
default times are defined as before, but at every time of jump of H, an independent recovery draw
is made for every newly defaulted name i, determining the recovery Ri of name i. In particular, the
recovery rates resulting from a joint default are thus drawn independently for the affected names.

Note that independent recoveries do not break the dynamic properties developed in [6]. How-
ever by introducing stochastic recoveries we can no longer use the exact convolution recursion pro-
cedures of [7] for pricing CDO tranches. Instead we will here use an approximate procedure based
on the exponential approximations of the so called hockey stick function, as presented in Iscoe et
al. [26, 27] and originally developed by [4]. In this subsection we explain in detail how to use this
method for computing the price of a CDO tranche in our Markov model when the individual losses
are random.

The mathematical ideas underlying the method of exponential approximations were originally
developed by [4], and was later adopted by Iscoe et al. in [26, 27] to price CDO tranches in a
Gaussian copula model. While [26, 27] uses constant recoveries, we will in this paper adopt their
techniques to random recoveries. Below we will outline the techniques given in [26, 27] and our

presentation also introduces notation needed later on. First, the so called tranche loss function La,b
t

for the tranche [a, b] as a function of the portfolio credit loss Lt is given by

La,b
t = (Lt − a)+ − (Lt − b)+ (23)

where x+ = max(x, 0) (see Figure 1).

Lt

La,b
t

a b

b− a

Figure 1: The tranche loss for [a, b] as function of the total loss Lt.

As in [4], we introduce the so-called hockey stick function h(x) given by

h(x) =

{
1− x if 0 ≤ x ≤ 1,
0 if 1 < x

(24)

(see Figure 2).
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Figure 2: The hockey stick function h(x) for x ∈ [0, 2].

Let c > 0 be scalar. By using (24) one can show that

min(x, c) = c− ch
(x
c

)
(25)

and for any two scalars a and b it holds that

(x− a)+ − (x− b)+ = min(x, b)−min(x, a) (26)

so (25) and (26) then yields

(x − a)+ − (x − b)+ = b
(
1− h

(x
b

))
− a

(
1− h

(x
a

))
. (27)

Hence, (23) and (27) implies that

La,b
t = b

(
1− h

(
Lt

b

))
− a

(
1− h

(
Lt

a

))
. (28)

This observation was done by [26] which combined (28) with the results of [4]. More specifically,
[4] shows that for any fixed ǫ > 0, the function h(x) can be approximated by a function h(q)

exp(x) on

[0, d] with d = d(ǫ) so that |h(x) − h(q)
exp(x)| ≤ ǫ for all x ∈ [0, d] where q = q(ǫ) is a positive integer

and h(q)
exp(x) is given by

h(q)
exp(x) =

q∑

ℓ=1

ωℓ exp
(
γℓ

x

d

)
. (29)

were (ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 are complex numbers obtained as roots of polynomials whose coefficients

can be computed numerically in a straightforward way.
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Figure 3: The function h(q)
exp

(x) as approximation of h(x) for x ∈ [0, 10] with q = 2, 5, 10 and
q = 50.

Figure 3 visualizes the approximation h(q)
exp(x) of h(x) on x ∈ [0, 10] for q = 2, 5, 10 and q = 50. As

can be seen in Figure 3, the approximation is fairly good already for small values values of q. In
[26] the authors choose the algorithm for computing (ωℓ)

q
ℓ=1 and (γℓ)

q
ℓ=1 so that d(ǫ) = 2, and then

they show that the approximation accuracy ǫ satisfies 1
4(q+1) ≤ ǫ where q are the number terms in

(29). Thus, q can be chosen first, implying an accuracy ǫ so that 1
4(q+1) ≤ ǫ. In practice, the error

|h(x)− h(q)
exp(x)| will for almost all x ∈ [0,∞) be much smaller than the lower bound 1

4(q+1) for ǫ, as

can bee seen in Figure 4. More specifically, in [26, 27] the authors show that Re(γℓ) < 0 for all ℓ
(see also in Figure 5) which implies that h(q)

exp(x) → 0 as x → ∞ and, as pointed out by [26], since

h(x) = 0 for x ≥ 1 this guarantees that h(q)
exp(x) → h(x) when x → ∞. In the rest of this paper we

will, just as in [26, 27, 5], use d = 2 in the approximation h(q)
exp(x) given by (29).

Since (ωℓ)
q
ℓ=1 are roots to a certain polynomial, then if ζ ∈ (ωℓ)

q
ℓ=1 it will also hold that

ζ ∈ (ωℓ)
q
ℓ=1. The same also holds for the complex numbers (γℓ)

q
ℓ=1 . Thus, it will hold that

Im (
∑q

ℓ=1 γℓ exp (γℓx/d)) = 0 and Figure 5 displays the coefficients (ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 in the case

q = 50.
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Figure 4: The approximation error |h(x) − h(q)
exp

(x)| for x ∈ [0, 10] with q = 2, 5, 10 and
q = 50.

It is well known that in order to price synthetic CDO tranches, one needs to compute the

quantity E
[
La,b
t

]
for t > 0, see e.g. in [25]. So by replacing h(x) with h(q)

exp(x) in (28) with d = 2

and using (29) then implies that we can approximate La,b
t as follows

La,b
t ≈ b− a− b

q∑

ℓ=1

ωℓ exp

(
γℓ

Lt

2b

)
+ a

q∑

ℓ=1

ωℓ exp

(
γℓ

Lt

2a

)
(30)

and consequently

E
[
La,b
t

]
≈ b− a− b

q∑

ℓ=1

ωℓE

[
exp

(
γℓ

Lt

2b

)]
+ a

q∑

ℓ=1

ωℓE

[
exp

(
γℓ

Lt

2a

)]
. (31)

Thus, in view of (31), the pricing of a CDO tranche of maturity T , boils down to computation of
expectations of the form

Eeγℓ
Lt
2c (32)
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for ℓ = 1, 2, . . . , q and different attachment points c and time horizons 0 ≤ t ≤ T .
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Figure 5: The coefficients (γℓ)
q
ℓ=1 (top) and some of the coefficients (ωℓ)

q
ℓ=1 (bottom) when

q = 50.

Remark 3.5 One can extend the present developments to conditional expectations given Fs for
any 0 < s < t. The case s = 0 is used in the calibration (our focus in this paper), while the case s > 0
is needed for pricing the credit valuation adjustment (CVA) on a CDO tranche in a counterparty
risky environment, a topical issue since the 2007-09 credit crisis (see [21]).

Since the algorithm for computing Eeγℓ
Lt
2c is the same for each ℓ = 1, 2, . . . , q and any attachment

point c, we will below for notational convenience simply write EeγLt instead of Eeγℓ
Lt
2c

We now use the common shock model representation developed in Section 3 of [7], with the
same notation that was introduced there except that θ there is t here, and t there is simply 0 here, as
we focus here on expectations and not conditional expectations; moreover we now use a “ .̂ ” notation
for the common shocks model representation at the starting time 0 below, instead of a “ (t) ” which
is used for common shocks model representation with a varying forward starting time t in [5].

We thus introduce a common shocks copula model of default times τ̂Y defined by, for every
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Y ∈ Y,

τ̂Y = inf{t > 0;

∫ t

0

XY
s ds > EY },

where the random variables EY are i.i.d. and exponentially distributed with parameter 1. For every
obligor i we let

τ̂i = min
{Y ∈Y; i∈Y }

τ̂Y , (33)

which defines the default time of obligor i in the common shocks copula model. We also introduce
the indicator processes ĤY

t = 1{τ̂Y ≤t} and Ĥi
t = 1{τ̂i≤t}, for every triggering-event Y and obligor i.

One then has much like in Proposition 2.10(ii) of [5] that

EeγLt = EeγL̂t (34)

where L̂t :=
∑

i(1−Ri)Ĥ
i
t .

We henceforth assume a nested structure of the sets Ij given by

I1 ⊂ . . . ⊂ Im. (35)

This structure implies that if all obligors in group Ik have defaulted, then all obligors in group
I1, . . . , Ik−1 have also defaulted. As detailed in [5], the nested structure (35) yields a particularly
tractable expression for the portfolio loss distribution. This nested structure also makes sense
financially with regards to the hierarchical structure of risks which is reflected in standard CDO
tranches. Denoting conventionally I0 = ∅ and ĤI0

t = 1, then the event-sets

Ω̂j
t := {ĤIj

t = 1, Ĥ
Ij+1

t = 0, . . . , ĤIm
t = 0}, 0 ≤ j ≤ m

form a partition of Ω with

P
(
Ω̂j

t

)
=
(
1− Ee−

∫
t

0
X

Ij
s ds

) ∏

j+1≤l≤m

Ee−
∫

t

0
X

Il
s ds

where the expectations are explicitly given by Proposition 3.2(i). One then has in (34) that

EeγL̂t =
∑

0≤j≤m

E
(
eγL̂t | Ω̂j

t

)
P(Ω̂j

t ) (36)

in which by conditional independence of the Ĥi
t given every Ω̂j

t

E
(
eγL̂t | Ω̂j

t

)
= E

(
eγ

∑
i(1−Ri)Ĥ

i
t | Ω̂j

t

)
=
∏

i∈Z

E
(
eγ(1−Ri)Ĥ

i
t | Ω̂j

t

)
.

Now observe that by independence of Ri

E
(
eγ(1−Ri)Ĥ

i
t | Ω̂j

t

)
=

{
Eeγ(1−Ri), i ∈ Ij

Eeγ(1−Ri)Ĥ
{i}
t , else

(37)

with
Eeγ(1−Ri)Ĥ

{i}
t = 1− p̂i,jt

(
1− Eeγ(1−Ri)

)
(38)

where

p̂i,jt =

{
1, i ∈ Ij ,

1− Ee−
∫

t

0
X{i}

s ds else
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in which the expectation is explicitly given by Proposition 3.2(i) for CIR intensities or Remark 3.4 for
deterministic intensities. Hence, the above formulas together with (34) will determine the quantity
(32) which in turn is needed to compute the expected tranche loss given by (31). Furthermore, from
the above equations we see that what is left to compute is the quantity Eeγ(1−Ri) and in Subsection
5 we will give an explicitly example of the recovery rate Ri (and the quantity Eeγ(1−Ri)) which
will be used in in Subsection 5.2 with the above hockey-stick method when calibrating the Markov
copula against market data on CDO tranches. As will be seen in Subsection 5.2, using random
recoveries will for some data sets render much better calibration results compared with the case of
using constant recoveries.

4 Calibration with Stochastic Intensities and Constant Re-

covery

In this section, we discuss the calibration methodology used for fitting the stochastic intensity Markov
copula model against CDO tranches on CDX.NA.IG series. We use here extended CIR intensities
with piecewise-constant mean-reversion coefficients (as described previously) and we assume that
recovery rates are constant. In Section 5 we will investigate the “dual” model specification where
intensities are deterministic and recoveries are stochastic.

Recall that, given non-negative constants a and c, the intensity process of any group Y ∈ Y is
defined by

dXY
t = a

(
bY (t)−XY

t

)
dt+ c

√
XY

t dWY
t (39)

where XY
0 is a given constant and bY (t) is a piecewise constant function such that, for every k =

1 . . .M, bY (t) = b
(k)
Y , t ∈ [Tk−1, Tk) with T0 = 0. In this paper we will use a time tenor consisting

of two maturities T1 = 3y and T2 = 5y. Moreover, in order to reduce the number of parameters at
hands, we consider that, for every group Y ∈ Y, the starting point of the corresponding intensity

process is given by its first-pillar mean-reversion parameter, i.e., XY
0 = b

(1)
Y . Note that in that case,

given a and c, the intensity dynamics of any group Y ∈ Y is completely characterized by b
(k)
Y ,

k = 1, 2. In particular, thanks to (4), the survival probability of name i up to T2 is characterized by

(b
(k)
i )k=1,2 where

b
(k)
i = b

(k)
{i} +

∑

I∋I∋i

b
(k)
I . (40)

The calibration is done in two steps. The first step consists in boostrapping (b
(k)
i )k=1,2 on the

single-name CDS curve associated with obligor i, for any i = 1, . . . , n. The CDS curve of name i is
composed of two market spreads: S∗

i (T1) corresponding to maturity T1 and S∗
i (T2) corresponding

to maturity T2. We first remark from (21) and Proposition 3.2 that the model spread of CDS i with

maturity T1 only depends on b
(1)
i whereas the model spread of CDS i with maturity T2 depends on

b
(1)
i and b

(2)
i . As soon as a and c are fixed, we can then find b

(1)
1 as the solution of the non-linear

(univariate) equation Si(T1) = S∗
i (T1), plugged this solution into the expression of Si(T2) and then

find b
(2)
1 as the solution of the non-linear (univariate) equation Si(T2) = S∗

i (T2). Figure 6 and 7
respectively show the 3y- and the 5y-implied mean-reversion coefficients bootstrapped from the 125
CDS curves of the CDX.NA.IG index constituents as of December 17, 2007. We compare three
different specifications of the underlying individual intensities : piecewise-constant deterministic
intensities (standard bootstrap procedure), CIR intensities with a = 3 and c = 0.05 and CIR
intensities with a = 3 and c = 2. We can see that the volatility parameter c has little impact on
implied coefficients whereas individual intensities may be relatively volatile even for small volatility
parameter as illustrated by Figure 8.
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Figure 6: 3-year mean-reversion coefficients b
(1)
i , i = 1, . . . , 125 bootstrapped from

CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.
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Figure 7: 5-year mean-reversion coefficients b
(2)
i , i = 1, . . . , 125 bootstrapped from

CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.
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Figure 8: Sample paths of generalized CIR intensities with a = 3 and c = 0.05 where
mean-reversion parameters are implied from AIG CDS curve at December 17, 2007. The
first and the second pillar coefficients are (resp.) equal to b(1) = 0.096 and b(2) = 0.075.

Remark 4.1 We checked that, for a = 3 and c = 0.05, the Feller’s condition holds for all names
after calibration of the mean-reversion levels b(k)’s on CDS spreads. This eases Monte Carlo path
generation considerably compared to a situation where the Feller’s condition would be violated.

The second step is to calibrate group parameters (b
(k)
Ij

)k=1,2, j = 1, . . . ,m so that the model
CDO tranche spreads coincide with the corresponding market spreads. The hockey-stick method
described in Subsection 3.3 can be used to compute model CDO tranche spreads.

Moreover, in view of (40), we impose that, for all k = 1, 2 and i = 1, . . . , n, the group
parameters are such that ∑

I∋I∋i

b
(k)
I ≤ b

(k)
i (41)

for all i = 1, . . . , 125. The previous constraints guarantee that the long-term averages b
(k)
{i} of single-

group intensities are all positive. This in turn implies by construction that the starting points of

single-group intensities X
{i}
0 are all positive. Given the nested structure of the groups Ij-s specified

in (35), the following constrains must hold for all l = 1, . . . ,m and k = 1, 2:

m∑

j=l

b
(k)
Ij

≤ min
i∈Il\Il−1

b
(k)
i . (42)

Next, the group parameters b = (b
(k)
Ij

)j,k = {b(k)Ij
: j = 1, . . . ,m and k = 1, 2} are then

calibrated so that the five-year model spread Sal,bl(λ) =: Sl(λ) will coincide with the corresponding

market spread S∗
l for each tranche l. To be more specific, the parameters b = (b

(k)
Ij

)j,k are obtained
according to

b = argmin
b̂

∑

l

(
Sl(b̂)− S∗

l

S∗
l

)2

(43)

under the constraints that all elements in b are nonnegative and that b satisfies the inequalities

(42). In Sl(b̂) we have emphasized that the model spread for tranche l is a function of b = (b
(k)
Ij

)j,k
but we suppressed the dependence in other parameters like interest rate, payment frequency or bi,
i = 1, . . . , n. In the calibration we used an interest rate of 3%, the payments in the premium leg
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were quarterly and the integral in the default leg was discretized on a quarterly mesh. We use a
constant recovery of 40%.

Table 1: CDX.NA.IG Series 9, December 17, 2007. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread. The [0, 3]
spread is quoted in %. All maturities are for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 50.37 258.01 124.68 61.32 41.91

Absolute error in bp 2.301 4.016 0.684 0.327 0.912
Relative error in % 4.787 1.581 0.552 0.536 2.225

As can be seen in Table 1, we obtain a correct fit for CDX 2007-12-17 even in the case where
no name is removed from the calibration constraints. Here, we use 5 groups I1, I2, . . . , I5 where
Ij = {1, . . . , ij} for ij = 8, 19, 27, 102, 125. However, for the two cases, we label the obligors by
decreasing level of riskiness. We use the average over 3-year and 5-year CDS spreads as a measure
of riskiness. Consequently, obligor 1 has the highest average CDS spread while company 125 has the
lowest average CDS spread. We use Matlab in our numerical calculations and the related objective
function is minimized under the suitable constraints by using the built in optimization routine
fmincon (e.g. in this setup, minimizing the criterion (43) under the constraints given by equations
on the form (42)).

For iTraxx Europe 2008-03-31, the calibration results are not improved with respect to the
piecewise-constant intensity model and constant recovery.
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Figure 9: Comparison of 5-year implied loss distributions (P(
∑

i H
i
t = k), k = 0, . . . , 125)

from CDX.NA.IG December 17, 2007 calibration of the generalized CIR intensity model
and the piecewise constant intensity model.

As a matter of comparison, we plot in Figure 9 the loss distribution functions obtained from
fitted parameters of the generalized CIR intensity model with a = 3 and c = 0.5 and from the fitted
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parameters of the piecewise-constant (deterministic) intensity model (see Subsection 5.2 for more
details). Note that the grouping is not the same in the two calibrated models. For the deterministic
intensity model, we used 5 groups I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij = 6, 19, 25, 61, 125
when calibrating the joint default intensities. Moreover, the obligors in the set I5 \ I4 consisting
of the 64 safest companies are assumed to never default individually, and the corresponding CDSs
are excluded from the calibrations constraints. This specification renders a perfect fit. For the
CIR intensity model, we also use 5 groups but with ij = 8, 19, 27, 102, 125 and, contrary to the
deterministic intensity model , we do not remove any name from the calibration constraints. This
specification renders a very good fit.

5 Calibration with Deterministic Intensities and Random

Recoveries

In this section we discuss the second calibration methodology used when fitting the Markov copula
model against CDO tranches on the iTraxx Europe and CDX.NA.IG series in Subsection 5.2. This
method relies on piecewise constant default intensities and random recoveries. Recall that compared
with constant recoveries, using random recoveries requires a more sophisticated method in order to
compute the expected tranche losses, as was explained in Subsection 3.3.

The piecewise-constant intensity model used in this section is the one presented in Remark 3.1
(see also numerical applications in [7]). Remark 3.4 can be used to compute survival probabilities
in this setting.

The calibration methodology and constraints connected to the piecewise constant default in-
tensities are the same as for the mean-reversion coefficients in the CIR intensity case of Section 4:
one only needs to replace b by λ in formulas (40), (41) and (42). Therefore we will in this Section
only discuss the distribution for the individual stochastic recoveries Ri as well as accompanying
constraints used in the calibration. This distribution will determine the quantity E

(
eγ(1−Ri)

)
in

(38) which is needed to compute the expected tranche losses.

5.1 Random recoveries specification and calibration methodology

We assume that the individual recoveries {Ri} are i.i.d and have a binomial mixture distribution of
the following form

Ri ∼
1

K
Bin (K,R∗(p0 + (1−Θ)p1)) where Θ ∈ {0, 1} and P [Θ = 1] = q (44)

where R∗, q p0 and p1 are positive constants and K is an integer (in this paper and in [5] we let
K = 10). As a result, the distribution function for the recovery rate is given by

P

[
Ri =

k

K

]
=

1∑

ξ=0

µ(ξ)

(
K

k

)
p(ξ)k(1− p(ξ))K−k where p(ξ) = R∗ (p0 + (1− ξ)p1) (45)

where ξ ∈ {0, 1} and µ(1) = q, µ(0) = 1− q.
In view of (44) and (45) we can give an explicit expression for the quantity Eeγ(1−Ri) specified

in Subsection 3.3, as follows

Eeγ(1−Ri) =

1∑

ξ=0

K∑

k=0

eγ(1−
k
K )
(
K

k

)
p(ξ)k(1− p(ξ))K−k. (46)

Recall that Eeγ(1−Ri) together with the corresponding computations in Subsection 3.3 and Equation

(34) will determine the quantity Eeγℓ
Lt
2c in (32) which in turn is needed to compute the expected

tranche loss given by Equation (31).
Let R∗ be a constant representing the average recovery for each obligor in the portfolio. We

now impose the constraint E [R] = R∗ which is necessary in order to have a calibration of the
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single-name CDSs that is separate from the calibration of the common-shock parameters. The
condition E [R] = R∗ leads to constraints on the parameters p0, q and p1 that must be added to
the constraints for the common shock intensities used in the calibration of the CDO tranches (recall
that the calibration is a constrained minimization problem for these parameters). Below we derive
these constraints for p0, q and p1. First, note that

E [R] =
R∗

K
KE [p0 + (1− ξ)p1] = R∗p0 + (1 − q)p1

so the condition E [R] = R∗ implies p0 + (1− q)p1 = 1 which yields

p1 =
1− p0
1− q

. (47)

Thus, p1 can be seen as a function of q and p0. Next, in view of (44) we have for any scalar ξ ∈ {0, 1}
that

P

[
R =

k

K

∣∣∣∣Θ = ξ

]
=

(
K

k

)
p(ξ)k(1− p(ξ))K−k (48)

where p(ξ) is defined as in (45). Since p(ξ) is a probability for ξ ∈ {0, 1} it must hold that

p(1) = R∗p0 ∈ (0, 1) and p(0) = R∗(p0 + p1) ∈ (0, 1)

that is,
0 < R∗p0 < 1 and 0 < R∗(p0 + p1) < 1. (49)

We can always assume that p0 > 0 and 0 < R∗ < 1 so the first condition in (49) then implies

p0 <
1

R∗
. (50)

Furthermore, by inserting (47) into the second condition in (49) we retrieve the following constraint

0 < R∗ 1− p0q

1− q
< 1. (51)

Since q ∈ (0, 1) and consequently 1− q > 0, then (51) implies 1− p0q > 0, that is

q <
1

p0
. (52)

However, we note that this is a “soft” condition since (50) implies that p0 < 1
R∗ and if p0 < 1

then (52) is superfluous since we already know that 0 < q < 1. Next, (51) also tells us that
R∗(1− p0q) < (1− q) which after some computation yields

q <
1−R∗

1−R∗p0
. (53)

Finally, it must obviously hold that q < 1 since P [Θ = 1] = q. Thus, combining this with (52) and
(53) gives us the following final constraint for the parameter q,

q < min

(
1,

1

p0
,

1−R∗

1−R∗p0

)
. (54)

Consequently, using the same notation as in Section 4 and replacing the group parameters identifier

b by λ = (λ
(k)
Ij

)j,k = {λ(k)
Ij

: j = 1, . . . ,m and k = 1, 2}, the parameters θ = (λ, q) are obtained
according to

θ = argmin
θ̂

∑

l

(
Sl(θ̂)− S∗

l

S∗
l

)2

(55)
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where λ must satisfies the same constraints as b in Section 4 and q must obey (54). The rest of
the notation in (55) are defined as in Section 4. In our calibrations the parameters p0 and R∗ will
be treated as exogenously given parameters where we set R∗ = 40% while p0 can be any positive
scalar satisfying p0 < 1

R∗ . The scalar p0 will give us some freedom to fine-tune our calibrations.
In Subsection 5.2 we use the above setting with stochastic recoveries when calibrating this model
against two different CDO data-sets.

Finally, note that if the i.i.d recoveries Ri would follow other distributions than (44) we simply
modify Eeγ(1−Ri) in (38) in Subsection 3.3 but the rest of the computations are the same. Of course,
changing (44) will also imply that the constraints in (54) will no longer be relevant.

5.2 Calibration Results

In all the numerical calibrations below we use an interest rate of 3%, the payments in the premium
leg are quarterly and the integral in the default leg is discretized on a quarterly mesh. Constant or
average recoveries (as relevant) are set equal to 40%.

In this subsection we calibrate our model against CDO tranches on the iTraxx Europe and
CDX.NA.IG series with maturity of five years. We use the random recoveries and the calibration
methodology as described in Subsection 5.1. Hence, the 125 single-name CDSs constituting the enti-
ties in these series are bootstrapped from their market spreads for T1 = 3 and T2 = 5 using piecewise
constant individual default intensities on the time intervals [0, 3] and [3, 5]. Figure 10 displays the 3
and 5-year market CDS spreads for the 125 obligors used in the single-name bootstrapping, for the
two portfolios CDX.NA.IG sampled on December 17, 2007 and the iTraxx Europe series sampled
on March 31, 2008. The CDS spreads are sorted in decreasing order.
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Figure 10: The 3 and 5-year market CDS spreads for the 125 obligors used in the single-
name bootstrapping, for the two portfolios CDX.NA.IG sampled on December 17, 2007
and the iTraxx Europe series sampled on March 31, 2008. The CDS spreads are sorted in
decreasing order.

When calibrating the joint default intensities λ = (λ
(k)
Ij

)j,k for the CDX.NA.IG Series 9, De-

cember 17, 2007 we used 5 groups I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij = 6, 19, 25, 61, 125.
Recall that we label the obligors by decreasing level of riskiness. We use the average over 3-year
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and 5-year CDS spreads as a measure of riskiness. Consequently, obligor 1 has the highest average
CDS spread while company 125 has the lowest average CDS spread. Moreover, the obligors in the
set I5 \ I4 consisting of the 64 safest companies are assumed to never default individually, and the
corresponding CDSs are excluded from the calibration, which in turn relaxes the constraints for λ
Hence, the obligors in I5\I4 can only bankrupt due to a simultaneous default of the companies in the
group I5 = {1, . . . , 125}, i.e., in an Armageddon event. With this structure the calibration against
the December 17, 2007 data-set is very good as can be seen in Table 2. By using stochastic recoveries
specified as in (44) and (45) we get a perfect fit of the same data-set. The calibrated common shock
intensities λ for the 5 groups in the December 17, 2007 data-set, both for constant and stochastic

recoveries, are displayed in the left subplot in Figure 11. Note that the shock intensities λ
(1)
Ij

for the

first pillar (i.e. on the interval [0, 3]) follows the same trends both in the constant and stochastic

recovery case, while the shock intensities λ
(2)
Ij

for the second pillar (i.e. on the interval [3, 5]) has
less common trend.

Table 2: CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008. The market and model spreads and the corresponding absolute errors, both in bp
and in percent of the market spread. The [0, 3] spread is quoted in %. All maturities are
for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94

Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

CDX 2007-12-17: Calibration with stochastic recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 41.00

Absolute error in bp 0.000 0.000 0.000 0.000 0.000
Relative error in % 0.000 0.000 0.000 0.000 0.000

iTraxx Europe 2008-03-31: Calibration with constant recovery

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7

Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

iTraxx Europe 2008-03-31: Calibration with stochastic recovery

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 40.54 463.6 307.8 215.7 108.3

Absolute error in bp 39.69 15.90 1.676 0.5905 1.153
Relative error in % 0.9886 3.316 0.5414 0.2745 1.053

The calibration of the joint default intensities λ = (λ
(k)
Ij

)j,k for the data sampled at March
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31, 2008 is more demanding. This time we use 18 groups I1, I2, . . . , I18 where Ij = {1, . . . , ij} for
ij = 1, 2, . . . , 11, 13, 14, 15, 19, 25, 79, 125. In order to improve the fit, as in the 2007-case, we relax
the constraints for λ by excluding from the calibration the CDSs corresponding to the obligors in
I18 \ I17. Hence, we assume that the obligors in I18 \ I17 never default individually, but can only
bankrupt due to an simultaneous default of all companies in the group I18 = {1, . . . , 125}. In this
setting, the calibration of the 2008 data-set with constant recoveries yields an acceptable fit except
for the [3, 6] tranche, as can be seen in Table 2. However, by including stochastic recoveries (44),
(45) the fit is substantially improved as seen in Table 2. Furthermore, in both recovery versions, the
more groups added the better the fit, which explain why we use as many as 18 groups.

The calibrated common shock intensities λ for the 18 groups in the March 2008 data-set, both
for constant and stochastic recoveries, are displayed in the right subplot in Figure 11. In this subplot

we note that for the 13 first groups I1, . . . , I13, the common shock intensities λ
(1)
Ij

for the first pillar
are identical in the constant and stochastic recovery case, and then diverge quite a lot on the last
five groups I14, . . . , I18, except for group I16. Similarly, in the same subplot we also see that for the

11 first groups I1, . . . , I11, the shock intensities λ
(2)
Ij

for the second pillar are identical in the constant
and stochastic recovery case, and then differ quite a lot on the last seven groups, except for group
I13.
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Figure 11: The calibrated common shock intensities (λ
(k)
Ij

)j,k both in the constant and
stochastic recovery case for the two portfolios CDX.NA.IG sampled on December 17, 2007
(left) and the iTraxx Europe series sampled on March 31, 2008 (right).

The optimal parameters q and p0 used in the stochastic recovery model was given by q = 0.4405
and p0 = 0.4 for the 2007 data set and q = 0.6002 and p0 = 0.4 for the 2008 case. Figure 12 displays
the recovery distribution with calibrated parameters q for the two different data sets CDX.NA.IG
series sampled at 2007-12-07 and iTraxx Europe sampled at 2008-03-31. Here E [R] = R∗ = 0.4 and
p0 = 0.4 in both cases. As seen in Figure 12, the implied probability for a recovery of 0%, 10% and
20% was consistenly higher in the 2008 sample compared with the 2007 data set (in March 2008
Bear Stearns was bailed out leading to around three times higher credit spreads than in December
2007, both in Europe and North America). Recall that a recovery of 0% means that everything is
lost at a default.

Let us finally discuss the choice of the groupings I1 ⊂ I2 ⊂ . . . ⊂ Im in our calibrations.
First, for the CDX.NA.IG Series 9, December 17, 2007 data set, we used m = 5 groups with as
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always im = n. For j = 1, 2 and 4 the choice of ij corresponds to the number of defaults needed
for the loss process with constant recovery of 40% to reach the j-th attachment points. Hence,
ij · 1−R

n
with R = 40% and n = 125 then approximates the attachment points 3%, 10%, 30% which

explains the choice i1 = 6, i2 = 19, i4 = 61. The choice of i3 = 25 implies a loss of 12% and gave
a better fit than choosing i3 to exactly match 15%. Finally, no group was chosen to match the
attachment point of 7% since this made the calibration worse off for all groupings we tried. With
the above grouping structure we got almost perfect fits in the constant recovery case, and perfect
fit with stochastic recovery, as was seen in Table 2. Unfortunately, using the same technique on the
market CDO data from the iTraxx Europe series sampled on March 31, 2008 was not enough to
achieve good calibrations. Instead more groups had to be added and we tried different groupings
which led to the optimal choice rendering the calibration in Table 2. To this end, it is of interest
to study the sensitivity of the calibrations with respect to the choice of the groupings on the form
I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and i1 < . . . < im = 125 on the
March 31, 2008, data set. Three such groupings are displayed in Table 3 and the corresponding
calibration results on the 2008 data set is showed in Table 4. From Table 4 we see that in the
case with constant recovery the relative calibration error in percent of the market spread decreased
monotonically for the first three thranches as the number of groups increased. Furthermore, in
the case with stochastic recovery the relative calibration error decreased monotonically for all five
tranches as the number of groups increased in each grouping. The rest of the parameters in the
calibration where the same as in the calibration in Table 2.
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Figure 12: The implied recovery distribution with calibrated parameters q in [5], for the two
different data sets CDX.NA.IG series sampled at 2007-12-07 and iTraxx Europe sampled
at 2008-03-31, where E [R] = R∗ = 0.4 in both cases.
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Table 3: Three different groupings (denoted A,B and C) consisting of m = 7, 9, 13 groups
having the structure I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and
i1 < . . . < im = 125.

Three different groupings

ij i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13
Grouping A 6 14 15 19 25 79 125
Grouping B 2 4 6 14 15 19 25 79 125
Grouping C 2 4 6 8 9 10 11 14 15 19 25 79 125

Finally, we remark that the two optimal groupings used in Table 2 in the two different data sets
CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31, 2008 differ quite
a lot. However, the CDX.NA.IG Series is composed by North American obligors while the iTraxx
Europe Series is formed by European companies. Thus, there is no model risk or inconsistency
created by using different groupings for these two different data sets, coming from two disjoint
markets. If on the other hand the same series is calibrated and assessed (e.g. for hedging) at
different time points in a short time span, it is of course desirable to use the same grouping in order
to avoid model risk.

Table 4: The relative calibration error in percent of the market spread, for the three
different groupings A, B and C in Table 3, when calibrated against CDO tranche on iTraxx
Europe Series 9, March 31, 2008 (see also in Table 2).

Relative calibration error in % (constant recovery)

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Error for grouping A 6.875 18.33 0.0606 0.0235 4.8411
Error for grouping B 6.622 16.05 0.0499 0.0206 5.5676
Error for grouping C 4.107 11.76 0.0458 0.0319 3.3076

Relative calibration error in % (stochastic recovery)

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Error for grouping A 3.929 9.174 2.902 1.053 2.109
Error for grouping B 2.962 7.381 2.807 1.002 1.982
Error for grouping C 1.439 4.402 0.5094 0.2907 1.235

Conclusions and Perspectives

In this paper we make a focus on two practically important features of the Markov copula portfolio
credit risk model of [5, 6, 7]: random recoveries and stochastic intensities. Regarding random
recoveries it would be interesting to find ways to add some dependence features without breaking
the model tractability (in the current specifications one is only able to work with independent
recoveries). As for stochastic intensities it would nice to find a good way of fixing the parameters
a and c, maybe based on historical observation of the dynamics of CDS spreads, rather than quite
arbitrarily in this paper, as these dynamic parameters have little impact on CDS and CDO spreads.
Also note that other specification of the intensities could be used, in particular Lévy Hull-White
intensities driven by subordinators (for the sake of non-negativity, cf. Example 3.6 in [20]). Finally
it would be interesting to apply these alternative specifications and to compare them in the context
of CVA computations on portfolios of CDS and/or CDOs.
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[6] Bielecki, T.R., Cousin, A., Crépey, S., Herbertsson, A.: A bottom-up dynamic
model of portfolio credit risk - Part I: Markov copula perspective. Forthcoming in Re-
cent Advances in Financial Engineering 2012, World Scientific (preprint version available at
http://dx.doi.org/10.2139/ssrn.1844574).
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[20] Crépey, S., Grbac, Z. and Nguyen, H. N.: A multiple-curve HJM model of interbank
risk. Mathematics and Financial Economics, Vol 6, Issue 6, p. 155-190, 2012.
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