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Hedging CDO tranches in a Markovian

environment
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The risk management and the hedging of credit derivatives and related products
are topics of tremendous importance, especially given the recent credit turmoil. The
risks at hand are usually split into different categories, which may sometimes over-
lap, such as credit spread and default risks, correlation and contagion risks. The
credit crisis also drove attention to counterparty risk and related issues such as col-
lateral management, downgrading of guarantors and of course liquidity issues. For
simplicity, these will not be dealt within this part1.

Credit derivatives are over-the-counter (OTC) financial instruments designed to
transfer credit risk of a reference entity between two counterparties by way of a
bilateral agreement. The agreement involves a seller of protection and a buyer of
protection. The seller of protection is committed to cover the losses induced by the
default of a reference entity, typically a corporate. In return, the buyer of protec-
tion has to pay at some fixed dates a premium to the seller of protection. By the
default, we mean that the entity goes bankrupt or fails to pay a coupon on time, for
some of its issued bonds. Even though credit derivatives are traded over-the-counter,
credit events are standardized by the International Swap and Derivative Association
(ISDA)2.

Since credit derivatives involve some counterparty risk, the protection seller may
be asked to post some collateral. Also, depending on the market value of the con-
tract, the amount of collateral may be dynamically adjusted. However, after the re-
cent credit crisis and subsequent defaults, settlement procedures had to be updated.
Various projects including the ISDA, tend to standardize the cash-flows of CDS, net-
ting and settlement procedures. It is likely that some market features will change.
Nevertheless, the main ideas expressed here will still be valid with some minor
adaptation.

Financial institutions such as banks, mutual funds, pension funds, insurance and
reinsurance companies, monoline insurance companies, corporations or sovereign
wealth funds have a natural incentive to use credit derivatives in order to assume,
reduce or manage credit exposures.

Surprisingly enough, since pricing at the cost of the hedge is the cornerstone
of the derivatives modelling field, models that actually connect pricing and hedg-
ing issues for CDOs have been studied after the one factor Gaussian copula model
became a pricing standard. This discrepancy with the equity or interest derivatives
fields can actually be seen as a weakness and one can reasonably think that further

1 See [33] for a discussion of the issues involved.
2 Although ISDA reports a list of six admissible credit events, most of the contracts only include
bankruptcy and failure to pay as credit events. This is the case of contracts referencing companies
settled in developed countries. The definitions have been last updated in 2003. An overview of
these standardized definitions can be found in [54]. However, these are likely to be updated, for
instance due to the ISDA big bang protocol.
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researches in the credit area will aim at closing the gap between pricing and hedging.

Before proceeding further, let us recall the main features in a hedging and risk
management problem, which come to light whatever the underlying risks:

• A first issue is related to the choice and the liquidity of the hedging instruments:
typically, one could think of credit index default swaps, CDS on names with pos-
sibly different maturities, standardized synthetic single tranche CDOs and even
other products such as equity put options, though this will not be detailed in this
partq. We reckon that the use of equity products to mitigate risks can be useful in
the high yield market, but this is seemingly not the case for CDO tranches related
to investment grade portfolios.

• A second issue is related to the products to be hedged. In the remainder, we
will focus either on single name CDS or basket credit derivatives, such as First
to Default Swaps, CDO tranches, bespoke CDOs or tranchelets. We will leave
aside interest rate or foreign exchange hybrid products, credit spread options and
exotic basket derivatives such as leveraged tranches, forward starting CDOs or
tranche options.

• A third issue relies on the choice of the hedging method. The mainstream the-
oretical approach in mathematical finance favours the notion of replication of
complex products through dynamic hedging strategies based on plain underly-
ing instruments. However, it is clear that in many cases, risk can be mitigated
by offsetting long and short positions, providing either a complete clearing or
more usually leaving the dealer exposed to some basis albeit small risk. More-
over, such an approach is obviously quite robust to model risk. Unfortunately,
there are some imbalances in customer demand and investment banks can be left
with rather large outstanding positions on parts of the capital structure that must
be managed up to maturity.





Chapter 1
Hedging instruments

Areski Cousin, Monique Jeanblanc, Jean-Paul Laurent

October 20, 2009

This chapter is a primer about hedging of defaultable securities. It aims at pre-
senting a general model of prices and hedging of defaultable claims, in a pure jump
setting (there is no Brownian motion involved in our presentation). It also introduces
the main hedging instruments we will consider throughout this part. We will particu-
larly describe the cash-flows of credit default swaps (CDS) and derive the dynamics
of their price. We also stress the impact of a credit event on the price dynamics of
the surviving names.

1.1 Credit Default Swap

A Credit Default Swaps (CDS) is a bilateral over-the-counter agreement which
transfers the credit risk of a defined reference entity from a buyer of protection
to a seller of protection up to a fixed maturity time T . The reference entity denoted
C is typically a corporate or a sovereign obligor.

We assume that C may default at a particular time τ which is a non negative
random variable constructed on a probability space (Ω ,G ,P). The default time τ
corresponds to a credit event leading to payment to the protection buyer. Moreover,
if C defaults, only a fraction R (the recovery rate) of the initial investment is recov-
ered. Figure 1.1 illustrates the structure of a CDS.

5
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Fig. 1.1 Structure of a credit default swap

1.1.1 Cash-flow description

Let us consider a CDS initiated at time t = 0 with maturity T and nominal value
E. The cash-flows of a CDS can be divided in two parts (or legs): the default leg
which corresponds to the cash-flows generated by the seller of protection and the
premium leg which is the set of cash-flows generated by the protection buyer. For
simplicity, we will assume that nor the protection seller, neither the protection buyer
can default.

Default leg

The seller of credit protection (denoted B in Figure 1.1) agrees to cover losses in-
duced by the default of the obligor C at time τ if the latter occurs before maturity
(τ < T ). In that case, the payment is exactly equal to the fraction of the loss that
is not recovered, i.e., the loss given default E(1−R). The settlement procedures in
order to determine the recovery rate are not detailed here. The contract is worthless
after the default of C.

Premium leg or fee leg

In return, the buyer of protection (denoted A in Figure 1.1) pays a periodic fee to B
up to default time τ or until maturity T , whichever comes first. Each premium pay-
ment is proportional to a contractual credit spread1 κ and to the nominal value E.
More precisely, the protection buyer pays κ ·∆i ·E to the protection seller B, at every
premium payment date 0 < T1 < · · · < Tp = T or until τ < T , where ∆i = Ti−Ti−1,
i = 1, . . . , p are the time intervals between two premium payment dates2. Let us
remark that premium payments are made in arrears and begin at the end of the
fist period (at T1). If default happens between two premium payment dates, say
τ ∈]Ti−1,Ti[, the protection fee has not been paid yet for the period ]Ti−1,τ]. In that
case A will pay B an accrued premium equal to κ · (τ−Ti−1) ·E. The accrued pre-

1 The contractual spread is quoted in basis points per annum.
2 with the convention that T0 = 0.
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mium payment is usually made at time τ . After default of C (t > τ), there are no
more cash-flows on the premium leg which is worthless.

It is noteworthy that the contractual spread κ is fixed at inception (at t = 0) and
remains the same until maturity. It is determined so that the expected discounted
cash-flows (under a proper pricing measure to be detailed below) between A and B
are the same when the CDS contract is settled.

Due to the credit turmoil, some major market participants encourage a change
in market convention for single name CDS quotes. In the proposal, the contractual
spread will be fixed at κ = 100 bps or κ = 500 bps depending on the quality of the
credit. The buyer of protection will have to make an immediate premium payment
(upfront payment) to enter the contract (see [5] for more details).

1.2 Theoretical Framework

1.2.1 Default times

In what follows, we consider n default times τi, i = 1, . . . ,n, that is, non-negative
and finite random variables constructed on the same probability space (Ω ,G ,P).
For any i = 1, . . . ,n, we denote by (Ni

t = 1τi≤t , t ≥ 0) the i-th default process, and
by H i

t = σ(Ni
s, s≤ t) the natural filtration of N

i (after completion and regularization
on right). We introduce H, the filtration generated by the processes N

i, i = 1, . . . ,n,
defined as H = H

1∨ · · ·∨H
n, i.e., Ht = ∨n

i=1H
i

t .
We denote by τ(1), . . . ,τ(n) the ordered default times.

Hypothesis 1: We assume that no simultaneous defaults can occur, i.e., P(τi = τ j) =
0,∀i �= j. This assumption is important with respect to the completeness of the mar-
ket. As shown below, it allows to dynamically hedge credit derivatives referencing
a pool of defaultable entities with n credit default swaps3.

Hypothesis 2: We assume that, for any i = 1, . . . ,n, there exists a non-negative H-
adapted process (α i,P

t , t ≥ 0) such that the process

M
i,P
t := N

i

t −
�

t

0
α i,P

s ds (1.1)

is a (P,H)-martingale. The process α i,P is called the (P,H)-intensity of τi (Note that
the value of the intensity depends strongly of the underlying probability). This pro-
cess vanishes after τi (otherwise, after τi, the martingale M

i,P would be continuous

3 In the general case where multiple defaults could occur, we have to consider possibly 2n states,
and we would require non standard credit default swaps with default payments conditionally on all
sets of multiple defaults to hedge multiname credit derivatives.
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and strictly decreasing, which is impossible) and can be written α i,P
t = (1−N

i
t )�α

i,P
t

for some H
1 ∨ · · ·∨H

i−1 ∨H
i+1 ∨ · · ·∨H

n-adapted process �α i,P (see [8] for more
details). In particular, for n = 1, the process �α1,P is deterministic. In terms of the
process �α i,P, one has

M
i,P
t = N

i

t −
�

t∧τi

0
α i,P

s ds = N
i

t −
�

t

0
(1−N

i

s)�α i,P
s ds .

Comments:(a) Let us remark that the latter hypothesis is not as strong as it seems
to be. Indeed, the process N

i is an increasing H-adapted process, hence an H-
submartingale. The Doob-Meyer decomposition implies that there exists a unique
increasing H-predictable process Λ i such that (Ni

t −Λ i
t , t ≥ 0) is an H-martingale.

We do not enter into details here4, it’s enough to know that a left-continuous adapted
process is predictable. It is also well known that the process Λ i is continuous if and
only if τi is totally inaccessible5. Here, we restrict our attention to processes Λ i

which are absolutely continuous with respect to Lebesgue measure.
(b) It will be important to keep in mind that the martingale M

i,P has only one jump
of size 1 at time τi.

1.2.2 Market assumptions

For the sake of simplicity, let us assume that instantaneous digital default swaps are
traded on the names. An instantaneous digital credit default swap on name i traded
at time t is a stylized bilateral agreement between a buyer and a seller of protec-
tion. More precisely, the protection buyer receives one monetary unit at time t +dt

if name i defaults between t and t + dt. If α i
t denotes the contractual spread of this

stylized CDS, the seller of protection receives in return a fee equal to α i
t dt which

is paid at time t + dt by the buyer of protection. The cash-flows associated with a
buy protection position on an instantaneous digital default swaps on name i traded
at time t are summarized in figure 1.2.

0

1−α i
t dt : name i defaults between t and t +dt.

−α i
t dt : survival of name i

t t +dt

Fig. 1.2 Cash-flows of an instantaneous digital credit default swap (buy protection position)

4 The reader is referred to [56] for the definition of a predictable process. A stopping time ϑ is
predictable if there exists a sequence of stopping times ϑn such that ϑn < ϑ and ϑn converges to
ϑ as n goes to infinity.
5 A stopping time τ is totally inaccessible if P(τ = ϑ) = 0 for any predictable stopping time ϑ .
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Let us also remark that there is no charge at inception (at time t) to enter an in-
stantaneous digital credit default swap trade. Then, its payoff is equal to dN

i
t −α i

t dt

at t + dt where dN
i
t is the payment on the default leg and α i

t dt is the (short term)
premium on the default swap.

Hypothesis 3: We assume that contractual spreads α1, . . . ,αn are adapted to the fil-
tration H of default times. The naturel filtration of default times can thus be seen as
the relevant information on economic grounds.

Moreover, since the instantaneous digital credit default swap is worthless after
default of name i, credit spreads must vanish after τi, i.e., α i

t = 0 on the set {t > τi}.

Note that considering such instantaneous digital default swaps rather than actu-
ally traded credit default swaps is not a limitation of our purpose. This can rather be
seen as a convenient choice of basis from a theoretical point of view.

For simplicity, we further assume that (continuously compounded) default-free
interest rates are constant and equal to r. Given some initial investment V0 and some
H-predictable bounded processes δ 1, . . . ,δ n associated with some self-financed
trading strategy in instantaneous digital credit default swaps, we attain at time T

the payoff:

V0e
rT +

n

∑
i=1

�
T

0
δ i

se
r(T−s) �

dN
i

s−α i

sds
�
.

By definition, δ i
s is the nominal amount of instantaneous digital credit default swap

on name i held at time s. This induces a net cash-flow of δ i
s ·

�
dN

i
s−α i

sds
�

at time
s+ds, which has to be invested in the default-free savings account up to time T .

1.2.3 Hedging and martingale representation theorem

In our framework (we do not have any extra noise in our model, and the intensities
do no depend on an exogenous factor), individual default intensities are not driven
by a specific spread risk but by the arrival of new defaults : default intensities α i,P,
i = 1, . . . ,n are deterministic functions of the past default times between two de-
fault dates. More precisely, as we shall prove later on, the intensity of τi on the set
{t;τ( j) ≤ t < τ( j+1)} is a deterministic function of τ(1), . . . ,τ( j).

The main mathematical result of the study derives from the predictable represen-
tation theorem (see Theorem 9 in [11], Chapter III or [42]).

Theorem 1.1. Let A ∈ HT be a P-integrable random variable. Then, there exists

H-predictable processes θ i, i = 1, . . . ,n such that
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A = EP[A]+
n

∑
i=1

�
T

0
θ i

s

�
dN

i

s−α i,P
s ds

�
= EP[A]+

n

∑
i=1

�
T

0
θ i

sdM
i,P
s , (1.2)

and EP

��
T

0 |θ i
s|α

i,P
s ds

�
< ∞.

Proof. We do not enter into details. The idea is to prove that the set of random
variables

Y = exp

�
n

∑
i=1

�
T

0
ϕ i

sdM
i

s−
�

T

0
(eϕ i

s −1)α i,P
s ds

�

where ϕ i are deterministic functions, is total in L
2(HT ) and to note that Y satisfies

(1.2): indeed,

Y = 1+
n

∑
i=1

�
T

0
ϕ i

sY
i

s−dM
i

s .

Due to the integrability assumption on the r.v. A, and the predictable property of the
θ ’s, the processes

�
t

0 θ i
sdM

i
s, i = 1, . . . ,n are (P,H)-martingales. ��

Let us remark that relation (1.2) implies that the predictable representation theorem
(PRT) holds: any (P,H)-martingale can be written in terms of the fundamental mar-
tingales M

i,P. Indeed, if M
P is a (P,H)-martingale, applying (1.2) to A = M

P

T
and

using the fact that
�

t

0 θ i
sdM

i,P
s are martingales,

M
P

t = EP

�
M

P

T | Ht

�
= EP

�
M

P

T

�
+

n

∑
i=1

�
t

0
θ i

sdM
i,P
s . (1.3)

From the PRT, any strictly positive (P,H)-martingale ζ with expectation equal
to 1 (as any Radon-Nikodym density) can be written as

dζt = ζt−
n

∑
i=1

θ i

t dM
i,P
t , ζ0 = 1. (1.4)

Indeed, as any martingale, ζ admits a representation as

dζt =
n

∑
i=1

θ̂ i

t dM
i,P
t , ζ0 = 1

Since ζ is assumed to be strictly positive, introducing the predictable processes θ i

as θ i
s = 1

ζ i
s−

θ̂ i
s allows to obtain the equality (1.4). We emphasize that the predictable

property of θ is essential to guarantee that the processes
�

θ sdM
i
s are (local) martin-

gales.
Conversely, the Doléans-Dade exponential, (unique) solution of

dζt = ζt−
n

∑
i=1

θ i

t dM
i,P
t , ζ0 = 1
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is a (local) martingale. Note that, in order that ζ is indeed a non-negative local
martingale, one needs that θ i

t >−1. Indeed, the solution of (1.4) is

ζt = exp

�
−

�
t

0

n

∑
i=1

θ i

sα i,P
s ds

�
n

∏
i=1

(1+θ i

τi
)N

i
t .

The process ζ is a true martingale under some integrability conditions on θ (e.g.,
θ bounded) or if E

P[ζt ] = 1 for any t. Note that the jump of ζ at time t = τi is
∆ζt = ζt −ζt− = ζt−θ i

t (so that ζt = ζt−(1 + θ i
t ) at time τi, hence the condition on

θ to preserve non-negativity of ζ ).

Theorem 1.2. Let ζ satisfying (1.4) with θ i
t > −1 and E

P[ζt ] = 1, and define the

probability measure Q as

dQ|Ht
= ζtdP|Ht

.

Then, the process

M
i

t := M
i,P
t −

�
t

0
θ i

sα i,P
s ds = N

i

t −
�

t

0
(1+θ i

s)α i,P
s ds

is a Q-martingale. In particular, the (Q,H)-intensity of τi is α i
t = (1+θ i

t )α
i,P
t .

Proof. The process M
i is an (Q,H)-martingale if and only if the process M

iζ is a
(P,H)-martingale. Using integration by parts formula

d(Mi

t ζt) = M
i

t−dζt +ζt−dM
i

t +∆M
i

t ∆ζt

= M
i

t−dζt +ζt−dM
i,P
t −ζt−θ i

t α i,P
t dt +ζt−θ i

t dN
i

t

= M
i

t−dζt +ζt−dM
i,P
t −ζt−θ i

t α i,P
t dt +ζt−θ i

t (dM
i,P
t +α i,P

dt)

= M
i

t−dζt +ζt−dM
i,P
t −ζt−θ i

t α i,P
t dt +ζt−θ i

t dM
i,P
t +ζt−θ i

t α i,P
t dt

= M
i

t−dζt +ζt−
�
1+θ i

t

�
dM

i,P
t .

��

Note that the predictable processes θ i’s used to define the Radon-Nikodym den-
sity in equation (1.4) can be chosen such that the instantaneous credit default swap
spreads α1, . . . ,αn (defined in Subsection 1.2.2) are exactly the (Q,H)-intensities
associated with the default times. Let us recall that contractual spreads α1, . . . ,αn

are assumed to be adapted to the natural filtration H of default times. Moreover,
from the absence of arbitrage opportunities, the cost of protection is positive if and
only if a default risk exists. The latter argument implies that α1, . . . ,αn are non
negative H-adapted processes and

�
α i

t > 0
�P−a.s.=

�
α i,P

t > 0
�

for all time t and all

name i = 1, . . . ,n. The processes θ i, i = 1, . . . ,n defined by

θ i

t =

�
α i

t

α i,P
t

−1

�
(1−N

i

t−), t ≥ 0, i = 1, . . . ,n, (1.5)
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are therefore positive H-predictable processes strictly greater than −1. They are ad-
missible processes to define an equivalent change of probability measure. In the rest
of the study, we will work under the probability Q obtained from P through the
change of probability measure defined by equations (1.4) and (1.5).

It can be proved, using standard arguments that any (Q,H)-martingale can be
written as a sum of integrals with respect to M

i. Let M be a (Q,H)-martingale.
Then, there exists H-predictable processes θ i such that:

Mt = E [MT | Ht ] = E [MT ]+
n

∑
i=1

�
t

0
θ i

sdM
i

s, (1.6)

where E is the expectation under Q. Indeed, the process ( �Mt := Mtζt , t ≥ 0) being a
(P,H)-martingale admits a representation as �Mt = M0 +∑n

i=1
�

t

0
�θ i

sdM
i,P
s . It suffices

to apply integration by parts formula to Mt = �Mt(ζt)−1 to obtain the result.

In particular, for A ∈HT , one has

A = E [A | Ht ]+
n

∑
i=1

�
T

t

θ i

sdM
i

s. (1.7)

Starting from time t, we can thus replicate the claim A with the initial investment
Vt = E

�
Ae

−r(T−t) | Ht

�
(in the savings account) and the trading strategy based on

instantaneous digital credit default swaps defined by δ i
s = θ i

se
−r(T−s) for t ≤ s ≤ T

and i = 1, . . . ,n. As there is no initial charge to enter an instantaneous digital credit
default swap, Vt = E

�
Ae

−r(T−t) | Ht

�
corresponds to the time-t replication price

of A. Since A depends upon the default indicators of the names up to time T , this
encompasses the cases of multiname credit derivatives such as CDO tranches and
basket default swaps, provided that recovery rates are deterministic.

We can also remark that for a small time interval dt,

Vt+dt ≈Vt(1+ rdt)+
n

∑
i=1

δ i

t

�
dN

i

t −α i

t dt
�

(1.8)

which is consistent with market practice and regular rebalancing of the replicating
portfolio. An investor who wants to be compensated at time t against the price fluc-
tuations of A during a small period dt has to invest Vt in the risk-free asset and take
positions δ 1, . . . ,δ n in the n instantaneous digital credit default swaps.

Thanks to the predictable representation theorem, it is also possible to describe
the dynamics of a traditional credit default swap in terms of the dynamics of in-
stantaneous credit default swaps. In the rest of this chapter we propose to build
a general model of default times from the risk-neutral probability Q under which
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any defaultable claim can be replicated using instantaneous credit default swaps.
There are various ways to construct such models. One of them, may be the most
general in the case of non common defaults, is to start with the joint law of de-
fault times, and to make some regularity assumptions on that law (more precisely,
that G(t1, . . . , tn) := Q(τ1 > t1, . . . ,τi > ti, . . . ,τn > tn) is n-time differentiable with
respect to (t1, . . . , tn) and such that G and its derivatives do not vanish). We shall
present this approach below, which is closely related to the well-known copula ap-
proach. Another way, more tractable but less general, is to specify the form of the
intensities (in a Markov setting), and to construct the default times from these in-
tensities. This approach will be presented in the following chapter and may be con-
nected in some cases to the Markov chain used as a first step in a class of top-down
models. A third method is to construct the random times as the first passage times at
a random level for an increasing process. This last method is interesting for simula-
tion, and allows correlation between the default times, via correlation of the random
levels (see [59]). These three approaches both allow to derive the individual CDS
spread dynamics as well as the dynamics of the portfolio loss, which will be needed
for the pricing and hedging of CDO tranches.

In a first part, we shall present computations in the case n = 1. Then, we shall
study the case n = 2.

1.3 The single default case

We study the case n = 1. Here, τ is a non-negative random variable on the probability
space (Ω ,G ,Q) with risk-neutral survival function

G(t) := Q(τ > t) = 1−Q(τ ≤ t) = 1−F(t)

where F is the cumulative distribution function of τ , under Q. We assume that
G(t) > 0,∀t, and that G is continuous. Here H = H

1.

1.3.1 Some important martingales

Lemma 1.3.1 For any (integrable) random variable X

E(X |Ht)1t<τ = 1t<τ
1

G(t)
E(X1t<τ) (1.9)

and for any Borelian (bounded) function h

E(h(τ)|Ht) = 1τ≤th(τ)−1t<τ
1

G(t)

� ∞

t

h(u)dG(u)
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Proof. This well known result is established in a more general setting in [21]. We
give here a proof for completeness. For fixed t, the σ -algebra Ht being generated
by the random variable τ ∧ t, any Ht -measurable random variable can be written
as h(τ ∧ t) where h is a bounded Borel function. It is then obvious that, on the set
{t < τ}, any Ht -measurable random variable is deterministic. Hence, there exists
a constant k such that E(X |Ht)1t<τ = k1t<τ . Taking expectation of both members
leads to k = 1

G(t)E(X1t<τ) . The second formula follows from

E(h(τ)|Ht) = h(τ)1τ≤t +1t<τ
E(h(τ)1t<τ)

G(t)

where we have used (1.9). The result is obtained with a computation of the last
expectation. Note that the minus sign in front of the integral w.r.t. dG is due to the
fact that G is decreasing. ��

We now assume that G is differentiable (i.e., that τ admits a density f , so that
G
�(t) =− f (t)) (see [8] for the general case).

Proposition 1.3.1 The process (Mt , t ≥ 0) defined as

Mt = Nt −
� τ∧t

0

f (s)
G(s)

ds = Nt −
�

t

0
(1−Ns)

f (s)
G(s)

ds

is an H-martingale. In other terms, the intensity of τ is (1−Nt)�α(t) where �α is the

deterministic function �α(t) = f (t)
G(t) .

Proof. Let s < t. Then, from (1.9),

E(Nt −Ns|Hs) = 1{s<τ}E(1{s<τ≤t}|Hs) = 1{s<τ}
F(t)−F(s)

G(s)
. (1.10)

On the other hand, the quantity

C := E

��
t

s

(1−Nu)
f (u)
G(u)

du
��Hs

�

is equal to

C =
�

t

s

f (u)
G(u)

E
�
1{τ>u}

��Hs

�
du = 1{τ>s}

�
t

s

f (u)
G(u)

G(u)
G(s)

du

= 1{τ>s}
F(t)−F(s)

G(s)

which, from (1.10), proves E(Mt −Ms|Hs) = 0, hence the desired result.
��

One should not confuse the intensity α and �α , called the predefault-intensity. The
intensity α is stochastic, and vanishes after τ , the predefault intensity is determinis-
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tic. The survival function G can be expressed in terms of the predefault intensity �α .
Indeed, we have proved in Proposition 1.3.1 that

�α(t) =
f (t)
G(t)

=−G
�(t)

G(t)
.

Solving this ODE with initial condition G(0) = 1 leads to

G(t) = Q(τ > t) = exp
�
−

�
t

0
�α(u)du

�
.

Note that �α(t)dt = Q(τ ∈ dt|τ > t): this is the probability that τ occurs in the inter-
val [t, t +dt] knowing that τ has not yet occured.

1.3.2 CDS market value

For the sake of notational simplicity, we assume in this section that the interest rate
r is null, so that the price of a savings account is Bt = 1 for every t. We moreover
assume that the contractual spread κ is paid in continuous time (i.e., during the time
interval [t, t + dt] the amount κdt is paid by the protection buyer to the protection
seller). We also consider that the payment at default time is a deterministic function
of the default time, i.e., ξ (τ), which allows to deal with time dependent recovery
rates6. Let us remark that the results described below can be easily extended to the
case of a constant interest rate r or if cash-flows on the premium leg are more real-
istic.

We saw in Section 1.1 that the cash-flows of a CDS could be divided in two legs :
the default leg and the premium leg. The time-t market value of a buy protection
position on a CDS is equal to :

Vt(κ) = Dt −κ ·Pt , (1.11)

where Dt is the time-t present value of the default leg and Pt is the time-t present
value of the premium leg per unit of κ . This corresponds to the amount a buyer of
protection is willing to pay (or gain) in order to close his position at time t. Let us
recall that the contractual spread κ is such that the CDS market value is equal to
zero at inception (V0(κ) = 0).

We first focus on price dynamics of a CDS with spread κ initiated at time 0. The
time-t market price of a CDS maturing at T with contractual spread κ is then given
by the formula

6 ξ (τ) is equal to the loss given default associated with the reference entity times the notional of
the CDS.
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Vt(κ) = E

�
ξ (τ)1{t<τ≤T}−1{t<τ}κ

�
(τ ∧T )− t

����Ht

�
. (1.12)

Proposition 1.3.2 The price at time t ∈ [0,T ] of a credit default swap with spread

κ is

Vt(κ) = 1{t<τ}�Vt(κ), ∀ t ∈ [0,T ],

where �Vt(κ), a deterministic function, stands for the pre-default value of a CDS and

equals

�Vt(κ) =
1

G(t)

�
−

�
T

t

ξ (u)dG(u)−κ
�

T

t

G(u)du

�
.

Proof. From Lemma 1.3.1, we have, on the set {t < τ},

Vt(κ) = −
�

T

t
ξ (u)dG(u)

G(t)
−κ

�
−

�
T

t
udG(u)+T G(T )

G(t)
− t

�

=
1

G(t)

�
−

�
T

t

ξ (u)dG(u)−κ
�

T G(T )− tG(t)−
�

T

t

udG(u)
��

.

where, in the last equality, we have used an integration by parts to obtain
�

T

t

G(u)du = T G(T )− tG(t)−
�

T

t

udG(u).

��

1.3.3 CDS market Spreads

Like traditional interest-rate swaps, CDS quotations are based on spreads, though
this is likely to be modified after the ISDA big bang protocol. Quoted spreads will
be after that only a way to express upfront premiums. Let us consider a CDS initi-
ated at time 0 with maturity T and contractual spread κ . The time-t market spread
is defined as the contractual spread of the contract if it would have been initiated at
time t. In other words, this is the level of the spread κ = κ(t,T ) that makes a T -
maturity CDS worthless at time t. A CDS market spread at time t is thus determined
by the equation Vt(κ(t,T )) = 0 where Vt is defined in Proposition 1.3.2.

The T -maturity market spread κ(t,T ) is therefore a solution to the equation
�

T

t

ξ (u)dG(u)+κ(t,T )
�

T

t

G(u)du = 0,

and thus for every t ∈ [0,T ],
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κ(t,T ) =−
�

T

t
ξ (u)dG(u)

�
T

t
G(u)du

. (1.13)

There exists liquidly quoted CDS spreads on most big companies, and standard
maturities are T = 3,5,7,10 years. Given Equation 1.13, it is possible to extract a
market-implied survival distribution G(t) = Q(τ > t), t ≥ 0 from the term structure
of CDS market spreads. See Chapter 3 of [59] or Chapter 2 and 3 of [19] for more
details.

In what follows, we fix the maturity date T , and we write briefly κ(t) instead
of κ(t,T ). There is a simple relationship between credit spreads and market values.
The market price of a CDS with payment ξ at default, maturity T and contractual
spread κ equals, for every t ∈ [0,T ],

Vt(κ) = 1{t<τ} (κ(t)−κ)
�

T

t
G(u)du

G(t)
,

or more explicitly,

Vt(κ) = 1{t<τ}

�
T

t
G(u)du

G(t)

��
T

0 ξ (u)dG(u)
�

T

0 G(u)du
−

�
T

t
ξ (u)dG(u)

�
T

t
G(u)du

�
.

The latter expression simply means that the value of a CDS contract for a buyer
of protection is positive when the current market spread κ(t) is greater than the
contractual spread κ .

1.3.4 Dynamics of CDS Prices in a single default setting

Proposition 1.3.3 The dynamics of the (ex-dividend) price Vt(κ) on [0,T ] are

dVt(κ) =−Vt−(κ)dMt +(1−Nt)(κ−ξ (t)�α(t))dt,

where the (Q,H)-martingale M is given in Proposition 1.3.1.

Proof. It suffices to recall that

Vt(κ) = (1−Nt)�Vt(κ)

with �V given in Proposition 1.3.2, so that, using integration by parts formula,

dVt(κ) = (1−Nt)d�Vt(κ)− �Vt−(κ)dNt .

Using the explicit expression of �Vt(κ), we find easily that we have

d�Vt(κ) = �α(t)�Vt(κ)dt +(κ−ξ (t)�α(t))dt.



18 Areski Cousin, Monique Jeanblanc, Jean-Paul Laurent

The SDE for V (κ) follows. ��

It is worthwhile to note that the price dynamics is not a martingale under the risk-
neutral probability, despite the fact that the interest rate is null. This is because we
are dealing with the ex-dividend price. The premium κ is similar to a dividend to be
paid, hence the quantity κ(1−Nt)dt appears. The quantity ξ (t) can be interpreted
as a dividend to be received, at time t, with probability �α(t)dt. At default time, the
price jumps from Vτ−(κ) to 0, as can be seen in the right-hand side of the dynamics.

1.4 Two default times

Let us now study the case with two random times τ1,τ2. We denote by (Ni
t , t ≥ 0)

the default process associated with τi, i = 1,2. The filtration generated by the pro-
cess N

i is denoted H
i and the filtration generated by the two processes N

1,N2 is
H = H

1∨H
2.

Note that an H 1
t ∨H 2

t -measurable random variable is

• a constant on the set t < τ1∧ τ2,
• a σ(τ1 ∧ τ2)-measurable random variable on the set τ1 ∧ τ2 ≤ t < τ1 ∨ τ2, i.e.,

a σ(τ1)-measurable random variable on the set τ1 ≤ t < τ2, and a σ(τ2)-
measurable random variable on the set τ2 ≤ t < τ1. We recall that a σ(τ1)-
measurable random variable is a Borel function of τ1.

• a σ(τ1,τ2)-measurable random variable (i.e., a Borel function h(τ1,τ2)) on the
set τ1∨ τ2 ≤ t.

To summarize, for fixed t, any H 1
t ∨H 2

t -measurable random variable Z admits a
representation as

Z = h1t<τ1∧τ2 +h1(τ1)1τ1≤t<τ2 +h2(τ2)1τ2≤t<τ1 +h(τ1,τ2)1τ1∨τ2≤t .

We denote by G(t,s) = Q(τ1 > t,τ2 > s) the survival probability of the pair
(τ1,τ2) and we assume that this function is twice differentiable. We denote by ∂iG,
the partial derivative of G with respect to the i-th variable, i = 1,2. The density of
the pair (τ1,τ2) is denoted by f . Simultaneous defaults are precluded in this frame-
work, i.e., Q(τ1 = τ2) = 0.

Even if the case of two default times is more involved, closed form expressions
for the intensities are available. It is important to take into account that the choice
of the filtration is very important. Indeed, in general, an H

1-martingale is not an
H

1∨H
2-martingale. We shall illustrate this important fact below.
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1.4.1 Intensities

We present the computation of martingales associated with default times τi, i =
1,2, in different filtrations. In particular, we shall obtain the computation of the
intensities in various filtrations.

• Filtration H
i: We study, for any fixed i, the Doob-Meyer decomposition of the

submartingale N
i in the filtration H

i. From Proposition 1.3.1, the process

N
i

t −
�

t∧τi

0

fi(s)
Gi(s)

ds (1.14)

is an H
i-martingale. Here, 1−Gi(s) = Fi(s) = Q(τi ≤ s) =

�
s

0 fi(u)du. In other
terms, the process (1−N

i
t )

fi(t)
Gi(t)

is the H
i-intensity of τ i.

• Filtration H: We recall a general result which allows to compute the intensities
of a default time (see [27]).

Lemma 1.4.1 Let G = F∨H, where F is a reference filtration and Ht = σ(τ∧t)
where τ is a random time. Assume that the supermartingale Gt := P(τ > t|Ft)
admits the Doob-Meyer decomposition Gt = Zt − At where Z is a martingale

and A is a predictable increasing process absolutely continuous with respect to

Lebesgue measure. Then

Mt = Nt −
�

t∧τ

0

dAs

Gs

is a G-martingale.

Proof. The proof relies on the computation of E(Mt−Ms|Hs) for t > s. See [27]
for details. ��

In order to find the intensity of τ1 in a general two defaults setting, we apply the
previous lemma to the case F = H

2 and H = H
1. The first step is to compute the

associated supermartingale (under the risk-neutral probability Q).

Lemma 1.4.2 The H
2
- supermartingale Q(τ1 > t|H 2

t ) equals

G
1|2
t := Q(τ1 > t|H 2

t ) = N
2
t h(t,τ2)+(1−N

2
t )ψ(t) (1.15)

where ψ(t) = G(t, t)/G(0, t), and h(t,v) = ∂2G(t,v)
∂2G(0,v) .

Proof. From Proposition 1.3.1,

Q(τ1 > t|H 2
t ) = 1t<τ2

Q(τ1 > t,τ2 > t)
Q(τ2 > t)

+1τ2≤tQ(τ1 > t|τ2).

It is easy to check that
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Q(τ1 > t|τ2 = u) =
Q(τ1 > t,τ2 ∈ du)

Q(τ2 ∈ du)
= h(t,u)

and the result follows. ��

Proposition 1.4.1 Let

at = N
2
t ∂1h(t,τ2)+(1−N

2
t )

∂1G(t, t)
G(0, t)

.

The process M
1

defined as

M
1
t := N

1
t +

�
t∧τ1

0

as

G
1|2
s

ds

= N
1
t +

�
t∧τ1∧τ2

0

∂1G(s,s)
G(s,s)

ds+
�

t∧τ1

t∧τ1∧τ2

∂1,2G(s,τ2)
∂2G(s,τ2)

ds

is an H-martingale.

Proof. The proof relies on some Itô’s calculus to obtain the Doob-Meyer decompo-
sition of Q(τ1 > t|H 2

t ) and to prove that dAt = atdt. We refer the reader to [7] for
details. ��

This means that the H-intensity of τ1 takes into account the knowledge of τ2 and
is equal to the deterministic function − ∂1G(t,t)

G(t,t) on the set t < τ2 and to the random

quantity ϕ(t,τ2) where ϕ(t,s) = − ∂1,2G(t,s)
∂2G(t,s) on the set t ≥ τ2. In a closed form, the

processes N
i
t −

�
t

0 α i
sds, i = 1,2, are martingales in the same filtration H, where

α1
t = (1−N

1
t )

�
(1−N

2
t )
−∂1G(t, t)

G(t, t)
−N

2
t

∂1,2G(t,τ2)
∂2G(t,τ2)

�

= (1−N
1
t )(1−N

2
t )�α1(t)+(1−N

1
t )N2

t
�α1|2(t,τ2)

α2
t = (1−N

2
t )

�
(1−N

1
t )
−∂2G(t, t)

G(t, t)
−N

1
t

∂1,2G(τ1, t)
∂1G(τ1, t)

�

= (1−N
1
t )(1−N

2
t )�α2(t)+N

1
t (1−N

2
t )�α2|1(τ1, t)

where

�α i(t) =− ∂iG(t, t)
G(t, t)

(1.16)

�α1|2(t,s) = −∂1,2G(t,s)
∂2G(t,s)

, �α2|1(s, t) =−∂1,2G(s, t)
∂1G(s, t)

. (1.17)

Note that the minus signs in the value of the intensity are due to the fact that
G is decreasing with respect to its component, hence the first order derivatives are
non-positive and the second order derivative ∂1∂2G – equal to the density of the pair
(τ1,τ2) – is non-negative. The quantity �α1(t)dt is equal to Q(τ1 ∈ dt|τ1 ∧ τ2 > t).
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The quantity �α1|2(t,s) = − f (t,s)
∂2G(t,s) evaluated at s = τ2, represents the value of

the predefault intensity process of τ1 with respect to the filtration H on the event
{τ2 < t}.

Let us remark that, in the particular case where τ1 and τ2 are independent (or if
τ1 < τ2), the H intensity of τ1 equals its H

1 intensity.

This model is very general. Let us note that it is not a Markov model, except if
h(t,s) does not depend on s (see [8] for a formal proof). Moreover, it can be ex-
tended at the price of notational complexity to n names but computations are not so
easy, since they involve partial derivatives of the joint survival function and do not
usually lead to tractable Markov processes.

Since we are working in the same filtration7 the compensated martingale of the
counting process Nt = N

1
t +N

2
t = ∑2

i=11τi≤t is Mt := Nt −
�

t

0 αsds where

αt = α1
t +α2

t

= (1−N
1
t )(1−N

2
t )

�
−∂1G(t, t)+∂2G(t, t)

G(t, t)

�

− (1−N
1
t )N2

t

∂1,2G(t,τ2)
∂2G(t,τ2)

− (1−N
2
t )N1

t

∂1,2G(τ1, t)
∂2G(τ1, t)

.

It is proved in Bielecki et al. [6] that the process N is Markov if and only if the
quantities ∂1,2G(t,τ2)

∂2G(t,τ2) and ∂1,2G(τ1,t)
∂2G(τ1,t) are deterministic.

1.4.2 Dynamics of CDS prices in a two defaults setting

Let us now examine the valuation of a single-name CDS written on the default τ1.
Our aim is to show that the dynamics of this CDS will be affected by the infor-
mation on τ2: when τ2 occurs, the intensity of τ1 changes, and this will change the
parameters of the price dynamics.

We consider a CDS

• with a continuously paid constant premium κ ,
• which delivers ξ (τ1) at time τ1 if τ1 < T , where ξ is a deterministic function.

In the simplest case ξ is constant, corresponding to constant recovery rates. We
recall that ξ corresponds to the loss given default times the nominal of the CDS.

The value of the CDS takes the form

Vt(κ) = �Vt(κ)1t<τ2∧τ1 + �Vt(κ)1τ1∧τ2≤t<τ1 .

7 The sum of two martingales in the same filtration is a martingale.
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First, we restrict our attention to the case t < τ2∧ τ1.

Proposition 1.4.2 On the set t < τ2∧ τ1, the value of the CDS is

�Vt(κ) =
1

G(t, t)

�
−

�
T

t

ξ (u)∂1G(u, t)du−κ
�

T

t

G(u, t)du

�
.

Proof. The value V (κ) of this CDS, computed in the filtration H including the in-
formation related to the second default, is

Vt(κ) = 1t<τ1E(ξ (τ1)1τ1≤T −κ((T ∧ τ1)− t)|Ht) .

Let us denote by τ = τ1 ∧ τ2 the first default time. Then, 1t<τVt(κ) = 1t<τ �Vt(κ),
where

�Vt(κ) =
1

Q(τ > t)
E(ξ (τ1)1τ1≤T1t<τ −κ((T ∧ τ1)− t)1t<τ)

=
1

G(t, t)
E(ξ (τ1)1τ1≤T1t<τ −κ((T ∧ τ1)− t)1t<τ)

=
1

G(t, t)

��
T

t

ξ (u)Q(τ1 ∈ du,τ2 > t)

−κ
�

T

t

(u− t)Q(τ1 ∈ du,τ2 > t)− (T − t)κ
� ∞

T

Q(τ1 ∈ du,τ2 > t)
�

.

In other terms, using integration by parts formula

�Vt(κ) =
1

G(t, t)

�
−

�
T

t

ξ (u)∂1G(u, t)du−κ
�

T

t

G(u, t)du

�
.

��

On the event {τ2 ≤ t < τ1}, the CDS price equals

Vt(κ) = V̂t = 1t<τ1E(ξ (τ1)1τ1≤T −κ((T ∧ τ1)− t)|σ(τ2))

=
1

∂2G(t,τ2)

�
−

�
T

t

ξ (u) f (u,τ2)du−κ
�

T

t

∂2G(u,τ2)du

�
:= V

1|2
t (τ2)

where

V
1|2

t (s) =
1

∂2G(t,s)

�
−

�
T

t

ξ (u) f (u,s)du−κ
�

T

t

∂2G(u,s)du

�
.

In the financial interpretation, V
1|2

t (s) is the market price at time t of a CDS on the
first credit name, under the assumption that the default τ2 occurred at time s and
the first name has not yet defaulted (recall that simultaneous defaults are excluded,
since we have assumed that G is differentiable).
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Differentiating the deterministic function which gives the value of the CDS leads to
the following result:

Proposition 1.4.3 The price of a CDS is Vt(κ) = �Vt(κ)1t<τ2∧τ1 +V̂t(κ)1τ2∧τ1≤t<τ1 .

The dynamics of �V (κ) are

d�Vt(κ) =
��

�α1(t)+ �α2(t)
��Vt(κ)+κ− �α1(t)ξ (t)− �α2(t)V

1|2
t (t)

�
dt,

where for i = 1,2 the function �αi(t) is the (deterministic) pre-default intensity of τi

given in (1.16). The dynamics of �V (κ) are

d�Vt(κ) =
�

�α1|2(t,τ2)
�
�Vt(κ)−ξ (t)

�
+κ

�
dt

where �α1|2(t,s) is given in (1.17).

Hence, differentiating Vt = �Vt(1−N
1
t )(1−N

2
t )+V̂t(1−N

1
t )N2

t one obtains

dVt = (1−N
1
t )(1−N

2
t )d�Vt +(1−N

1
t )N2

t d�Vt −Vt−dN
1
t

+(1−N
1
t )(V 1|2

t (t)− �Vt)dN
2
t

which leads after light computations8 to

dVt = (1−N
1
t )(1−N

2
t )(κ−ξ (t)�α1(t))dt +(1−N

1
t )N2

t (κ−ξ (t)�α1|2(t,τ2))dt

−Vt−dM
1
t +(1−N

1
t )(V 1|2

t (t)− �Vt)dM
2
t (1.18)

= dividend part−Vt−dM
1
t +(1−N

1
t )(V 1|2

t (t)− �Vt)dM
2
t .

Assume now that a CDS written on τ2 is also traded in the market. We denote by
V

i, i = 1,2 the prices of the two CDS. Since the CDS are paying premiums, a self
financing strategy consisting in ϑ i units of CDS’s has value Xt = ϑ 1

t V
1

t +ϑ 2
t V

2
t and

dynamics

dXt = ϑ 1
t

�
−V

1
t−dM

1
t +(1−N

1
t )(V 1|2

t (t)− �V 1
t )dM

2
t

�

+ϑ 2
t

�
−V

2
t−dM

2
t +(1−N

2
t )(V 2|1

t (t)− �V 2
t )dM

1
t

�

=
�
−ϑ 1

t V
1

t−+ϑ 2
t (1−N

2
t )(V 2|1

t (t)− �V 2
t

�
dM

1
t

+
�

ϑ 1
t (1−N

1
t )(V 1|2

t (t)− �V 1
t )−ϑ 2

t V
2

t−

�
dM

2
t .

In order to duplicate a claim with value

8 From the definition, one has dVt = (1−N
1
t )(1−N

2
t ) · · ·+(1−N

1
t )(�Vt(τ2)− �Vt)dN

2
t . It is impor-

tant to note that �Vt(τ2)dN
2
t = V

1|2
t (t)dN

2
t : a computation using �Vt(τ2)dN

2
t = �Vt(τ2)(dM

2
t + . . .dt)

would lead to a quantity �Vt(τ2)dM
2
t which has a meaning, but which is NOT a martingale, due to

the lack of adapteness of the coefficient �Vt(τ2).
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At = E(A)+
�

t

0
δ 1

t dM
1
t +

�
t

0
δ 2

t dM
2
t

it remains to solve the linear system
�
−ϑ 1

t V
1

t−+ϑ 2
t (1−N

2
t )(V 2|1

t (t)− �V 2
t ) = δ 1

t ,

ϑ 1
t (1−N

1
t )(V 1|2

t (t)− �V 1
t )−ϑ 2

t V
2

t− = δ 2
t .

Thus, under standard invertibility conditions, one can easily use actually traded CDS
instead of instantaneous digital CDS when replicating the claim A.



Chapter 2
Hedging Default Risks of CDOs in Markovian
Contagion Models

Areski Cousin, Monique Jeanblanc, Jean-Paul Laurent

When dealing with CDO tranches, the market approach to the derivation of credit
default swap deltas consists in bumping the credit curves of the names and com-
puting the ratios of changes in present value of the CDO tranches and the hedging
credit default swaps. This involves a pricing engine for CDO tranches, usually some
mixture of copula and base correlation approaches, leading to some “market delta”.

The only rationale of this modus operandi is local hedging with respect to credit
spread risks, provided that the trading books are marked-to-market with the same
pricing engine. Even when dealing with small changes in credit spreads, there is no
guarantee that this would lead to appropriate hedging strategies, especially to cover
large spread widenings and possibly defaults. Also, one could think of changes in
base correlation correlated with changes in credit spreads.

A number of CDO hedging anomalies in the base correlation approach are re-
ported in [52]. Moreover, the standard approach is not associated with a replicating
theory, thus inducing the possibility of unexplained drifts and time decay effects in
the present value of hedged portfolios (see [55]).

Unfortunately, the trading desks cannot rely on a sound theory to determine repli-
cating prices of CDO tranches. This is partly due to the dimensionality issue, partly
to the stacking of credit spread and default risks. Laurent (2006) [45] considers the
case of multivariate intensities in a conditionally independent framework and shows
that for large portfolios where default risks are well diversified, one can concen-
trate on the hedging of credit spread risks and control the hedging errors. In this
approach, the key assumption is the absence of contagion effects which implies
that credit spreads of survival names do not jump at default times, or equivalently
that defaults are not informative. Whether one should rely on this assumption is

25
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to be considered with caution, as discussed in the empirical studies [4] and [16]1.
Moreover, anecdotal evidence such as the failures of Delphi, Enron, Parmalat and
WorldCom shows mixed results.

In this chapter, we adopt the framework of Laurent, Cousin and Fermanian (2007)
[46], concentrating on default risks, credit spreads and dependence dynamics being
driven by the arrival of defaults. We will calculate so-called “credit deltas”, that are
the present value impacts of some default event on a given CDO tranche, divided by
the present value impact of the hedging instrument (here the underlying index) under
the same scenario. Contagion models were introduced to the credit field by Davis
and Lo (2001) [17], Jarrow and Yu (2001) [38] and further studied by Yu (2007)
[65]. Schönbucher and Schubert (2001) [61] show that copula models exhibit some
contagion effects and relate jumps of credit spreads at default times to the partial
derivatives of the copula. This is also the framework used by Bielecki, Jeanblanc
and Rutkowski (2007) [7] to address the hedging issue. We refer to Section 1.4 of
this contribution for a detailed discussion of this topic. A similar but somehow more
tractable approach has been considered by Frey and Backhaus (2007) [31], since
the latter paper considers some Markovian models of contagion. In a copula model,
the contagion effects are computed from the dependence structure of default times,
while in contagion models the intensity dynamics are the inputs from which the de-
pendence structure of default times is derived. In both approaches, credit spreads
shifts occur only at default times. Thanks to this quite simplistic assumption, and
provided that no simultaneous defaults occurs, it can be shown that the CDO market
is complete, i.e., CDO tranche cash-flows can be fully replicated by dynamically
trading individual credit default swaps or, in some cases, by trading the credit de-
fault swap index (see Subsection 1.2.3 of this contribution for a presentation of the
theoretical ideas).

In this chapter we focus on the hedging of synthetic CDO tranches. For the chap-
ter to be self-contained, we briefly describe in Section 2.1 the cash-flows of a syn-
thetic CDO tranche. While the use of the representation Theorem 1.1 guarantees
that, in our framework, any basket default swap can be perfectly hedged with respect
to default risks, it does not provide a practical way of constructing hedging strate-
gies. In Section 2.2, we restrict ourselves to the case of homogeneous portfolios with
Markovian intensities which results in a dramatic dimensionality reduction for the
(risk-neutral) valuation of CDO tranches and the hedging of such tranches as well.
We find out that the aggregate loss is associated with a pure birth process, which is
now well documented in the credit literature. Section 2.3 provides an overview of
the calibration methods proposed in the literature on contagion credit risk models.
We investigate in particular a calibration method based on the marginal distribu-
tions of the number of defaults. Section 2.4 details the computation of replicating
strategies of CDO tranches with respect to the credit default swap index, through

1 The conclusions of this paper have been disputed by [44] in which the conditional independence
assumption have not be rejected when tested on the same default database. These discrepancies are
explained by an alternative specification of individual default intensities.
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a recombining tree on the aggregate loss. We discuss how hedging strategies are
related to dependence assumptions in Gaussian copula and base correlation frame-
works. We also compare the replicating strategies obtained in the contagion model
with the hedging ratios (spread sensitivity ratios) provided by the Gaussian copula
approach or computed in alternative credit risk models.

2.1 Synthetic CDO tranches

Synthetic CDOs are structured products based on an underlying portfolio of refer-
ence entities subject to credit risk. It allows investors to sell protection on specific
risky portion or tranche of the underlying credit portfolio depending on their desired
risk-profile. A synthetic CDO structure is initially arranged by a financial institution
(typically an investment bank) which holds a credit portfolio composed of CDS
(see figure 2.1). This CDS portfolio is then transferred to a subsidiary company
commonly called a special purpose vehicle (SPV). The SPV redistributes the credit
risk of the underlying portfolio by raising specific credit-protection products corre-
sponding to different levels of risk. The SPV liability side is defined by the different
tranches that have been sold and the asset side corresponds to the portfolio of CDS.
The incomes generated by the pool of CDS (premium payments) are re-allocated
to the different tranches using a precise prioritization scheme. An investor (seller of
protection) on a CDO tranche receives a higher premium if the tranche has a lower
level of subordination. For example, the equity tranche which covers the fist losses
on the underlying portfolio receives the highest income.
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Fig. 2.1 Structure of a synthetic CDO
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2.1.1 Credit Default Swap Indices

A Credit Default Swap Index (CDS Index) is a multi-name credit derivative which
allows market participants to buy and sell protection directly on a pool of Credit
Default Swaps.

CDS indices are actively traded. This means that it can be easier to hedge a
credit derivatives referencing a portfolio of CDS with an index than it would be to
buy many CDS to achieve a similar effect. This is the reason why a popular use of
CDS indices is to hedge multi-name credit positions.

There are currently two main families of CDS indices: CDX and iTraxx. CDX
indices contain North American and Emerging Market companies and iTraxx con-
tain companies from the rest of the world (mainly Europe and Asia). The iTraxx
Europe Main and the CDX North America Main are the most liquid CDS indices.
Each Main index includes 125 equally weighted CDS issuers from their respective
region2. These issuers are investment grade at the time an index series is launched,
with a new series launched every six months. In practice, “on the run” Main indices
are mostly composed of A-rated and BBB-rated issuers.

2.1.2 Standardized CDO tranches

Market-makers of these indices have also agreed to quote standard tranches on these
portfolios from equity or first loss tranches to the most senior tranches.

Each tranche is defined by its attachment point which defines the level of subordi-
nation and its detachment point which defines the maximum loss of the underlying
portfolio that would result in a full loss of tranche notional. The first-loss 0-3%
equity tranche is exposed to the first several defaults in the underlying portfolio.
This tranche is the riskiest as there is no benefit of subordination but it also offers
high returns if no defaults occur. The junior mezzanine 3-6% and the senior mez-
zanine 6-9% tranches are less immediately exposed to the portfolio defaults but the
premium received by the protection seller is smaller than for the equity tranche.
The 9-12% tranche is the senior tranche, while the 12-20% tranche is the low-risk
super senior piece. As illustrated in figure 2.2 and figure 2.3, the tranching of the
indices in Europe and North America is different. In North America, the CDX index
is tranched into standard classes representing equity 0-3%, junior mezzanine 3-7%,
senior mezzanine 7-10%, senior 10-15% and super senior 15-30% tranche.

2 The proportion of each issuer in the pool is equal to 1/125 = 0.08%
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Fig. 2.2 Standardized CDO tranches on iTraxx Europe Main.
 

CDX North
America Main

125 CDS, 

Investment Grade

0%

3%

7%

10%

15%

30%

Equity

Senior Mezzanine

First Super 
Senior

Second Super 
Senior

100%

Junior Mezzanine

Senior

Sp
re

ad
s, 

le
ve

l o
f s

ub
or

di
na

tio
n

CDX North
America Main

125 CDS, 

Investment Grade

0%

3%

7%

10%

15%

30%

Equity

Senior Mezzanine

First Super 
Senior

Second Super 
Senior

100%

Junior Mezzanine

Senior

Sp
re

ad
s, 

le
ve

l o
f s

ub
or

di
na

tio
n

Fig. 2.3 Standardized CDO tranches on CDX North America Main.

For a detailed description of the credit derivatives market, the reader is referred
to the textbooks [15], [19], [39], [49] or [59]. Before addressing the hedging issue
of CDO tranches, let us describe the cash-flows associated with these products.

2.1.3 Cash-flows description

We adopt the same notation as in Chapter 1 and we work under the risk-neutral
probability Q defined in Subsection 1.2.3. We consider a portfolio of n credit refer-
ences and we denote by (τ1, . . . ,τn) the random vector of default times defined on
the probability space (Ω ,G ,Q). If name i defaults, it drives a loss of ξi = Ei (1−Ri)
where Ei denotes the nominal amount and Ri the recovery rate. The loss given de-
fault ξi is assumed here to be constant over time. The key quantity for the pricing of
synthetic CDO tranches is the cumulative loss
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Lt =
n

∑
i=1

ξiN
i

t ,

where N
i
t = 1{τi≤t}, i = 1, . . . ,n are the default indicator processes associated with

default time τi, i = 1, . . . ,n. Let us recall that the processes N
i, i = 1, . . . ,n are

adapted to the global filtration H = (Ht , t ≥ 0) where Ht = ∨n

i=1H
i

t and H i
t =

σ(Ni
s, s ≤ t). Let us remark at this stage that the loss process L is an increasing

right-continuous pure jump process.

The cash-flows associated with a synthetic CDO tranche only depend upon the
realized path of the cumulative loss process L. Default losses on the reference port-
folio are split along some thresholds (attachment and detachment points) and allo-
cated to the various tranches. A synthetic CDO tranche can be viewed as a bilateral
contract between a protection seller and a protection buyer. In what follows, we
consider a synthetic CDO tranche with attachment point a, detachment point b and
maturity T and we describe the cash-flows associated with the default payment leg
(payments received by the protection buyer) and the cash-flows associated with the
premium payment leg (payments received by the protection seller).

Default payments leg

The protection seller agrees to pay the protection buyer default losses each time
they impact the tranche (a,b) of the reference portfolio. More precisely, the cumu-
lative default payment L

(a,b)
t on the tranche [a,b] is equal to zero if Lt ≤ a, to Lt −a

if a≤ Lt ≤ b and to b−a if Lt ≥ b. Let us remark that L
(a,b)
t has a call spread payoff

with respect to Lt and can be expressed as L
(a,b)
t = (Lt −a)+− (Lt −b)+. Default

payments are simply equal to the increment of L
(a,b)
t , i.e., there is a payment of

L
(a,b)
t −L

(a,b)
t− from the protection seller at every time a jump of L

(a,b)
t occurs before

contract maturity T . Figure 2.4 shows a realized path of the loss process (Lt , t ≥ 0)
and the corresponding path of losses affecting CDO tranche [a,b].
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Fig. 2.4 A realized path of the reference portfolio losses and the corresponding path of losses
affecting CDO tranche [a,b]. Jumps occur at default times
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For simplicity we assume that the continuously compounded default free interest
rate rt is deterministic and we denote Bt(t �) = exp

�
−

�
t
�

t
rsds

�
the time-t discount

factor up to time t
� (t ≤ t

�). At time t, the discounted payoff corresponding to default
payments after time t can written as:

�
T

t

Bt(s)dL
(a,b)
s :=

n

∑
i=1

Bt(τi)
�

L
(a,b)
τi

−L
(a,b)
τi−

�
1{t<τi≤T}. (2.1)

Thanks to Stieltjes integration by parts formula and Fubini theorem, the time-t price
of the default payment leg under the risk-neutral measure can be expressed as:

Dt = E

��
T

t

Bt(s)dL
(a,b)
s | Ht

�

= Bt(T )E
�
L

(a,b)
T

| Ht

�
−L

(a,b)
t +

�
T

t

rsBt(s)E
�
L

(a,b)
s | Ht

�
ds.

Premium payments leg

The protection buyer has to pay the protection seller a periodic premium pay-
ment (quarterly for standardized indexes) based on a fixed contractual spread κ and
proportional to the current outstanding nominal of the tranche b− a− L

(a,b)
t . Let

us denote by T1 < .. . < Tp, the premium payment dates with Tp = T and by ∆i

the length of the i-th period [Ti−1,Ti] (in fractions of a year and with convention
T0 = 0). The CDO premium payments are equal to κ∆i

�
b−a−L

(a,b)
Ti

�
at regular

payment dates Ti, i = 1, . . . , p. Moreover, when a default occurs between two pre-
mium payment dates and when it affects the tranche, an additional payment (the
accrued coupon) must be made at default time to compensate the change in value of
the tranche outstanding nominal. For example, if name j defaults between Ti−1 and
Ti, the associated accrued coupon is equal to κ (τ j−Ti−1)

�
L

(a,b)
τ j

−L
(a,b)
τ j−

�
. Even-

tually, at time t, the discounted payoff corresponding to premium payments can be
expressed as:

p

∑
i=pt

�
Bt(Ti)κ∆i

�
b−a−L

(a,b)
Ti

�
+

�
Ti

Ti−1
Bt(s)κ (s−Ti−1)dL

(a,b)
s

�
, (2.2)

where pt = inf{i = 1, . . . , p | Ti > t} is the index of the first premium payment date
after time t and Tpt−1 = t by convention.

Using the same computational method as for the default leg, the time-t present
value of the premium leg under the risk-neutral measure, denoted Pt , can be ex-
pressed as:

Pt = κ ·P
u

t , (2.3)
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with

P
u

t =
p

∑
i=pt

�
Bt(Ti)∆i

�
b−a−E

�
L

(a,b)
Ti

| Ht

��
+ACi,t

�
, (2.4)

and where

ACi,t = Bt(Ti)∆iE

�
L

(a,b)
Ti

| Ht

�
−

�
Ti

Ti−1
Bt(s)(1− rs (s−Ti−1))E

�
L

(a,b)
s | Ht

�
ds.

(2.5)
The quantity P

u
t corresponds to the time-t present value of the unitary premium leg

(contractual spread κ equal to 1bp).

The CDO tranche (contractual) spread κ is chosen such that the contract is fair
at inception, i.e., such that the default payment leg is equal to the premium payment
leg :

κ =
D0

P
u

0
.

The spread κ is quoted in basis point per annum3. Let us remark that the compu-
tation of κ only involves the expected losses on the tranche, E

�
L

(a,b)
t

�
at different

time horizons. These can readily be derived from the marginal distributions of the
aggregate loss on the reference portfolio.

2.1.4 CDO tranche price and market spread

The time-t price (buy protection position) of a CDO tranche (a,b) is such that
Vt(κ) = Dt −κ ·Pu

t . This corresponds to the amount a buyer of protection is willing
to pay (or gain) in order to close his position at time t. Let us note that this is consis-
tent with the definition of the contractual spread κ for which the market value must
be equal to zero at inception (V0(κ) = 0).

Like CDS, most CDO tranche quotations are based on spreads. The time-t market
spread is defined as the contractual spread of a tranche with the same characteristic
but initiated at time t:

κt =
Dt

P
u
t

.

Let us also note that there is a simple relationship between credit spreads and market
values:

Vt(κ) = P
u

t (κt −κ) .

3 Let us remark that market conventions are different for the pricing of equity tranches (CDO
tranches (0,b) with 0 < b ≤ 1). Due to the high level of risk embedded in these “first losses
tranches”, the premium κ is fixed beforehand at 500 bps per annum and the protection seller re-
ceives an additional payment at inception based on an “upfront premium” and proportional to the
size of the tranche. This “upfront premium” is quoted in percentage of the nominal value.
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The latter expression simply means that the value of a CDO tranche contract for a
buyer of protection is positive when the current market spread is greater than the
contractual spread.

As illustrated in Subsection 2.1.2, there exists liquidly quoted CDO tranches on
most CDS indices. Figure 2.5 shows the dynamics of credit spreads on the five year
iTraxx index between May and November 20074. It is interesting to observe a sharp
bump corresponding to the summer 2007 credit crisis.
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Fig. 2.5 Credit spreads on the five years iTraxx index (Series 7, 8 and 9) in bps, source Markit.

2.2 Homogeneous Markovian contagion models

While the use of the representation Theorem 1.1 guarantees that, in our framework,
any basket default swap can be perfectly hedged with respect to default risks, it
does not provide a practical way of constructing hedging strategies. As is the case
with interest rate or equity derivatives, exhibiting hedging strategies involves some
Markovian assumptions.

4 Apart from details regarding the premium leg, cash-flows generated by a CDS index can be
considered to be the same as the ones of a [0,100%] CDO tranche
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2.2.1 Intensity specification

In the contagion approach, one starts from a specification of the risk-neutral prede-
fault intensities5 α̃1, . . . , α̃n. In Chapter 1, risk-neutral predefault intensities depend
upon the complete history of defaults. More simplistically, it is often assumed that
they depend only upon the current credit status, i.e., the default indicators; thus α̃ i

t ,
i = 1, . . . ,n are deterministic functions of N

1
t , . . . ,Nn

t . In this paper, we will further
remain in this Markovian framework, i.e., the default intensities will take the form

α̃ i

t = α̃ i
�
t,N1

t , . . . ,Nn

t

�
, i = 1, . . . ,n. (2.6)

This Markovian assumption may be questionable, since the contagion effect of a
default event may vanish as time goes by. The Hawkes process, that was used in the
credit field by Giesecke and Goldberg (2006) (see [29] or [34]), provides such an
example of a more complex time dependence.

Other specifications with the same aim are discussed in [48]. Popular examples
are the models of [38], [42], [65], where the intensities are affine functions of the
default indicators.

The connection between contagion models and Markov chains is described in
the book of Lando [43]. More recently, Herbertsson and Rootzén [37] proved that
default times with default intensities defined by Equation 2.6 could be represented
as the times until absorption in a finite state absorbing Markov chain. According to
Assaf et al. [3] terminology, default times follow a multivariate-phase type distribu-
tion in this framework.

Another practical issue is related to name heterogeneity. Modelling all possible
interactions amongst names leads to a huge number of contagion parameters and
high-dimensional problems, thus to numerical issues. For this practical purpose, we
will further restrict to models where all the names share the same risk-neutral in-
tensity6. This can be viewed as a reasonable assumption for CDO tranches on large
indices, although this is an issue with equity tranches for which idiosyncratic risk is
an important feature. Since risk-neutral predefault intensities, α̃1, . . . , α̃n are equal,
we will further denote these individual predefault intensities by α̃ .

For further tractability, we will further rely on a strong name homogeneity as-
sumption, that individual predefault intensities only depend upon the number of

defaults. Let us denote by Nt =
n

∑
i=1

N
i
t the number of defaults at time t within the

5 Let us recall that the default intensity of name i vanishes after τi, i.e., α i
t = 0 on the set {t > τi}.

6 This means that the predefault intensities have the same functional dependence to the default
indicators.
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pool of assets. Predefault intensities thus take the form7 α̃ i
t = α̃ (t,Nt). This is re-

lated to mean-field approaches (see [31]). As for parametric specifications, we can
think of some additive effects, i.e. the predefault name intensities take the form
α̃ (t,Nt) = a+b×Nt for some constants a,b as mentioned in [31], corresponding to
the “linear counterparty risk model”, or multiplicative effects in the spirit of Davis
and Lo (2001) [17], i.e., the predefault intensities take the form α̃ (t,Nt) = a×b

Nt .
Of course, we could think of a non-parametric model. We provide a calibration pro-
cedure of such unconstrained intensities onto market inputs in Section 2.3.

For simplicity, we will further assume a constant recovery rate equal to R and
a constant exposure among the underlying names. The aggregate fractional loss at
time t is given by: Lt = (1−R) Nt

n
. As a consequence of the no simultaneous de-

faults assumption, the intensity of Lt or of Nt is simply the sum of the individual
default intensities and is itself only a function of the number of defaults process.
Let us denote by λ (t,Nt) the risk-neutral loss intensity. It is related to the individual
predefault intensities by:

λ (t,Nt) = (n−Nt)× α̃ (t,Nt) .

We are thus typically in a bottom-up approach, where one starts with the specifica-
tion of name intensities and thus derives the dynamics of the aggregate loss.

2.2.2 Risk-neutral pricing

Let us remark that in a Markovian homogeneous contagion model, the process Nt

is a continuous time Markov chain (under the risk-neutral probability Q), and more
precisely a pure birth process, according to Karlin and Taylor (1975) [40] terminol-
ogy8, since only single defaults can occur9. The generator of the chain, Λ(t) is quite
simple:

Λ(t) =





−λ (t,0) λ (t,0) 0 · · · 0
0 −λ (t,1) λ (t,1) · · · 0
...

...
. . . . . .

...
0 −λ (t,n−1) λ (t,n−1)
0 0 0 0 0




.

7 Let us remark that on {τi > t}, Nt = ∑ j �=i N
j

t , so that the predefault intensity of name i, actually
only depends on the credit status of the other names.
8 According to Feller’s terminology, we should speak of a pure death process. Since, we later refer
to [40], we prefer their terminology.
9 Regarding the assumption of no simultaneous defaults, we also refer to [10], [57], [64]. Allowing
for multiple defaults could actually ease the calibration to senior CDO tranche quotes.
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Such a simple model of the number of defaults dynamics was considered in [60]
where it is called the “one-step representation of the loss distribution”. The approach
described in this chapter can be seen as a bottom-up view of the previous model,
where the risk-neutral prices can actually be viewed as replicating prices. As an
example of this approach, let us consider the replication price of a European payoff
with payment date T , such as a “zero-coupon tranchelet”, paying 1{NT =k} at time
T for some k ∈ {0,1, . . . ,n}. Let us denote by V (t,Nt) = e

−r(T−t)
Q(NT = k |Nt )

the time-t replication price and by V (t, .) the price vector whose components are
V (t,0),V (t,1), . . . ,V (t,n) for 0 ≤ t ≤ T . We can thus relate the price vector V (t, .)
to the terminal payoff, using the transition matrix Q(t,T ) between dates t and T :

V (t, .) = e
−r(T−t)Q(t,T )V (T, .), (2.7)

where V (T, j) = 1{ j=k}, j = 0,1, . . . ,n. The transition matrix solves for the Kol-
mogorov backward and forward equations :

∂Q(t,T )
∂ t

=−Λ(t)Q(t,T ),
∂Q(t,T )

∂T
= Q(t,T )Λ(T ). (2.8)

In the time homogeneous case, i.e., when the generator is a constant Λ(t) = Λ , the
transition matrix can be written in exponential form :

Q(t,T ) = exp((T − t)Λ) . (2.9)

These ideas have been put in practice by [1], [18], [28], [36], [37], [48] and [63].
These papers focus on the pricing of credit derivatives, while our concern here is the
feasibility and implementation of replicating strategies.

2.2.3 Computation of credit deltas

We recall that the credit delta with respect to name i is the amount of hedging in-
struments (the index here, but possibly a i-th credit default swap) that should be
bought to be protected against a sudden default of name i. A nice feature of ho-
mogeneous contagion models is that the credit deltas are the same for all (the non-
defaulted) names, which results in a dramatic dimensionality reduction. In that case,
it is enough to consider the index portfolio as a single hedging instrument, which is
consistent with some market practices.

Let us consider a European type payoff10 and denote its replication price at time
t by V (t, .). In order to compute the credit deltas, let us remark that, by Itô’s lemma,

10 For notational simplicity, we assume that there are no intermediate payments. This corresponds
for instance to the case of zero-coupon CDO tranches with up-front premiums. The more general
case is considered in Section 2.4.
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dV (t,Nt) =
∂V (t,Nt−)

∂ t
dt +(V (t,Nt)−V (t,Nt−))dNt

=
∂V (t,Nt−)

∂ t
dt +(V (t,Nt−+1)−V (t,Nt−))dNt .

The second term in the right hand side of the latter expression, V (t,Nt−+1)−
V (t,Nt−) is associated with the jump in the price process when a default occurs in

the credit portfolio, i.e. dNt = 1. Thanks to the fact that dNt =
n

∑
i=1

dN
i
t and, since

e
−rt

V (t,Nt) is a (Q,H)–martingale, it can be seen using Itô’s lemma that V solves
for the backward Kolmogorov equations:

∂V (t,k)
∂ t

+λ (t,k)× (V (t,k +1)−V (t,k)) = rV (t,k) , k = 0, . . . ,n−1,

where the terminal conditions are given by the payoff function at time T and with
V (t,n) = 0, for all t ≥ 0. We end up with:

dV (t,Nt) = rV (t,Nt−)dt

+
n

∑
i=1

(V (t,Nt−+1)−V (t,Nt−))
�
dN

i

t − α̃(t,Nt−)(1−N
i

t )dt
�
.

(2.10)

As a consequence the credit deltas with respect to the individual instantaneous de-
fault swaps are equal to:

δ i

t = δ i(t,Nt−) = V (t,Nt−+1)−V (t,Nt−) ,

for 0≤ t ≤ T and i = 1, . . . ,n.
Let us denote by V

I(t,k) = e
−r(T−t)

E

�
1− NT

n
|Nt = k

�
the time-t price of the

equally weighted portfolio involving defaultable bonds and set

δ I

t = δ I(t,Nt−) =
V (t,Nt−+1)−V (t,Nt−)

V I (t,Nt−+1)−V I (t,Nt−)
. (2.11)

As the dynamics of V
I also satisfies SDE (2.10) and using equation 2.11, we can

deduce that:

dV (t,Nt) = r×
�
V (t,Nt−)−δ I(t,Nt−)V I (t,Nt−)

�
dt +δ I(t,Nt−)dV

I (t,Nt) .

As a consequence, we can perfectly hedge a European type payoff, say a zero-
coupon CDO tranche, using only the index portfolio and the risk-free asset. The
hedge ratio, with respect to the index portfolio is actually equal to (2.11). The pre-
vious hedging strategy is feasible provided that V

I (t,Nt−+1) �= V
I (t,Nt−). The

usual case corresponds to some positive dependence, thus α (t,0)≤ α (t,1)≤ · · ·≤
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α (t,n−1). Therefore V
I (t,Nt−+1) <V

I (t,Nt−)11. The decrease in the index port-
folio value is the consequence of a direct default effect (one name defaults) and an
indirect effect related to a positive shift in the credit spreads associated with the
non-defaulted names.

The idea of building a hedging strategy based on the change in value at default
times was introduced in [2]. The rigorous construction of a dynamic hedging strat-
egy in a univariate case can be found in [9]. Our result can be seen as a natural
extension to the multivariate case, provided that we deal with Markovian homoge-
neous models: we simply need to deal with the number of defaults Nt and the index
portfolio V

I (t,Nt) instead of a single default indicator N
i
t and the corresponding

defaultable discount bond price.

2.3 Calibration of loss intensities

Another nice feature of the homogeneous Markovian contagion model is that the
loss dynamics or equivalently the default intensities can be determined from market
inputs such as CDO tranche premiums. Since the risk neutral dynamics are unam-
biguously derived from market inputs, so will be for dynamic hedging strategies of
CDO tranches. This greatly facilitates empirical studies, since the replicating figures
do not depend upon unobserved and difficult to calibrate parameters.

The construction of the implied Markov chain for the aggregate loss parallels the
one made by Dupire (1994) [25] to construct a local volatility model from call option
prices. Similar ideas are used in [23], [58] to build up implied trees. Laurent and
Leisen (2000) [47] have shown how an implied Markov chain can be derived from
a discrete set of option prices. In these approaches, the calibration of the implied
dynamics on market inputs involves forward Kolmogorov equations. Starting from
a complete set of CDO tranche premiums or equivalently from a complete set of
number of default distributions, [60] provided the construction of the loss intensities.
Similarities between the Dupire’s approach and the building of the one step Markov
chain of [60] have also been reported in [14], [20] and [48]. We propose now to
detail and comment the latter calibration approach of loss intensities.

11 In the case where α(t,0) = α(t,1) = . . . = α(t,n), there are no contagion effects and default
dates are independent. We still have V

I(t,Nt− + 1) < V
I(t,Nt−) since V

I(t,Nt−) is linear in the
number of surviving names.
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2.3.1 Calibration of loss intensities on a complete set of number of
defaults probabilities

While the pricing and thus the hedging involves a backward procedure, calibra-
tion is associated with forward Kolmogorov differential equations. We show here
a non-parametric fitting procedure of a possibly non time homogeneous pure birth
process onto a complete set of marginal distributions of number of defaults. This is
quite similar to the one described in [60], though the purpose is somehow different
since the aim of [60] was to construct arbitrage-free, consistent with some complete
loss surface, Markovian models of aggregate losses, possibly in incomplete markets,
without detailing the feasibility and implementation of replicating strategies.

We will further denote the marginal default probabilities by p(t,k) = Q(Nt = k)
for 0≤ t ≤ T , k = 0,1, . . . ,n. Clearly, this involves more information that one could
directly access through the quotes of liquid CDO tranches, especially with respect to
small and large number of defaults. As for the computation of the number of default
probabilities from quoted CDO tranche premiums, we refer to [41], [32], [50], [53],
[64] and [62]. Practical issues related to the calibration inputs are also discussed in
[63].

In the case of a pure birth process, the forward Kolmogorov equations can be
written as:

�
d p(t,0)

dt
=−λ (t,0)p(t,0), k = 0,

d p(t,k)
dt

= λ (t,k−1)p(t,k−1)−λ (t,k)p(t,k), k = 1, . . . ,n.
(2.12)

Since the space state is finite, there are no regularity issues and these equations
admit a unique solution12 (see below for practical implementation). These forward
equations can be used to compute the loss intensity dynamics t ∈ [0,T ]→ λ (t,Nt),
thanks to:





λ (t,0) =− 1

p(t,0)
d p(t,0)

dt
, k = 0,

λ (t,k) = 1
p(t,k)

�
λ (t,k−1)p(t,k−1)− d p(t,k)

dt

�
, k = 1, . . . ,n,

(2.13)

for 0≤ t ≤ T . Let us remark that we can also write:

λ (t,k) =− 1
p(t,k)

d

k

∑
m=0

p(t,m)

dt
=− 1

Q(Nt = k)
dQ(Nt ≤ k)

dt
, k = 0, . . . ,n. (2.14)

Eventually, the name intensities are provided by: α̃ (t,Nt) = λ (t,Nt )
n−Nt

. This shows that
we can fully recover the loss intensities from the marginal distributions of the num-
ber of defaults, if the latters do not occur simultaneously. This has to be related to

12 We refer to [40] for more details about the forward equations in the case of a pure birth process.
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the result of Cont and Minca [14] which states that, under the assumption of no
simultaneous defaults, the flow of marginal loss distributions associated with a gen-
eral point process can be matched with the one of a Markovian jump process.

On practical grounds, the computation of the p(t,k) usually involves some ar-
bitrary smoothing procedure and hazardous extrapolations for small time horizons.
For these reasons, we think that it is more appropriate and reasonable to calibrate
the Markov chain of aggregate losses on a discrete set of meaningful market inputs
corresponding to liquid maturities.

2.3.2 Calibration of time homogeneous loss intensities

In practical applications, we can only rely on a discrete set of loss distributions
corresponding to liquid CDO tranche maturities. In the examples below, we will
calibrate the loss intensities given a single calibration date T . For simplicity, we
will be given the default probabilities p(T,k),k = 0,1, . . . ,n. Now and in the sequel,
we assume that the loss intensities are time homogeneous: the intensities do not
depend on time but only on the number of realized defaults. We further denote by
λk = λ (t,k) for 0≤ t ≤ T , the loss intensity for k = 0,1, . . . ,n−1. Let us note that
[28] have also developed a similar computation of the loss intensities λk from the
values of default probabilities.

Solving the forward equations (2.12) provides
�

p(T,0) = e
−λ0T , k = 0,

p(T,k) = λk−1
�

T

0 e
−λk(T−s)

p(s,k−1)ds, k = 1, . . . ,n−1.
(2.15)

The previous equations can be used to determine λ0, . . . ,λn−1 iteratively, even if our
calibration inputs are the defaults probabilities at the single date T .

Assume for the moment that the intensities λ0, . . . ,λn−1 are known, positive and
distinct13. To solve the forward equations, we assume that the default probabilities
can be written as

p(t,k) =
k

∑
i=0

ak,ie
−λit , 0≤ t ≤ T, k = 0, . . . ,n−1, (2.16)

where the parameters ak,i, i = 0,1, . . . ,k, k = 0, . . . ,n−1 satisfy the following recur-
rence equations :

13 Due to the last assumption, the described calibration approach is not highly regarded by numer-
ical analysts (see [51] for a discussion). However, it is well suited in our case studies.
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a0,0 = 1,

ak,i = λk−1
λk−λi

ak−1,i, i = 0,1, . . . ,k−1, k = 1, . . . ,n−1,

ak,k =−∑k−1
i=0 ak,i

(2.17)

Then, we check easily that, the functions t �→ p(t,k), k = 0, . . . ,n− 1 described
by (2.16) and (2.17) provide some solutions of the forward PDE. Since it is well-
known that these solutions are unique, it means we have obtained explicitly the so-
lutions of the forward PDE, knowing the intensities (λk)k=0,...,n−1. Therefore, using
p(0,k) = 0 and λ0 =− ln(p(T,0))

T
, we can compute iteratively λ1, . . . ,λn−1 by solving

the univariate non-linear implicit equations p(T,k) =
k

∑
i=0

ak,ie
−λiT , or equivalently:

k−1

∑
i=0

ak−1,ie
−λiT

�
1− e

−(λk−λi)T

λk−λi

�
=

p(T,k)
λk−1

, k = 1, . . . ,n−1. (2.18)

It can be seen easily that for any k ∈ {0, . . . ,n−1}, p(T,k) is a decreasing function

of λk, taking value λk−1
T�

0
p(s,k−1)ds for λk = 0 and with the limit equal to zero

as λk tends to infinity. In other words, the system of equations (2.18) has a unique
solution provided that:

p(T,k) < λk−1

�
k−1

∑
i=0

ak−1,i

�
1− e

−λiT

λi

��
, k = 1, . . . ,n−1. (2.19)

Note that, in practice, all the intensities λk will be different. Thus, starting from
the T –default probabilities only, we have found the explicit solutions of the for-
ward equations and the intensities (λk)k=0,...,n−1 that would be consistent with these
probabilities.

2.3.3 Other calibrating approaches

Alternative calibrating approaches based on minimization algorithms have been pro-
posed by several authors.

In Herbertsson (2007) [36], the name intensities α (t,Nt) are time homogeneous,
piecewise constant in the number of defaults (the node points are given by standard
detachment points) and they are fitted to spread quotes by a least square numeri-
cal procedure. Arnsdorf and Halperin (2007) [1] propose a piecewise constant pa-
rameterization of name intensities (which are referred to as “contagion factors”) in
time. When intensities are piecewise linear in the number of defaults too, they use
a “multi-dimensional solver” to calibrate onto the observed tranche prices. In the
same vein, Frey and Backhaus [30], [31] introduce a parametric form for the func-
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tion λ (t,k), a variant of the “convex counterparty risk model”, and fit the parameters
to some tranche spreads. Lopatin and Misirpashaev [48] express the loss intensity
λ (t,k) as a polynomial function of an auxiliary variable involving the number of
defaults.

Cont and Minca (2008) [14] propose an alternative method based on the princi-
ple of minimum relative entropy. The name intensities has to be chosen in such a
way that the loss process is close enough to a simple prior process in the sens of
an entropy distance. In the same time, the usual calibration constraints have to be
satisfied. However, the main drawback of this approach is the fact that the fitted in-
tensities strongly rely on the choice of the prior.

In the spirit of Dupire [25], Cont, Deguest and Kan [12] show that loss intensities
λ (t,k), 0≤ t ≤ T , k = 0, . . . ,n can be formulated using prices of put options on the
aggregate loss, i.e., E[min(Nt ,k)], 0≤ t ≤ T , k = 0, . . . ,n. It allows to transform the
calibration of the loss intensities into the calibration of the put option values. Given
the small number of available quotes, they remark that there can be several sets
of put values that are consistent with the market CDO data. Therefore, a calibration
algorithm based on quadratic programming is proposed in order to pinpoint a unique
set of put values if it exists. They also compare their method with the calibration
approaches introduced by Herbertsson [36] and Cont and Minca [14] and show that
calibrated intensity surfaces can be significantly different across algorithms.

2.4 Computation of credit deltas through a recombining tree

We now address the computation of CDO tranche deltas with respect to the credit
default swap index of the same maturity. As for the hedging instrument, the pre-
mium is set at the inception of the deal and remains fixed which corresponds to
market conventions. We do not take into account roll dates every six months and
trade the same index series up to maturity. Switching from one hedging instrument
to another could be dealt with very easily in our framework and closer to market
practice but we thought that using the same underlying across the tree would sim-
plify the exposition14.

2.4.1 Building up a tree

Let us recall that the (fractional) loss at time t is given by Lt = (1−R)Nt

n
. In what

follows, we consider a tranche with attachment point a and detachment point b,

14 Actually, the credit deltas at inception are the same whatever the choice.
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0 ≤ a ≤ b ≤ 1. Up to some minor adjustment for the premium leg (see below), the
credit default swap index is assimilated to a [0,100%] tranche. We denote by O(Nt)
the outstanding nominal on a tranche. It is equal to b− a if L(t) < a, to b−L(t) if
a≤ L(t) < b and to 0 if L(t)≥ b.

Let us recall that, for a European type payoff the price vector fulfils V (t, .) =
e
−r(t �−t)Q(t, t �)V (t �,) for 0 ≤ t ≤ t

� ≤ T . The transition matrix can be expressed as
Q(t, t �) = exp(Λ(t � − t)) where Λ is the generator matrix associated with the num-
ber of defaults process. Note that, in the time homogeneous framework discussed in
the previous section, the generator matrix does not depend on time.

For practical implementation, we will be given a set of node dates t0 = 0,
. . . , ti, . . ., tns

= T . For simplicity, we will further consider a constant time step ∆ =
t1− t0 = · · · = ti− ti−1 = · · · ; this assumption can easily be relaxed. The most simple
discrete time approximation one can think of is Q(ti, ti+1)� Id +Λ (ti)×(ti+1− ti),
which leads to Q

�
Nti+1 = k +1 |Nti

= k
�
� λk∆ and Q

�
Nti+1 = k |Nti

= k
�
� 1−

λk∆ . For large λk, the transition probabilities can become negative. Thus, we will
rather use the following approximations :

�
Q

�
Nti+1 = k +1 |Nti

= k
�
� 1− e

−λk∆ ,
Q

�
Nti+1 = k |Nti

= k
�
� e

−λk∆ .
(2.20)

Given the latter approximations and as illustrated in Figure 2.6, the dynamics of the
number of defaults process can be described through a recombining tree.

This idea has also been exploited by van der Voort [63]. One could clearly think
of using continuous Markov chain techniques to compute present values of deriva-
tive products at hand, but the tree implementation is quite intuitive from a financial
point of view as it corresponds to the implied binomial tree of Derman and Kani
[23]. Convergence of the discrete time Markov chain to its continuous limit is a
rather standard issue and will not be detailed here.
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Fig. 2.6 Number of defaults tree

2.4.2 Computation of hedge ratios for CDO tranches

2.4.2.1 Present values of a CDO tranche in the tree nodes

Let us denote by D(i,k) the value at time ti when Nti
= k of the default payment leg of

the CDO tranche15. The default payment at time ti+1 is equal to O(Nti
)−O

�
Nti+1

�
.

Thus, D(i,k) is given by the following recurrence equation16 :

D(i,k) = e
−r∆ ·

��
1− e

−λk∆
�
{D(i+1,k +1)+O(k)−O(k +1)}

+ e
−λk∆

D(i+1,k)
�

.
(2.21)

Let us now deal with a (unitary) premium leg. We denote the regular premium
payment dates by T1, . . . ,Tp and for simplicity we assume that:

�
T1, . . . ,Tp

�
⊂

15 We consider the value of the default leg immediately after ti. Thus, we do not consider a possible
default payment at ti in the calculation of D(i,k).
16 This relation holds for i = 0, . . . ,ns − 1, k = 0, . . . ,min(i,n− 1) and with D(ns,k) = 0 when
k = 0, . . . ,n and D(i,n) = 0 when i = n, . . . ,ns−1.
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{t0, . . . , tns
}. Let us consider some date ti+1 and set l such that Tl < ti+1≤ Tl+1. What-

ever ti+1, there is an accrued premium payment of
�
O(Nti

)−O
�
Nti+1

��
×(ti+1−Tl).

If ti+1 = Tl+1, i.e., ti+1 is a regular premium payment date, there is an extra pre-
mium cash-flow at time ti+1 of O(N(Tl+1))× (Tl+1−Tl). Thus, if ti+1 is a regular
premium payment date, the total premium payment is equal to O(Nti

)× (Tl+1−Tl).
Let us denote by P(i,k) the value at time ti when Nti

= k of the unitary premium
leg17. If ti+1 ∈

�
T1, . . . ,Tp

�
, P(i,k) is provided by:

P(i,k) = e
−r∆ ·

�
O(k)(Tl+1−Tl)

+
�

1− e
−λk∆

�
P(i+1,k +1)+ e

−λk∆
P(i+1,k)

�
.

(2.22)

If ti+1 /∈
�

T1, . . . ,Tp

�
, then18 :

P(i,k) = e
−r∆ ·

��
1− e

−λk∆
�
{P(i+1,k +1)+(O(k)−O(k +1))(ti+1−Tl)}

+ e
−λk∆

P(i+1,k)
�

.

(2.23)

The CDO tranche premium is equal to κ = D(0,0)
P(0,0) . The value of the CDO tranche

(buy protection case) at time ti when Nti
= k is given by V (i,k) = D(i,k)−κ ·P(i,k).

The equity tranche needs to be dealt with slightly differently since its spread is
set to κ = 500bp. However, the value of the CDO equity tranche is still given by
D(i,k)−κ ·P(i,k).

2.4.2.2 Present values of a CDS index in the tree nodes

As for the credit default swap index, we will denote by P
I(i,k) and D

I(i,k) the
values of the premium and default legs. We define the credit default swap index
spread at time ti when Nti

= k by κ I(i,k) · P
I(i,k) = D

I(i,k). The value of the
credit default swap index, bought at inception, at node (i,k) is given by V

I(i,k) =
D

I(i,k)− κ I(0,0) · P
I(i,k)19. The default leg of the credit default swap index is

computed as a standard default leg of a (0,100%) CDO tranche. Thus, in the recur-
sion Equation 2.21 giving D

I(i,k), we write the outstanding nominal for k defaults
as O(k) = 1− k(1−R)

n
, where R is the recovery rate and n the number of names.

According to standard market rules, the premium leg of the credit default swap in-

17 As for the default leg, we consider the value of the premium leg immediately after ti. Thus, we
do not take into account a possible premium payment at ti in the calculation of P(i,k) either.
18 Relations 2.22 and 2.23 hold for i = 0, . . . ,ns−1, k = 0, . . . ,min(i,n−1) and with P(ns,k) = 0
when k = 0, . . . ,n and P(i,n) = 0 when i = n, . . . ,ns−1.
19 This is an approximation of the index spread since, according to market rules, the first premium
payment is reduced.
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dex needs a slight adaptation since the premium payments are based only upon the
number of non-defaulted names and do not take into account recovery rates. As a
consequence, the outstanding nominal to be used in the recursion equations 2.22
and 2.23 providing P

I(i,k) is such that O(k) = 1− k

n
.

2.4.2.3 Computation of credit deltas in the tree nodes

As usual in binomial trees, δ (i,k) is the ratio of the difference of the option value
(at time ti+1) in the upper state (k + 1 defaults) and lower state (k defaults) and
the corresponding difference for the underlying asset. In our case, both the CDO
tranche and the credit default swap index are “dividend-baring”. For instance, when
the number of defaults switches from k to k +1, the default leg of the CDO tranche
is associated with a default payment of O(k)−O(k +1). Similarly, given the above
discussion, when the number of defaults switches from k to k +1, the premium leg
of the CDO tranche is associated with an accrued premium payment equal to20

−κ1
ti+1 /∈{T1,...,Tp} (O(k)−O(k +1))(ti+1−Tl) . (2.24)

Thus, when a default occurs the change in value of the CDO tranche is the outcome
of a capital gain of V (i+1,k +1)−V (i+1,k) and of a cash-flow of

D(i,k) = (O(k)−O(k +1))
�

1−κ1
ti+1 /∈{T1,...,Tp} (ti+1−Tl)

�
. (2.25)

Similarly, when a default occurs the change in value of the credit default swap index
is the outcome of a capital gain of V

I (i+1,k +1)−V
I (i+1,k) and a cash-flow of

D
I(i,k) =

1−R

n
− 1

n
κ I(0,0)1

ti+1 /∈{T1,...,Tp} (ti+1−Tl) (2.26)

The credit delta of the CDO tranche at node (i,k) with respect to the credit default
swap index is thus given by:

δ (i,k) =
V (i+1,k +1)−V (i+1,k)+D(i,k)

V I (i+1,k +1)−V I (i+1,k)+DI(i,k)
. (2.27)

Let us remark that using the previous credit deltas leads to a perfect replication
of a CDO tranche within the tree, which is feasible since the approximating discrete
market is complete.

In the next section, we compute CDO tranche credit deltas with respect to credit
default swap index in two steps. We first calibrate loss intensities from a one fac-
tor Gaussian copula loss distribution. It allows us to examine how the correlation
between defaults impact credit deltas. We then calibrate loss intensities from a loss

20 If ti+1 ∈ {T1, . . . ,Tp}, the premium payment is the same whether the number of defaults is equal
to k or k +1. So, it does not appear in the computation of the credit delta.
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distribution associated with a market base correlation structure and we compare our
“default risk” deltas with some “credit spread” deltas computed on a basis of a bump
of credit default swap index spread. We investigate in particular spread deltas com-
puted from the standard market approach and spread deltas recently obtained in [1]
and [26].

2.4.3 Model calibrated on a loss distribution associated with a
Gaussian copula

In this numerical illustration, the loss intensities λk are computed from a loss dis-
tribution generated from a one factor homogeneous Gaussian copula model21. The
correlation parameter is equal to ρ2 = 30%, the credit spreads are assumed to be all
equal to κ = 20 basis points per annum22, the recovery rate is such that R = 40%
and the maturity is T = 5 years. The number of names is n = 125. Figure 2.7 shows
the number of defaults distribution.
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Fig. 2.7 Number of defaults distribution. Number of defaults on the x-axis. ρ2 = 30% : p(5,k),
k = 0, . . . ,20.

21 In the homogeneous Gaussian copula model, default times have the same marginal distribution,
says F . In that model, default times are defined by τi = F

−1(Φ(Vi)), i = 1, . . . ,n, where Φ is
the standard Gaussian cumulative distribution and V1, . . . ,Vn are some latent variables such that :
Vi = ρV +

�
1−ρ2V̄i, i = 1, . . . ,n. The factors V,V̄i, i = 1, . . . ,n are independent standard Gaussian

random variables.
22 Marginal default probabilities have been computed using the classical assumption, under which
default times are exponentially distributed with parameter κ

1−R
, i.e., the cumulative distribution of

default times at time T is equal to F(T ) = Q(τ1 ≤ T ) = 1− exp
�
− κ

1−R
T

�
.
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Loss intensities λk are calibrated up to k = 49 defaults according to the method
proposed in Subsection 2.3.2. Under the Gaussian copula assumption, the default
probabilities p(5,k) are insignificant23 for k > 49. To avoid numerical difficulties,
we computed the remaining λk (k > 49) by linear extrapolation24.
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Fig. 2.8 Loss intensities λk, k = 0, . . . ,49.

As can be seen from Figure 2.8, loss intensities change almost linearly with re-
spect to the number of defaults. Let us also remark that such rather linear behaviour
of loss intensities can be found in [48]. Our results can also be related to the anal-
ysis of Ding et al. [24] who deal with a dynamic model where the loss intensity is
actually linear in the number of defaults.

Table 2.1 shows the dynamics of the credit default swap index spreads κ I(i,k)
along the nodes of the tree. The continuously compounded default free rate is r = 3%
and the time step is ∆ = 1

365 . It can be seen that default arrivals are associated with
rather large jumps of credit spreads. For instance, if a (first) default occurs after a
quarter, the credit default swap index spread jumps from 18 bps to 70 bps. An extra
default by this time leads to an index spread of 148 bps.

The credit deltas with respect to the credit default swap index δ (i,k) have been
computed for the (0−3%) and the (3−6%) CDO tranches (see Table 2.2 and Table
2.3). As for the equity tranche, it can be seen that the credit deltas are positive and-
decrease up to zero. This is not surprising given that a buy protection equity tranche

23 ∑k≥50 p(5,k)� 3×10−4, p(5,50)� 3.2×10−5 et p(5,125)� 4×10−12.
24 We checked that various choices of loss intensities for high number of defaults had no effect on
the computation of deltas. Let us stress that this applies for the Gaussian copula case since the loss
distribution has thin tails. For the market case example, we proceeded differently.
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Nb Defaults Weeks
0 14 56 84

0 20 18 14 13
1 0 70 54 46
2 0 148 112 93
3 0 243 182 150
4 0 350 261 215
5 0 466 347 285
6 0 589 437 359
7 0 719 531 436
8 0 856 630 516
9 0 997 732 598
10 0 1142 839 683

Table 2.1 Dynamics of credit default swap index spread κ I(i,k) in basis points per annum.

involves a short put position over the aggregate loss with a 3% strike. This is asso-
ciated with positive deltas, negative gammas and thus decreasing deltas. When the
number of defaults is above 6, the equity tranche is exhausted and the deltas obvi-
ously are equal to zero.

Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.538 0.591 0.755 0.859
1 2.52% 0 0.238 0.381 0.508
2 2.04% 0 0.074 0.137 0.212
3 1.56% 0 0.026 0.044 0.070
4 1.08% 0 0.011 0.017 0.024
5 0.60% 0 0.005 0.007 0.009
6 0.12% 0 0.001 0.001 0.001
7 0.00% 0 0 0 0

Table 2.2 Delta of the [0−3%] equity tranche with respect to the credit default swap index.

At inception, the credit delta of the equity tranche is equal to 54% whilst it is only
equal to 25% for the [3−6%] tranche which is deeper out of the money (see Table
2.3). Moreover, the [3−6%] CDO tranche involves a call spread position over the
aggregate loss. As a consequence the credit deltas are positive and firstly increase
(positive gamma effect) and then decrease (negative gamma) up to zero as soon as
the tranche is fully amortized.

Given the recovery rate assumption of 40%, the outstanding nominal of the
[3−6%] is equal to 3% for six defaults and to 2.64% for seven defaults. One might
thus think that at the sixth default the [3−6%] tranche should behave almost like
an equity tranche. However, as can be seen from Table 2.3, the credit delta of the
[3−6%] tranche is much lower: around 1% instead of 60%. This is due to dramatic
shifts in credit spreads when moving from the no-defaults to the six defaults state
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Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.255 0.254 0.219 0.171
1 3.00% 0 0.280 0.349 0.357
2 3.00% 0 0.167 0.294 0.389
3 3.00% 0 0.068 0.158 0.265
4 3.00% 0 0.026 0.065 0.128
5 3.00% 0 0.014 0.027 0.053
6 3.00% 0 0.010 0.016 0.025
7 2.64% 0 0.008 0.011 0.015
8 2.16% 0 0.006 0.008 0.010
9 1.68% 0 0.004 0.005 0.007
10 1.20% 0 0.003 0.003 0.004
11 0.72% 0 0.002 0.002 0.002
12 0.24% 0 0.001 0.001 0.001
12 0.00% 0 0 0 0

Table 2.3 Deltas of the [3−6%] with respect to the credit default swap index.

(see Table 2.1). In the latter case, the expected loss on the tranche is much larger,
which is consistent with smaller deltas given the call spread payoff.

2.4.4 Dependence of hedging strategies upon the correlation
parameter

Let us recall that the recombining tree is calibrated on a loss distribution over a
given time horizon. The shape of the loss distribution depends critically upon the
correlation parameter which was set up to now to ρ2 = 30%. Decreasing the de-
pendence between default events leads to a thinner right-tail of the loss distribution
and smaller contagion effects. We detail here the effects of varying the correlation
parameter on the hedging strategies. For simplicity, we firstly focus the analysis on
the equity tranche and shift the correlation parameter from 30% to 10%. It can be
seen from Tables 2.2 and 2.4 that the credit deltas are much higher in the latter case.
After 14 weeks, prior to the first default, the credit delta is equal to 59% for a 30%
correlation and to 96% when the correlation parameter is equal to 10%25.

To further investigate how changes in correlation levels alter credit deltas, we
computed the market value of the default leg of the equity tranche at a 14 weeks hori-
zon as a function of the number of defaults under different correlation assumptions
(see Figure 2.9). The market value of the default leg, on the y - axis, is computed as
the sum of expected discounted cash-flows posterior to this 14 weeks horizon date
and the accumulated defaults cash-flows paid before26. We also plotted the accu-

25 Let us remark that credit deltas can be above one in the no default case. This is due to the
amortization scheme of the premium leg. We detail in the next section the impact of the premium
leg on credit deltas.
26 For simplicity, we neglected the compounding effects over this short period.
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Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.931 0.960 1.009 1.058
1 2.52% 0 0.694 0.785 0.910
2 2.04% 0 0.394 0.485 0.645
3 1.56% 0 0.179 0.233 0.352
4 1.08% 0 0.072 0.092 0.145
5 0.60% 0 0.027 0.032 0.046
6 0.12% 0 0.004 0.005 0.007
7 0.00% 0 0 0 0

Table 2.4 Deltas of the [0− 3%] equity tranche with respect to the credit default swap index,
ρ2 = 10%.

mulated losses which represent the intrinsic value of the equity tranche default leg.
Unsurprisingly, we recognize some typical concave patterns associated with a short
put option payoff.
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Fig. 2.9 Market value of equity default leg under different correlation assumptions. Number of
defaults on the x - axis.

As can be seen from Figure 2.9, prior to the first default, the value of the default
leg of the equity tranche decreases as the correlation parameter increases from 0% to
40%. However, after the first default the ordering of default leg values is reversed.
This can be easily understood since larger correlations are associated with larger
jumps in credit spreads at default arrivals and thus larger changes in the expected
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discounted cash-flows associated with the default leg of the equity tranche27.

Therefore, varying the correlation parameter is associated with two opposite
mechanisms :

• The first one is related to a typical negative vanna effect28. Increasing correlation
lowers loss "volatility" and leads to smaller expected losses on the equity tranche.
In a standard option pricing framework, this should lead to an increase in the
credit delta of the short put position on the loss.

• This is superseded by the shifts due to contagion effects. Increasing correlation is
associated with bigger contagion effects and thus larger jumps in credit spreads
at the arrival of defaults. This, in turn leads to a larger jump in the market value
of the credit index default swap. Let us recall that the default leg of the equity
tranche exhibits a concave payoff and thus a negative gamma. As a consequence
the credit delta, i.e. the ratio between the change in value of the option and the
change in value of the underlying, decreases.

2.4.5 Model calibrated on a loss distribution associated with CDO
tranche quotes

Up to now, the probabilities of number of defaults were computed thanks to a Gaus-
sian copula and a single correlation parameter. In this example, we use a steep up-
ward sloping base correlation curve for the iTraxx, typical of June 2007, as an input
to derive the distribution of the probabilities of number of defaults (see Table 2.5).
The maturity is still equal to 5 years, the recovery rate to 40% and the credit spreads
to 20 bps. The default-free rate is now equal to 4%.

Base Tranches [0-3%] [0-6%] [0-9%] [0-12%] [0-22%]
Base Correlations 18% 28% 36% 42% 58%

Table 2.5 Base correlations with respect to attachment points (iTraxx Juin 2007).

Rather than spline interpolation of base correlations, we used a parametric model
of the 5 year loss distribution to fit the market quotes and compute the probabilities
of the number of defaults. This produces arbitrage free and smooth distributions

27 Let us remark that the larger the correlation the larger the change in market value of the default
leg of the equity tranche at the arrival of the first default. Indeed, in a high correlation framework,
this default means relatively higher default likelihood for the surviving names. This is not incon-
sistent with the previous results showing a decrease in credit deltas when the correlation parameter
increases. The credit delta is the ratio of the change in value in the equity tranche and of the change
in value in the credit default swap index. For a larger correlation parameter, the change in value in
the credit default swap index is also larger due to magnified contagion effects.
28 We recall that in option pricing, the vanna is the sensitivity of the delta to a unit change in
volatility.
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Fig. 2.10 Number of defaults distribution obtained from the base correlation structure described
in Table 2.5. Number of defaults on the x - axis.

that ease the calculation of the loss intensities29. Figure 2.10 shows the number of
defaults distribution. This is rather different from the 30% flat correlation Gaussian
copula case both for small and large losses. For instance, the probability of no de-
faults dropped from 48.7% to 19.5% while the probability of a single default rose
from 18.2% to 36.5%. Let us stress that these figures are for illustrative purpose. The
market does not provide direct information on first losses and thus the shape of the
left tail of the loss distribution is a controversial issue. As for the right-tail, we have
∑k≥50 p(5,k)� 1.4×10−3 and p(5,50)� 3.3×10−6, p(5,125)� 1.38×10−3. The
cumulative probabilities of large number of defaults are larger, compared with the
Gaussian copula case. The probability of the names defaulting altogether is also
quite large, corresponding to some kind of Armageddon risk. Once again these fig-
ures need to be considered with caution, corresponding to high senior and super-
senior tranche premiums and disputable assumptions about the probability of all
names defaulting.

Figure 2.11 shows the loss intensities calibrated onto market inputs compared
with the loss intensities based on Gaussian copula inputs up to 39 defaults . As can
be seen, the loss intensity increases much quicker with the number of defaults as
compared with the Gaussian copula approach. The average relative change in the
loss intensities is equal to 19% when it is equal to 16% when computed under the
Gaussian copula assumption. Unsurprisingly, a steep base correlation curve is asso-
ciated with fatter upper tails of the loss distribution and magnified contagion effects.

29 We also computed the number of defaults distribution using entropic calibration. Although we
could still compute loss intensities, the pattern with respect to the number of defaults was not
monotonic. Depending on market inputs, direct calibration onto CDO tranche quotes can lead to
shaky figures.
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Fig. 2.11 Loss intensities for the Gaussian copula and market case examples. Number of defaults
on the x - axis.

Table 7 shows the dynamics of the credit default swap index spreads κ I(i,k)
along the nodes of the tree. As for tree implementation, the time step is still ∆ = 1

365 .
Let us remark that up to 12 defaults, loss intensities calibrated from market inputs
are on the whole smaller than in the Gaussian copula case. Then, the contagion effect
is smaller than in the flat 30% correlation Gaussian copula in low default states and
greater for high default states. Unsurprisingly, market quotes lead to smaller index
spreads up to 2 defaults at 14 weeks (see Tables 2.1 and 2.6). This is also coherent
with Figure 2.12 where the conditional expected losses in the two approaches cross
each other at the third default. However, as mentioned above, this detailed pattern
has to be considered with caution, since it involves the probabilities of 0, 1 and
2 defaults which are not directly observed in the market. After 2 defaults, credit
spreads become definitely larger when calibrated from market inputs.

Nb Defaults Weeks
0 14 56 84

0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 98
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2243 2126 2423
9 0 2623 2534 2423
10 0 3035 2939 2859

Table 2.6 Dynamics of credit default swap index spread κ I(i,k) in basis points per annum.
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Fig. 2.12 Expected losses on the credit portfolio after 14 weeks over a five year horizon (y - axis)
with respect to the number of defaults (x - axis) using market and Gaussian copula inputs.

Thanks to Figure 2.12 we can investigate the credit spread dynamics when using
market inputs. We plotted the conditional (with respect to the number of defaults)
expected loss E [LT |Nt ] for T = 5 years and t = 14 weeks for the previous market
inputs and for the 30% flat correlation Gaussian copula case. The conditional ex-
pected loss is expressed as a percentage of the nominal of the portfolio30. We also
plotted the accumulated losses on the portfolio. The expected losses are greater than
the accumulated losses due to positive contagion effects. There are some dramatic
differences between the Gaussian copula and the market inputs examples. In the
Gaussian copula case, the expected loss is almost linear with respect to the number
of defaults in a wide range (say up to 15 defaults). The pattern is quite different
when using market inputs with huge non linear effects. This shows large contagion
effects after a few defaults as can also be seen from Table 2.6 and Figure 2.11. This
rather explosive behaviour was also observed by Herbertsson [35], Tables 3 and 4
and by Cont and Minca [14], Figures 1 and 3. In Lopatin and Misirpashaev [48],
the contagion effects are also magnified when using market data, compared with
Gaussian copula inputs.

Table 2.7 shows the dynamic deltas associated with the equity tranche. We notice
that the credit deltas drop quite quickly to zero with the occurrence of defaults. This
is not surprising given the surge in credit spreads and dependencies after the first
default (see Figure 2.12): after only a few defaults the equity tranche is virtually
exhausted.

It is noteworthy that the credit deltas δ (i,k) can be decomposed into a default leg
delta δd(i,k) and a premium leg delta δp(i,k) as follows :

δ (i,k) = δd(i,k)−κδp(i,k), (2.28)

30 Thus, given a recovery rate of 40%, the maximum expected loss is equal to 60%.
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Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.645 0.731 0.953 1.038
1 2.52% 0 0.329 0.584 0.777
2 2.04% 0 0.091 0.197 0.351
3 1.56% 0 0.023 0.045 0.090
4 1.08% 0 0.008 0.011 0.018
5 0.60% 0 0.004 0.003 0.004
6 0.12% 0 0.001 0.001 0.001
7 0.00% 0 0 0 0

Table 2.7 Delta of the [0−3%] equity tranche with respect to the credit default swap index.

where :

δd(i,k) =
D(i+1,k +1)−D(i+1,k)+O(k)−O(k +1)

V I (i+1,k +1)−V I (i+1,k)+DI(i,k)
(2.29)

and

δp(i,k)=
P(i+1,k +1)−P(i+1,k)+(O(k)−O(k +1))1

ti+1 /∈{T1,...,Tp} (ti+1−Tl)

V I (i+1,k +1)−V I (i+1,k)+DI(i,k)
.

(2.30)
Tables 2.8 and 2.9 detail the credit deltas associated with the default and pre-

mium legs of the equity tranche. As can be seen from Table 2.7, credit deltas for
the equity tranche may be slightly above one when no default has occurred. Table
2.9 shows that this is due to the amortization scheme of the premium leg which is
associated with significant negative deltas. Let us recall that premium payments are
based on the outstanding nominal. Arrival of defaults thus reduces the commitment
to pay. Furthermore, the increase in credit spreads due to contagion effects involves
a decrease in the expected outstanding nominal. When considering the default leg
only, we are led to credit deltas that actually remain within the standard 0%-100%
range. The default leg delta of the equity tranche with respect to the credit default
swap index is initially equal to 54.1%. Let us also remark that credit deltas of the
default leg gradually increase with time which is consistent with a decrease in time
value.

2.4.6 Comparison with standard market practice

We further examine the credit deltas of the different tranches at inception. These
are compared with the deltas as computed by market participants under the previous
base correlation structure assumption (see Table 2.10). These market deltas are cal-
culated by bumping the credit curves by 1 basis point and computing the changes in
present value of the tranches and of the credit default swap index. Once the credit
curves are bumped, the moneyness varies, but the market practice is to keep constant
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Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.541 0.617 0.823 0.910
1 2.52% 0 0.279 0.510 0.690
2 2.04% 0 0.072 0.166 0.304
3 1.56% 0 0.016 0.034 0.072
4 1.08% 0 0.004 0.006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000
7 0.00% 0 0 0 0

Table 2.8 Delta of the default leg of the [0−3%] equity tranche with respect to the credit default
swap index (δd(i,k)).

Nb Defaults Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% -0.104 -0.113 -0.130 -0.128
1 2.52% 0 -0.050 -0.074 -0.087
2 2.04% 0 -0.018 -0.031 -0.047
3 1.56% 0 -0.007 -0.011 -0.018
4 1.08% 0 -0.004 -0.004 -0.006
5 0.60% 0 -0.002 -0.002 -0.002
6 0.12% 0 -0.001 0.000 0.000
7 0.00% 0 0 0 0

Table 2.9 Deltas of the premium leg of the [0−3%] equity tranche with respect to the credit
default swap index (κδp(i,k)).

the base correlations when recalculating the CDO tranches. This corresponds to the
so-called “sticky strike” rule. The delta is the ratio of the change in present value of
the tranche to the change in present value of the credit default swap index divided
by the tranche’s nominal. For example, a credit delta of an equity tranche previously
equal to one would now lead to a figure of 33.33.

Tranches [0-3%] [3-6%] [3-9%] [9-12%] [12-22%]
Market deltas 27 4.5 1.25 0.6 0.25
Model deltas 21.5 4.63 1.63 0.9 0.6

Table 2.10 Market delta spreads and model deltas (a default event) at inception.

First of all we can see that the outlines are roughly the same, which is already
noticeable since the two approaches are completely different. Then, we can remark
that the model deltas are smaller for the equity tranche as compared with the market
deltas, while there are larger for the other tranches.

These discrepancies can be understood from the dynamics of the dependence be-
tween defaults embedded in the Markovian contagion model. Figure 2.13 shows the
base correlation curves at a 14 weeks horizon, when the number of defaults is equal
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to zero, one or two. We can see that the arrival of the first defaults is associated with
parallel shifts in the base correlation curves. This increase in dependence counter-
balances the increase of credit spreads and expected losses on the equity tranche and
lowers the credit delta. The model deltas can be thought of as the “sticky implied
tree” model deltas of Derman [22]. These are suitable in a regime of fear corre-
sponding to systematic credit shifts.

10%
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3% 6% 9% 12% 22%

No default
One default
Two defaults

Fig. 2.13 Dynamics of the base correlation curve with respect to the number of defaults. Detach-
ment points on the x - axis. Base correlations on the y - axis.

The summer 2007 credit crisis provides some evidence that implied correlations
tend to increase with credit spreads and thus with expected losses. Figure 2.14 shows
the dynamics of the five year iTraxx credit spread and of the implied correlation of
the equity tranche. Over this period the correlation between the two series was equal
to 91%. This clearly favours the contagion model and once again suggests a flaw in
the “sticky strike” market practice.

2.4.7 Comparison with deltas computed in other dynamic credit
risk models

We also thought that it was insightful to compare our model deltas and the results
provided by Arnsdorf and Halperin (2007) [1], Figure 7 (see Table 2.11).

Tranches [0-3%] [3-6%] [3-9%] [9-12%] [12-22%]
Maket deltas 26.5 4.5 1.25 0.65 0.25
BSLP model deltas 21.9 4.81 1.64 0.79 0.38

Table 2.11 Market and model deltas as in Arnsdorf and Halperin [1].
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Fig. 2.14 Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis. Implied
correlation on the equity tranche on the right axis.

The market conditions are slightly different since the computations were done in
March 2007, thus the maturity is slightly smaller than five years. The market deltas
are quoted deltas provided by major trading firms. We can see that these are quite
close to the previous market deltas since the computation methodology involving
Gaussian copula and base correlation is quite standard. The BSLP31 model deltas
(corresponding to "model B" in [1]) have a different meaning from ours: there are
related to credit spread deltas rather that then default risk deltas and are not related to
a dynamic replicating strategy. However, it is noteworthy that the model deltas in [1]
are quite similar to ours, and thus rather far away from market deltas. Though this
is not a formal proof, it appears from Figure 2.9, that (systemic) gammas are rather
small prior to the first default. If we could view a shock on the credit spreads as a
small shock on the expected loss while a default event induces a larger shock (but
not so large given the risk diversification at the index level) on the expected loss,
the similarity between the different model deltas are not so surprising. As above,
model deltas are lower for the equity tranche and larger for the other tranches, when
compared with market deltas.

We also compare our model deltas with credit deltas obtained by Eckner (2007)
[26], Table 5. Eckner (2007) model relies on an affine specification of default inten-
sities (AJD model). Conditionally on the path of default intensities, default times
are independent (i.e. there are no contagion effects at default times). The model is
parametric with respect to the term structure of credit spreads and to CDO tranches.
Calibration of the model parameters to credit spreads and liquid tranche quotes on

31
Bivariate Spread-Loss Portfolio model.
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the CDX NA IG5 index in December 2005 is provided and hedge ratios with re-
spect to the credit default swap index are then computed. The sensitivities of CDO
tranche and index prices are computed with respect to a uniform and relative shift of
individual intensities. The approach can be extended in order to compute different
hedge ratios with respect to the single name default swaps. However, the overall
procedure, including the calibration and the computation of individual hedge ratios
is likely to be rather involved.

In Table 2.12, the deltas obtained in the AJD intensity model can be compared
with those computed from the Gaussian copula model and those computed within a
contagion model calibrated to the same data set.

Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
Market deltas 18.5 5.5 1.5 0.8 0.4
AJD model deltas 21.7 6.0 1.1 0.4 0.1
Contagion model deltas 17.9 6.3 2.5 1.3 0.8

Table 2.12 Market deltas, “intensity” model credit deltas in Eckner (2007) and contagion model
deltas.

Even though the approaches are completely different, once again the outlines are
quite similar. Moreover, we can remark that the equity tranche deltas computed by
Eckner are higher compared with the market deltas.

Another empirical comparison of various hedging strategies has recently been
proposed by Cont and Kan (2008) [13]. This study provides several interesting ob-
servations related to the hedging of index CDO tranches, extending the ones pre-
sented in this chapter.



Chapter 3
Conclusion

Areski Cousin, Monique Jeanblanc, Jean-Paul Laurent

In this chapter, we were able to show that a CDO tranche payoff can be perfectly
replicated with a self-financed strategy based on the underlying credit default swaps.
This extends to any payoff which depends only upon defaults arrivals, such as bas-
ket default swaps, but does not address the issue of tranche options for instance.
Clearly, the previous replication result is model dependent and relies on two critical
assumptions. First, we preclude the possibility of simultaneous defaults. In other
words, default times can be ordered from the first to the last default time. Hedging
against simultaneous defaults would require trading credit default swaps contingent
on several defaults, which are not currently traded in the market. The other impor-
tant assumption, which is likely to be more questionable, is that credit default swap
premiums are adapted to the filtration of default times, denoted H, which therefore
can be seen as the relevant information set on economic grounds. As a consequence,
default swap premiums are deterministic between two default times. Our framework
corresponds to a pure contagion model, where the arrival of defaults leads to jumps
in the credit spreads of survived names, the magnitude of which depending upon the
considered names and the whole history of defaults up to the current time. These
jumps can be related to the derivatives of the joint survival function of default times.
The dynamics of replicating prices of CDO tranches follows the same way. In other
words, we only deal with default risks and not with spread risks. At a given point
in time, there are only p sources of risk, related to the default occurrence of the p

non defaulted names and we can trade the corresponding p credit default swaps.
This provides the intuition of the completeness of the market following the rule of
the thumb, “as many hedging instruments as sources of risk”. The hedging strat-
egy deals thus with default risks only and not with credit spread risks. Even though
the underlying assumptions may look too restrictive, given the risk management
and regulatory issues related to CDOs, we think that it may prove useful to rely on
benchmark models where the hedging can be fully described and analyzed in a dy-
namical way.

61
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Unsurprisingly, the possibility of perfect hedging is associated with a martin-
gale representation theorem under the filtration of default times. Subsequently, we
exhibit a new probability measure under which the short term credit spreads (up
to some scaling factor due to positive recovery rates) are the intensities associated
with the corresponding default times. For the ease of presentation, we introduced
first some instantaneous default swaps as a convenient basis of hedging instruments.
Eventually, we can exhibit a replicating strategy of a CDO tranche payoff with re-
spect to actually traded credit default swaps, for instance, with the same maturity
as the CDO tranche. Let us note that no Markovian assumption is required for the
existence of such a replicating strategy. Therefore the aggregate loss may not be a
Markov process either. Since we dealt first with the dynamics of individual defaults,
we are typically in a bottom-up model and no homogeneity assumption, such as
equal credit spreads across names is required.

However, when going to implementing actual hedging strategies, one needs extra
assumptions, both for the implementation to be feasible and to cope with quoted
CDO tranches. We therefore consider the simplest way to specialize the above
model: we assume that all pre-default intensities are equal and only depend on
the current number of defaults. We also assume that all recovery rates are con-
stant across names and time. In that framework, it can be shown that the aggregate
loss process is a homogeneous Markov chain, more precisely a pure death pro-
cess (thanks to the no simultaneous defaults assumption). The intensity associated
with the Markov chain is simply the pre-default intensity times the number of non-
defaulted names. Thanks to these restrictions, the model involves as many unknown
parameters as the number of underlying names. On the other hand, the knowledge of
upfront premiums of equity CDO tranches with different maturities and detachment
points (and given some recovery rate) is equivalent to the knowledge of marginal
distributions of the number of defaults at different time horizons. Thanks to the for-
ward Kolmogorov equations, one can then perfectly compute the intensities of the
aggregate loss process or the pre-default intensities of the names. Such fully cali-
brated and Markov model is also known as the local intensity model, the simplest
form of aggregate loss models. As in local volatility models in the equity derivatives
world, there is a perfect match of unknown parameters from a complete set of CDO
tranches quotes. In other words, the model is fully specified from market inputs,
which is clearly a desirable property, since given some market inputs, we deal with
a single model and not with a family of parameterized models. The numerical im-
plementation can be achieved through a binomial tree, well-known to finance people
or by means of Markov chain techniques. We provide some examples and show that
the market quotes of CDOs are associated with pronounced contagion effects. We
can therefore explain the dynamics of the amount of hedging CDS and relate them
to deltas computed by market practitioners. The figures are hopefully roughly the
same, the discrepancies being mainly explained by contagion effects leading to an
increase of dependence between default times after some defaults.
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However, one cannot unfortunately observe a complete set of CDO tranche pre-
miums. The set of local intensities consistent with the actually CDO tranches quotes
is not a singleton. For a complete specification, one needs to introduce some extra
assumptions: either, one can constrain the shape of intensities, for instance assume
that there are piecewise constant with respect to the number of defaults with shifts
associated to detachment points of traded tranches. Otherwise, as an intermediary
step, we may think of fitting some marginal distributions of aggregate losses to CDO
tranche quotes or use interpolation techniques consistent with the increase and con-
cavity of the expected loss on equity tranches. Numerical examples in this chapter
are constructed under the second approach. Unfortunately, for practical purpose, the
computed deltas and thus hedging performance seem rather sensitive to the calibra-
tion technique.

One may compare the proposed framework with the standard structural approach,
where default time of a given name is the first hitting time of a barrier by a Brow-
nian motion associated with the asset process of the corresponding name. In that
structural approach, dependence between default times stems from the correlation
between the Brownian motions. In the latter framework, quite similar to a multivari-
ate Black-Scholes setting, CDS are barrier-options and it is also possible to replicate
a CDO tranche payoff by dynamically trading the CDS. While the former Markov
chain approach focused on default risk, neglecting credit spread risk, the structural
approach only deals with credit spread risk. Defaults are predictable and do not
constitute an extra source of risk. On the other hand, a structural model can be well
approximated in most cases by a one period structural model, where crossing the
default barrier is only considered at maturity. This is known to be equivalent to the
Gaussian copula model commonly used by practitioners. As mentioned above, an
interesting feature is that the deltas with respect to underlying credit default swaps
have the same order of magnitude in the two approaches.

However, extending the scope of the approach would result in adding extra com-
plexity, both on mathematical grounds and regarding the specification of credit
spreads dynamics. For instance, if we were to introduce some Brownian risks on
top of jump to default risks, it is not clear how defaults would drive the volatility of
credit spreads. The uncertainty with respect to this substantial model risk is likely
to offset the benefit of dealing with credit spread and default risk altogether. At the
time being, extra-complexity conveys the risk of darkening the risk management
picture and providing a false sense of security. A better understanding of the multi-
variate dynamics of defaults and credit spreads is required before going any further.
Another, more down to earth issue, but of practical importance is related to the set
of hedging instruments. Given n names, one can think of using two credit default
swaps of different maturities for each underlying name to cope both with default and
credit spread risks. This induces extra complexity in implementing hedging strate-
gies.
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A more easy to reach extension of the previous framework consists in relaxing
the homogeneity of names assumption, while remaining in a pure default setting.
For instance, one could think of two homogeneous groups of names, say belong-
ing to two different geographical regions, the intensities depending both upon the
number of survived names in each group. This results in a two dimensional Markov
chain, since the portfolio state is characterized by the number of survived names in
each group. We should then be able to discriminate CDS deltas for names within
each subgroup. Let us note that given that we rely upon a bottom-up approach,
once calibrated onto liquid CDO tranche quotes, one would be able to consistently
price CDO tranches on any sub-portfolio, thus solving the difficult issue of bespoke
tranche pricing.

Another possible and easy to implement extension of our setting consists in using
a recovery rate depending upon the number of defaults. The easiest way to proceed
is to assume some linear (and most likely negative) dependence with respect to the
number of defaults in the portfolio. Such assumption will tend to raise the probabil-
ity of large losses and ease the calibration to the senior tranches.

Eventually, we would like to stress that the approach described in this chapter
should be fruitful in computing so called values on defaults. These assess the mag-
nitude of losses on a portfolio (possibly including CDO tranches) after a default
occurs. Usually, market practitioners do not take into account credit contagion ef-
fects associated with shifts of credit spreads of survived names, which can lead
to gross misestimation of credit risk reserves. This can be easily dealt with in our
framework.
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