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Abstract 
 
This paper intends to provide insights about the topical issue of risk managing synthetic CDOs. We 
stand in the grey zone between mathematical finance and financial econometrics, between academic 
and market practitioners approaches. We chose to first present two scholar models, each of them 
leading to perfect replication of CDO tranches with credit default swaps. Though they rely upon rather 
simplistic assumptions and are built upon different premises, they lead to similar hedge ratios. We also 
stress that the study of the hedging issue in these two approaches involves the same basic theoretical 
ingredients. We then discuss various problems related to the use of such models in designing hedging 
strategies for CDO tranches and back testing or assessing hedging performance. At this stage, it 
appears that model based hedging strategies do help in the risk management process. Even though 
correlation markets had to face serious tests, more data related to short term maturity equity tranche 
spreads and plain CDS are required to discriminate against competing modelling approaches. 
 
Keywords: CDOs, hedging, replication strategies, market completeness, Markovian contagion models, 
hedging efficiency, back-testing. 
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Introduction 
 
The theory is when you know everything and nothing works. The practice is when everything 
works and nobody knows why. We have put together the theory and practice: there is nothing 
that works… and nobody knows why! Albert Einstein 
 
The risk management and the hedging of CDOs and related products are topics of tremendous 
importance, yet much has to be done both on theoretical and empirical grounds. The risks at 
hand are usually split into different categories, which may sometimes overlap, such as credit 
spread and default risks, correlation and contagion risks. These will be the centre of our 
discussion. This does not mean that these risks are orthogonal, for instance an increase in 
credit spreads is likely to increase the occurrence of defaults; due to contagion effects, the 
arrival of defaults may trigger jumps in credit spreads and changes in the dependence 
structure between default times, etc. For simplicity, we will focus on the hedging of synthetic 
CDO tranches on reference indexes such as iTraxx Europe or CDX.NA.IG. The 2007-2008 
crisis also drove attention to liquidity, counterparty risks and related issues such as recovery 
risk, collateral management, downgrading of guarantors, basis risks which we will briefly 
address. Focus was concentrated on the risks within senior tranches and tail risks. Conversely, 
the 2005 crisis, was driven by some rather specific event, namely the widening of spreads in 
the automobile sector and led to some disruptions between equity and junior mezzanine 
tranches, associated with idiosyncratic gamma risks and unwinding of positive carry trades. 
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Before going any further with hedging of CDO tranches, we need to account for the way 
models are used and the reliance upon market data. We will take as an example the modelling 
of dependence of default dates of names within a credit portfolio. A quick glance at the 
literature should convince us that it is a key point in disentangling the hedging puzzle.  
 
Ingenuously, we could think of a probabilistic construction of default times that matches the 
actual behaviour of defaults, spreads, tranche quotes, assume that this probabilistic 
construction could be perfectly determined and that given some set of well identified hedging 
instruments, we end-up with, maybe, a self-financing replicating strategy for CDO tranches. 
Then, the hedging and risk management puzzle would be solved thanks to good 
computational skills and eventually some kind of algorithmic hedging would consecrate the 
reign of robots and expel from the trading rooms, all sorts of quantitative analysts, traders and 
risk managers, which are nowadays considered by a number of bright minds as an 
hybridization of dummies and crooks abusing and misusing mathematics. This would likely  
be the final stage in the evolutionary process and the “end of history” as far as credit 
derivatives are concerned.  
 
Actually, we subsequently describe two scholar models, one belonging to the category of 
contagion models, the other one to that of structural models, so that within the model, perfect 
hedging strategies of CDO tranches can be computed. This is somehow good news since 
credit might eventually no longer be the ugly duckling of mathematical finance..  
 
However, when it comes to putting models at work, the issue appears trickier that it looked at 
first sight and the picture becomes blurred. Let us assume for a while that the above 
ingenuous modeller with superlative skills reaches the Holy Grail3 of designing the true 
probabilistic description of default times. Such a probabilistic model is likely to involve a 
small set of correlation parameters (say it is a parametric model). There should be some 
parameters such that CDO tranches of any maturity, attachment and detachment point should 
be matched at one fell swoop at any time. But, even if we were to restrict to CDO quotes for a 
given maturity, all parametric models we have in mind fail the perfect calibration test and are 
thus misspecified4. As a consequence, one cannot predict from scratch what would be the 
hedging performance of such a model, assuming that perfect replication of CDO tranches is 
meaningful within the above model, i.e., some form of market completeness is achieved. For 
instance, the structural model associated with an underlying multivariate Brownian motion 
would most likely fail to price junior, mezzanine and senior tranches with some flat 
correlation matrix5. In terms of model specification, this means that the model is rejected with 
certainty, since it predicts deterministic relationships across prices, which are inconsistent 
with observed data.  
 
In order to circumvent this issue, the usual way is to relax some assumptions, such as constant 
correlation, Brownian increments in asset prices, introducing some clustering effects through 

                                                 
3 For instance, some academics tend to think that the use of a Gumbel, Clayton or a t-copula would have avoided 
the pitfalls of the Gaussian copula approach. We refer to Burtschell et al. (2009), Cousin and Laurent (2008a), 
Cousin and Laurent (2008c) or Gregory and Laurent (2008) for reviews of a number of popular pricing 
approaches. 
4 For this reason, some authors have considered models, where the expected tranche loss surface is an input 
parameter. While, consistency with traded tranche quotes at a given point in time is fulfilled by construction, this 
approach has its own difficulties. It is not clear whether the loss dynamics will be consistent with the 
recalibration process. Moreover, as is known in equity markets, a dynamic model (say a local volatility model) 
that is consistent with market data can be associated with poor hedging properties. 
5 By “flat” correlation matrix, we mean that pairwise correlation parameters are constant across names.  
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stochastic volatility6. This is not priceless. First, it leads to increased complexity both on 
numerical grounds and in understanding the relevant dynamics. Then, one might lose some 
suitable properties of the simpler model, such as the existence of self-financing replicating 
strategies, which leads to difficulties in designing optimal hedging strategies (in incomplete 
markets). Parsimony is for sure an important property of a relevant model. When it comes to 
models where the number of parameters is large, sometimes even larger than the number of 
liquid calibrating prices, one can rightfully question the usefulness of such an approach. Also, 
one may feel growing unease looking at this data driven inference, where the purpose is to 
find some probability distribution over default times which matches observed data7. Looking 
at the world of defaults through such glasses and entering a risk management process from 
that premise is a perilous adventure.  
 
The culmination of the inverse problem of model design from market prices leads to some 
nonparametric approaches such as the local volatility model in the equity field and its local 
intensity counterpart in the credit domain (see Cont and Minca (2008), Cont, Deguest. and 
Kan (2009)). This relies upon some hidden though not innocuous assumptions such as the 
absence of simultaneous defaults. Moreover, given some sparse market data, one usually 
needs to parameterize the local intensity, for instance assuming piecewise linear dependence 
upon the number of defaults. The devil is in this kind of detail since credit deltas may actually 
greatly depend upon such kind of arbitrary numerical scheme. For instance, when computing 
a default hedge in a local intensity loss model, one would need to assess the change of the loss 
intensity after a first default, something which cannot be directly inferred from CDO tranche 
quotes. It is worth remarking that these implied dynamics are usually associated with a one 
dimensional Markov process, which is quite convenient for simplicity, but is likely to shrink 
the risks to be handled. 
 
If one model as described above would be deemed worthy, it should be time consistent. For 
instance, in the case of a parametric model, calibrated parameters should remain constant over 
time. As this is never the case, one actually deals with some unknown dynamics, possibly 
some kind of incompleteness due to jumps in calibrated parameters. It is also likely that 
implied parameters are actually correlated with the underlying “assets”, say credit default 
swaps spreads, thus one has to choose either to compute the total or partial derivative to 
derive hedge ratios. We just wanted to stress that given that recalibration process, the possibly 
desirable properties of the initial theoretical model are likely to be lost. 
 
Moreover, given any model, market practice consists in bumping initial conditions rather than 
computing derivatives with respect to the underlying assets (assuming a Markovian 
framework). For instance, when using an intensity model, instead of computing sensitivities 
with respect to short-term intensities8, one will shift the credit curves, recalibrate the model 
and look for the change in the prices of CDO tranches. The computed deltas have little 
connection if any, with the theoretical deltas. 
 

                                                 
6 Here, we have implicitly assumed that the new model embeds the older one. One could either switch to a 
distinct approach. In the credit field, there are actually different seeds, say for simplicity such as structural and 
reduced-form models. Some footbridges have already been thrown over the gap and we will mention the useful 
effort to integrate the probabilistic framework. Much as the claim that stock prices are semimartingales, we will 
be left with a very small set of testable restrictions as the counterpart of our broad mathematical view, which is 
clearly some issue for the purpose of building useful models. As French say, “qui trop embrasse, mal étreint”. 
7 The best use of such an approach is to provide a consistent interpolation procedure to compute consistent prices 
of less liquid prices for accounting purpose. 
8 Assuming that name predefault intensities follow a multivariate diffusion process. 



 4 

Self financing replicating strategies are usually set up within a theoretical context and, when 
applied in a market context, have no reason to lead to a replication of the promised payoff. 
This is not surprising then, that the corresponding theoretical models are not dealt with by 
market practitioners according to the theory, when it comes to computing hedging ratios. 
Hedging strategies derived from a hypothetical complete markets framework can be seen as a 
convenient benchmark for further analysis, but there is no guarantee that these would perform 
better than a model with poorer theoretical or dynamical properties. This is not to say that 
financial models are useless; actually empirical evidence tends to show that model based 
hedging outperforms statistical based hedging and leads to a significant reduction in risk. Let 
us also point out that hedging performance can be dramatically improved whenever a CDO 
book is statically hedged, i.e., CDO tranches are hedged with other similar CDO tranches, and 
the dynamic hedging with credit default swaps addresses only residual risks. 
 
Trying to encompass such a large topic, we chose to discuss, in a first part, the theory that 
underpins the two most documented and understood pricing and hedging models as far as 
CDO tranches are concerned. In a second part, we focus on a number of methodological and 
implementation issues related to the use of such models9. 
 
I) Hedging of CDO tranches: theoretical issues and perspectives 
 
As far as the laws of mathematics refer to reality, they are not certain. As far as they are 
certain, they do not refer to reality. Albert Einstein 
 
I.1 Default times and aggregate loss process 
 
Throughout this chapter, we consider a credit portfolio with n risky obligors.  The 
corresponding default times 1, , nτ τ…  are assumed to be non negative and finite random 

variables defined on a common probability space ( ), ,A PΩ ,  where P  is the historical 

probability measure. The evolution of default states in the portfolio is driven by default 
indicator processes { }1

1 1 , ,t tN τ ≤= … { }1
n

n
t tN τ ≤= . That is, for any name 1, ,i n= … , 1i

tN =  if firm 

i  has defaulted before t  or 0i
tN =  otherwise.  

 
Let us remark that default times can be reinterpreted in terms of a marked point process, i.e., a 
sequence of ordered credit events ( )i i I

T
∈  satisfying 1i iT T+<  associated with some other 

random elements ( )i i I
Z

∈ , called marks, containing further information about defaults, such as 

the identity of names which have defaulted. In the general case where simultaneous defaults 
are possible, each mark may contain a set of names and the size of the mark space is possibly 
equal to 2n . This has a direct consequence on the completeness of the market, since in that 
case, the hedging of defaultable claim would require non standard instruments whose default 
payments are contingent to the arrival of joint defaults. Conversely, when simultaneous 
defaults are precluded, the size of the mark space is reduced to n . In what follows, we 
consider that the latter assumption is satisfied. 
 

                                                 
9 We refer to Laurent et al. (2007), Cousin and Laurent (2008b), Cousin et al. (2009) for contributions related to 
this chapter. 
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Regarding the pricing of CDO tranches, the key quantity is the fractional cumulative loss 

process 
1

1
(1 )

n
i

t i t
i

L R N
n =

= −∑ , where 1, , nR R…  denote the recovery rates in case of default of 

names 1, ,i n= … . The loss process tL  is thus an increasing right-continuous pure jump 

process. 
 
I.2 CDO tranche cash-flows 
 
A synthetic CDO tranche is a structured product based on an underlying portfolio of equally 
weighted reference entities subject to credit risk10. The cash-flows associated with a synthetic 
CDO tranche only depend upon the realized path of the cumulative losses on the reference 
portfolio. Default losses on the credit portfolio are split along some thresholds (attachment 
and detachment points) and allocated to the various tranches. A CDO tranche with attachment 
point a , detachment point b  and maturity T  is essentially a bilateral contract between a 
protection seller and a protection buyer. We describe below the cash-flows associated with the 
default payment leg (payments received by the protection buyer) and the premium payment 
leg (payments received by the protection seller). 
 
Default payments leg  
 
The protection seller agrees to pay the protection buyer default losses each time they impact 
the tranche [ , ]a b  of the reference portfolio. More precisely, the cumulative default payment 

[ , ]a b
tL on the tranche [ , ]a b  is equal to zero if tL a≤ , to tL a−  if ta L b≤ ≤ and to b a−  if 

tL b≥ . Let us remark that [ , ]a b
tL  has a call spread payoff with respect to tL  and can be 

expressed as ( ) ( )[ , ]a b
t t tL L a L b

+ += − − − . Default payments are simply the increment of [ , ]a b
tL , 

i.e., there is a payment of [ , ] [ , ]a b a b
t tL L −−  from the protection seller at every jump time of [ , ]a b

tL  

occurring before contract maturity T . If tr  denotes the continuously compounded default free 

interest rate and 
0

exp
t

t sB rds
 

= − 
 
∫  the associated discount factor, the discounted payoff 

corresponding to default payments can written as: 

 ( ) { }
[ , ] [ , ] [ , ]

10

1
t i i i i

T n
a b a b a b

t T
i

B dL B L Lτ τ τ τ− ≤
=

= −∑∫ . 

 
Premium payments leg 
 
The protection buyer has to pay the protection seller a periodic premium (quarterly for 
standardized indexes) based on a fixed spread or premium S  and proportional to the current 
outstanding nominal of the tranche [ , ]a b

tb a L− − . Let us denote by , 1, ,it i I= …  the premium 

payment dates with It T=  and by i∆  the length of the i th period [ ]1,i it t−  (in fractions of a 

year and with 0 0t = ). The CDO premium payments are equal to ( )[ , ]

i

a b
i tS b a L∆ − −  at regular 

                                                 
10 We refer the reader to Meissner (2008), De Servigny and Jobst (2007) textbooks or Kakodkar et al. (2006) for 
a detailed analysis of the CDO market and credit derivatives cash-flows. 
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payment dates , 1, ,it i I= … .  Moreover, when a default occurs between two premium 

payment dates and when it affects the tranche, an additional payment (the accrued coupon) 
must be made at default time to compensate the change in value of the tranche outstanding 
nominal. For example, if namej  defaults between 1it −  and it , the associated accrued coupon 

is equal to ( )( )[ , ] [ , ]
1 j j

a b a b
j iS t L Lτ ττ − −− − . Eventually, the discounted payoff corresponding to 

premium payments can be expressed as:  

 ( ) ( )
1

[ , ] [ , ]
1

1

i

i i

i

tI
a b a b

t i t t i t
i t

B S b a L B S t t dL
−

−
=

 
∆ − − + − 

 
 

∑ ∫ . 

 
I.3 Filtration 
 
A CDO tranche position is typically hedged by entering opposite positions on a portfolio of 
liquid hedging instruments such as credit default swaps referencing names in the reference 
portfolio. Other examples of hedging instruments are credit default swaps standardized 
indices or standard tranches referencing these indices. The composition of the hedging 
portfolio needs to be regularly adjusted as the market environment quickly evolves. In order 
to tackle the hedging issue in a dynamical way, one needs to specify how information is 
progressively disclosed to the market.  
 
We first investigate the framework of contagion intensity models for which the hedging of 
CDO tranches can be fully described in a dynamical way.  In a second step, we will try to 
establish some connections with other hedging approaches.  
 
As we consider the hedging of CDO tranches whose cash-flows are driven by the realization 
of defaults in the portfolio, the smallest filtration one shall consider may include information 

associated with the arrival of defaults. Let us denote by ( ),i i
t sH N s tσ= ≤ , 1, ,i n= … , 

,
1

n

t i t
i

H H
=

= ∨ . The filtration ( )t t
H +∈ℝ  is referred to as the natural filtration associated with the 

default times.  
 
We moreover assume that there exist some ( ), tP H –intensities associated with the counting 

processes i
tN , 1, ,i n= … , i.e., there exist some (non negative) tH – predictable processes 

1, ,, ,P n Pα α… , such that the processes defined by  

 , ,

0

:
t

i P i i P
t t sM N dsα= − ∫ , 1, ,i n= …   

are ( ), tP H – martingales. This implies in particular that, for any name 1, ,i n= … , the default 

intensity process ,i Pα must vanish after the default of name i , i.e., , 0i P
tα =  on the set { }it τ> . 

Let us recall that simultaneous defaults are precluded in this framework, i.e., ( ) 0i jP τ τ= =  

for i j≠ . 
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I.4 Predictable representation theorem and equivalent changes of probability measure 
 
The main theoretical tool for the analysis of the hedging issue is a predictable representation 
theorem (see Brémaud (1981) textbook, chapter III). It states that, for any TH –measurable 

P –integrable random variable A , there exists some tH –predictable processes 1, , nθ θ…  such 

that: 

 [ ] ( ),

1 0

Tn
P i i i P

s s s
i

A E A dN dsθ α
=

= + −∑∫ . 

This result provides a way to express any default-contingent payoff as a sum of stochastic 
integrals with respect to the fundamental martingales ,i P

tM , 1, ,i n= … . 

  
Interestingly, it can also be used to characterize equivalent changes of probability measure. 
From the predictable representation theorem, one can show that any Radon-Nikodym 
derivative ζ  (that is, a strictly positive martingale with expectation equal to 1) can be written 
as 

 ,

1

n
i i P

t t t t
i

d dMζ ζ π−
=

= ∑ , 0 1ζ =  

where 1, , nπ π… are some tH –predictable processes. Conversely, the unique solution of the 

latter stochastic differential equation is the local martingale (Doléans-Dade exponential) 

( ),

1 10

exp 1
i
t

i

t nn Ni i P i
t s s

i i

ds τζ π α π
= =

 
= − + 

 
∑ ∏∫ . 

Note that, in order that ζ  is indeed a non-negative local martingale, one needs that 1i
tπ > − . 

Moreover, the process ζ  is a true martingale under some integrability conditions on the iπ ’s 

(e.g., 1, , nπ π…  bounded) or if [ ] 1P
tE ζ = for any t . We can now define a new probability 

measure Q  from P  thanks to the Radon-Nikodym derivative ζ : 

t tH t HdQ dPζ= . 

Eventually, it can be proved that under this new probability measure Q  the default intensity 
,i Qα  of iτ  is proportional to the default intensity ,i Pα  of iτ  under P . More precisely, for any 

name 1, ,i n= …  the process ,i QM  defined by 

 ( ), ,

0

: 1
t

i Q i i i P
t t s sM N dsπ α= − +∫  

is a ( ), tQ H – martingale. We refer the reader to the book chapter by Cousin et al. (2009) for 

more details on the construction of equivalent changes of probability measure in this 
framework. 
 
I.4 Hedging instruments 
 
For the sake of simplicity, let us assume for a while that instantaneous digital credit default 
swaps are traded on the names. An instantaneous digital credit default swap on name i  traded 
at t, provides a payoff equal to i i

t tdN dtα−  at t dt+ . The quantity i
tdN  corresponds to the 

payment on the default leg and it dtα  is the (short term) premium on the default swap. Note 

that considering such instantaneous digital default swaps rather than actually traded credit 



 8 

default swaps is not a limitation of our purpose. This can rather be seen as a convenient 
choice of basis from a theoretical point of view11.  
 
We assume that contractual spreads 1, , nα α…  are non negative processes adapted to the 

filtration tH  of default times. The natural filtration of default times can thus be seen as the 

relevant information on economic grounds. Since we deal with the filtration generated by 
default times, the credit default swap premiums are deterministic between two default events. 
Therefore, we restrain ourselves to a market where only default risk occurs and credit spreads 
themselves are driven by the occurrence of defaults. In our simple setting, there is no specific 
credit spread risk. This corresponds to the framework of Bielecki et al. (2007) and Bielecki, 
Crépey et al. (2007). 
 
For simplicity, we further assume that (continuously compounded) default-free interest rates 
are constant and equal to r . Given some initial investment 0V  and some tH –predictable 

processes 1, , nδ δ…  associated with some self-financed trading strategy in instantaneous 

digital credit default swaps, we attain at time T the payoff ( )( )
0

1 0

Tn
rT i r T s i i

s s s
i

V e e dN dsδ α−

=

+ −∑∫ . 

By definition, i
sδ  is the nominal amount of instantaneous digital credit default swap on name 

i  held at time s. This induces a net cash-flow of ( )i i i
s s sdN dsδ α× −  at time s ds+ , which has 

to be invested in the default-free savings account up to time T . 
 
I.5 Pricing measure and perfect hedging  
 
We define a pricing measure as a probability measure Q  equivalent to P  and such that, under 
Q , the default intensities associated with default times are exactly equal to the short-term 

credit spreads 1, , nα α… . From the previous analysis on equivalent changes of probability 

measure, one can readily describe the (unique) pricing measure. 
 

Firstly, it is natural to assume that { } { }
. .

,0 0
P a s

i i P
t tα α

−
> = >  for all time t  and all name 

1, ,i n= … . Indeed, from the absence of arbitrage opportunity, the short-term premium on a 

given name i  at any date t  is positive ( 0i
tα > ) if and only if the default of that name is likely 

to occur at time t  ( , 0i P
tα > ). As a consequence, for any 1, ,i n= … , the process iπ defined by  

 ( ),
1 1

i
i it
t ti P

t

N
απ

α −

 
= − − 
 

 

is a H –predictable process such that 1iπ > − .  

 
Secondly, following the previous analysis, the process ζ defined by 

( ),

1 10

exp 1
i
t

i

t nn Ni i P i
t s s

i i

ds τζ π α π
= =

 
= − + 

 
∑ ∏∫  

                                                 
11 Of course, it is possible to compute credit deltas with respect to traded credit default swaps in this framework. 
We refer the reader to Laurent et al. (2007) for more details on this point. 
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is a true Radon-Nikodym derivative. Moreover, under the probability Q  build from P  thanks 

to the equivalent change of probability measure 
t tH t HdQ dPζ= , the processes 

0

:
t

i i i
t t sM N dsα= − ∫ , 1, ,i n= …  

are ( ), tQ H –martingales. In particular the short term credit spreads 1, , nα α…  are the 

intensities of default times under the new probability Q . Given a specification of default 
intensities under the historical probability measure P , it is important to remark that the 
pricing measure is uniquely determined by the dynamics of short-term credit spreads. In the 
rest of the study, we will work under the pricing measure Q . 
 
Unsurprisingly, the possibility of perfect hedging is related to a martingale representation 
theorem under the pricing measure. Let us consider some TH –measurable Q –integrable 

payoff A . SinceA  depends upon the default indicators of the names up to time T , this 
encompasses the cases of CDO tranches and basket default swaps, provided that recovery 
rates are deterministic12. It is possible to show that the predictable representation theorem 
described above also holds under the probability Q . There exists some tH –predictable 

processes 1, , nθ θ…  such that: 

 [ ] ( )
1 0

Tn
Q i i i

s s s
i

A E A dN dsθ α
=

= + −∑∫ . 

Let us remark that, due to the predictable property of the θ ’s, the processes defined by 

( )
0

t
i i i
s s st dN dsθ α→ −∫  are also ( ), tQ H –martingales. As a consequence,   

 ( )
1

Tn
Q i i i

t s s s
i t

A E A H dN dsθ α
=

=   + −  ∑∫ . 

The latter expression can be interpreted in the following way. Starting from t , one can 

replicate the payoff A  with the initial investment ( )Q r T t
t tV E e A H− − =    (in the savings 

account) and the trading strategy based on instantaneous digital credit default swaps defined 
by ( )i i r T s

s seδ θ − −=  for 0 s T≤ ≤  and 1, ,i n= … . As there is no charge to enter an instantaneous 

digital credit default swap, ( )Q r T t
t tV E e A H− − =    corresponds to the time-t  replication price 

of the claim A .  
 
Let us remark that it is theoretically possible to build up a replication strategy based on 
actually traded credit default swaps. Thanks to the predictable representation theorem, one 
can express the dynamics of credit default swaps in terms of the dynamics of instantaneous 
digital CDS. The next step consists on inverting a linear system to obtain the representation of 
any TH –measurable payoff with respect to the dynamics of actually traded CDS. The reader 

is referred to the first chapter of Cousin et al. (2009) for a thorough presentation of this 
method in the case of two names. Interestingly, as explained in Cousin and Jeanblanc (2010), 
the dynamics of portfolio loss derivatives can be fully described using the dynamics of the 
underlying CDS when default times are assumed to be ordered. In this particular case, the 
hedging strategies can be computed explicitly in a general n -dimensional framework. 

                                                 
12 or albeit TH –measurable. 
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While the use of the representation theorem guarantees that, in our framework, any basket 
default swap can be perfectly hedged with respect to default risks, it does not provide a 
practical way of constructing hedging strategies. As this is the case with interest rate or equity 
derivatives, exhibiting hedging strategies involves some Markovian assumptions. 
 
I.7 Computation of hedging strategies in a homogeneous Markovian setting 
 
When going to implementing actual hedging strategies, one needs extra assumptions, both for 
the implementation to be feasible and to cope with quoted CDO tranches. We therefore 
consider the simplest way to specialize the above model: we assume that all risk-neutral pre-
default intensities are equal and only depend on the current number of defaults, i.e., 
 ( ) { }, 1

i

i
t t tt N τα α <= ɶ , 1, ,i n= … , 

where 
1

n
i

t t
i

N N
=

=∑ denotes the total number of defaults that have occurred in the portfolio up 

to time t . We also assume that all recovery rates are constant across names and time. As a 
consequence, the loss process is merely proportional to the number of defaults process tN  

whose intensity is simply equal to the pre-default intensity times the number of non-defaulted 
names: 

( ) ( ) ( ), ,t t tt N n N t Nλ α= − ɶ . 

In that framework, it can be shown that the aggregate loss process is a continuous-time 
Markov chain, more precisely a pure death process (thanks to the no simultaneous defaults 
assumption) with generator matrix: 
 

( ,0) ( ,0) 0 0 0

0 ( ,1) ( ,1) 0 0

( )

0 0 0 ( , 1) ( , 1)

0 0 0 0 0

t t

t t

t

t n t n

λ λ
λ λ

λ λ

− 
 − 
 Λ =
 − − − 
 
 

⋱ ⋱ . 

 
Moreover, the replication price of a European-type CDO tranche payoff ( )TNΦ  can be 

written as ( ) ( )( ), r T t
T tV t k E e N N k− − = Φ =   and solves the backward Kolmogorov 

differential equations: 

 ( )( , )
( , ) ( , ) ( , 1) ( , )

V t k
rV t k t k V t k V t k

t
λ∂ = − + −

∂
, 0, , 1k n= −… . 

Regarding the hedging issue, homogeneous Markovian models are appealing because 
replication strategies are the same for all (the non-defaulted) names, which results in a 
dramatic dimensionality reduction. In that case, it is enough to consider the index portfolio as 
a single hedging instrument, which is consistent with some market practices. If we denote by 

( ) ( )( ),I r T t I
t T tV t N E e N N− − = Φ   the time-t  replication price of the CDS index (European-

type payoff), then by standard Itô’s calculus, one can show that 

 ( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )I I I I
t t t t t tdV t N t N dV t N V t N t N V t N rdtδ δ= + − , 

where:  
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( , 1) ( , )

( , )
( , 1) ( , )

I t t
t I I

t t

V t N V t N
t N

V t N V t N
δ + −=

+ −
 

is the credit delta, i.e., the proportion of the self-financing hedging portfolio invested in the 
CDS index. In other words, the change in value of a CDO tranche in a short period [ ],t t dt+  

can be fully replicated by holding at time t  a position ( , )I
tt Nδ  in the CDS index, for a total 

value of ( , ) ( , )I I
t tt N V t Nδ , and by investing the remaining part of the portfolio value, 

( , ) ( , ) ( , )I I
t t tV t N t N V t Nδ− , in the risk-free asset. The numerical implementation of hedging 

strategies can be achieved in a more realistic case through a binomial tree as detailed in 
Laurent et al. (2007) or by means of Markov chain techniques.  
 
Eventually, we have build up a complete market model in which CDO tranche prices can be 
fully replicated by dynamically trading the CDS index and the risk-free asset and the 
associated hedging strategies can be derived explicitly. On practical grounds, another nice 
feature of the model concerns the estimation of model parameters from CDO tranche market 
quotes. As described in Laurent et al. (2007), the knowledge of upfront premiums of equity 
CDO tranches with different maturities and detachment points (and given some recovery rate) 
is equivalent to the knowledge of marginal distributions of the number of defaults at different 
time horizons. Thanks to the forward Kolmogorov equations, one can then perfectly compute 
the intensities of the aggregate loss process or the pre-default intensities. Such fully calibrated 
and Markov model is also known as the local intensity model. This parallels the local 
volatility approach of Dupire (1994) in the equity derivatives context where the dynamics of 
underlying assets are driven by a diffusion process as opposed to a finite state Markov chain 
in the case of credit portfolio derivatives. As in local volatility models, local intensity models 
allow for a perfect match of unknown parameters from a complete set of CDO tranches 
quotes. In this context, Cont et al. (2009) have computed an analogue, for credit portfolio 
derivatives, of the Dupire’s well known formula. This is based however on the (rather hidden) 
assumption of no simultaneous defaults.  
 
Another promising approach regarding hedging in a Markovian environment is the Markov 
Copula approach developed by Bielecki et al. (2008). In this full dynamic bottom-up 
framework, default indicators form a multivariate Markov process. The important point is that 
each individual default indicator is assumed to be a Markov process (in its own filtration). 
Under the latter assumption, there is no contagion effect in the sense that the default of a 
given name does not yield a change in the default intensities of the non-defaulted names. 
However, as this is also the case in common-shocks models, defaults may occur 
simultaneously13. The latter assumption is crucial on practical grounds since, it allows the 
calibration of model parameters to be dealt with exactly the same way as in a standard static 
copula set-up. Indeed, the calibration process can be performed in two separate steps. Firstly, 
individual default intensities can be pre-calibrated on single-name CDS curves and secondly, 
dependence parameters (intensities of joint defaults) can be fitted on CDO tranche quotes. 
Bielecki et al. (2010) provide a common-shocks model interpretation of this framework so 
that efficient convolution recursion procedures are also available for pricing and hedging 
static basket instruments like CDO tranches. Additionally, the Markovian structure of the 
model allows one to address the hedging issue in a dynamic and theoretically consistent way. 
 

                                                 
13 The possibility of simultaneous defaults may also be seen as an extreme contagion effect. 
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Until now, we have considered that credit spreads are driven by defaults and we have stressed 
that it leads to a complete CDO tranche market where the hedging can be fully described in a 
dynamical way. We will now use the same methodology to analyze the hedging issue in a 
completely different framework where spreads and defaults are both driven by a multivariate 
diffusion process. This corresponds to a multivariate extension of the Black-Cox (1976) 
structural model. 
 
I.8 Hedging credit portfolio derivatives in multivariate structural models 
 
One may compare the previous framework with the standard structural approach, where 
default time of a given name is defined as the first hitting time of a barrier by a geometric 
Brownian motion associated with the asset process of the corresponding name. Hull et al. 
(2005) investigate the pricing of CDO tranches within a Gaussian multivariate structural 

model, similar to the one presented in this section. Let ( ) 0t t
W

≥ , ( )1, , n
t t tW W W= …  be a n -

dimensional Brownian motion whose components are correlated by the same dependence 

parameter ρ , i.e., for any i j≠ , ,i j

t
W W tρ= . We denote by ( )

0

i
t t

F
≥

, the natural filtration 

associated with iW , 1, ,i n= …  and ( ) 0t t
F

≥ , 
1

n
i

t ti
F F

=
= ∨  the natural filtration associated with 

W . For any firm 1, ,i n= … , we consider that the asset value iA  follows a non-negative 
diffusion process under the historical probability measure P , i.e., 

i
it

i i ti
t

dA
dt dW

A
µ σ= + , 1, ,i n= … , 

where the expected rate of return ( )1i i n
µ µ

≤ ≤
=  and the diffusion rate ( )0i i n

σ σ
≤ ≤

=  are n
ℝ - 

valued. In this framework, the default times are defined by { }inf 0 i
i t it A bτ = ≥ ≤ , where ib  

denotes the threshold associated with firm i . In that structural model, dependence between 
default times stems from the correlation between the asset values. For calibration of default 
probabilities over different time horizons, the barrier needs however to be time dependent, 
which does not change the main features of the model.  
 
Roughly speaking, the value of assets for a given firm i  can be replicated by holding the debt 
and the equity part of its liabilities which can both be seen as tradable securities. This 
legitimates, at least on theoretical grounds, the role of firm’s assets as primary hedging 
instruments in this framework. Using a multivariate extension of the Girsanov’s theorem for 
correlated Brownian motion, it is possible to define a pricing measure Q , equivalent to the 
historical probability measure P , and such that discounted asset values are Q - martingales. 
Moreover, the latter change of probability measure does not perturb the dependence structure 
among dynamics of asset values. More specifically, the new Brownian motions 1, , nW Wɶ ɶ…

 
driving the dynamics of 1, , nA A…  under the probability Q  are still correlated with the same 

dependence parameter ρ , i.e., for any i j≠ , ,i j

t
W W tρ=ɶ ɶ . Furthermore, it is well known 

that the completeness of the market is guaranteed in this framework as far as the correlation 
matrix of W involving parameters 1, , nσ σ…  and ρ  is invertible. One can then perfectly 

replicate any TF -measurable payoff by holding a self-financing portfolio composed of firm’s 

assets 1, , nA A…  and the risk-free asset. 
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In this first-passage structural model, the cash-flows of credit default swaps written on name 
1, ,i n= …  can be synthesized as a combination of barrier options. Indeed, the cash-flows on 

the default leg are the same as the ones of a down-and-in barrier option with a fixed loss 
payment at the time when the value of assets falls below the pre-specified threshold. As for 
the premium leg, it can be replicated using a set of down-and-out barrier options with 
maturity dates equal to premium payment dates. It is then possible to relate the replicating 
price of a credit default swaps to replicating prices of barrier options. Clearly, the price of a 
CDS written on a given name i  is a Markov process with respect to the natural filtration 
associated with iWɶ since the cash-flows are only driven by the dynamics of iWɶ . As a result, 
the dynamics of CDS i  only involves the dynamics of iWɶ . 
 
Credit default swaps are described here as derivative instruments, but they can be used to 
dynamically hedge more complex products such as CDO tranches. This relies on the building 
of a self-financing portfolio including the risk-free asset and the dividend-bearing credit 
default swaps. Once the dynamics of each individual CDS has been found, it is 
straightforward to describe the dynamics of the replicating portfolio, given some pre-specified 
hedging strategies (predictable processes). 
 
The hedging of CDO tranche price is then theoretically feasible thanks to the predictable 
representation theorem for multivariate Brownian martingales that holds under the pricing 
measure Q 14. Let us consider some TF –measurable Q–integrable payoff A . This typically 

includes the payoff of CDO tranches or basket default swaps15 maturing at date T . Then there 
exists some tF –predictable processes 1, , nθ θ…  such that:  

 
1

Tn
Q j j

t s s
j t

A E A F dWθ
=

=   +  ∑∫ ɶ . 

Hence, the dynamics of CDO tranche prices can be described in terms of the dynamics of the 
correlated Brownian motions 1, , nW Wɶ ɶ… . Theoretically, the hedging strategies can be found 

by identifying the Brownian terms in the dynamics of the replicating portfolio and in the 
dynamics of CDO tranche prices16. 
 
Let us note that when a default event occurs, the hedging position in the corresponding CDS 
is used to cover the loss. Then, from that time, the hedging portfolio contains one fewer CDS 
than before. But, since future cash-flows of CDO tranches are driven by the possible defaults 
of the non-defaulted names, CDS are not anymore required for hedging after extinction. This 
feature should be captured by the hedging strategies computed in this framework. 
 

                                                 
14 Let us note that this theorem is usually written for martingales adapted to a filtration generated by a standard 
Brownian motion with independent components.  However, as an intermediary step, the correlated Brownian 

motion Wɶ  can be expressed as the product of the square root of its correlation matrix with a standard n -
dimensional Brownian motion with independent components. As a result, any payoff contingent to the dynamics 

of Wɶ  up to time T  can be described as a sum of stochastic integrals with respect to 1, , nW Wɶ ɶ… . 
15 At least when recovery rates are assumed to be deterministic. 
16 Let us note however that the dynamics of CDO tranche prices is very difficult to make explicit in this 
framework since it involves the joint law of some correlated first passage times. 
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On practical grounds, one can remark that prices of credit default swaps and CDO tranches 
are Markovian processes in this framework and, by Feynman-Kac’s theorem, they are also 
solutions of particular partial differential equations (PDE)17.  
 
While the former Markov chain approach focused on default risk, neglecting credit spread 
risk, the structural approach deals with credit spread risk only. Default times are predictable 
stopping times with respect to the Brownian filtration and do not constitute an extra source of 
risk. Finally, the structural approach defines a complete CDO tranche market governed by 
spread risk and in that sense it can be seen as the dual counterpart of the Markovian contagion 
approach. 
 
Fermanian and Vigneron (2009) tackle the problem from a slightly different perspective. 
Starting from a one factor Gaussian copula model, they are able to specify the dynamics of 
zero-coupon CDS (or equivalently conditional survival probabilities) that leads to perfect 
replication of European-type payoffs. Unsurprisingly, the completeness of the market is 
guaranteed when the correlation parameter used in the one factor Gaussian copula model 
corresponds to the correlation between Brownian motion driving the dynamics of zero-coupon 
CDS. Subsequently, they attempt to relate their framework with the multivariate extension of 
the structural model presented above but numerical investigation in that case seems to be 
cumbersome and is postponed for further research. Using market quotes of CDO tranches on 
recent series of iTraxx and CDX main indices, they instead perform a back-test investigation 
of correlation parameters (called break-even correlation) that would have been plugged in the 
one-factor Gaussian copula model in order to perfectly replicate a CDO tranche with the 
underlying single-name CDS, given a spread scenario. This method is a first step towards the 
practical implementation of hedging strategies in a complete market model driven by credit 
spread risks. 
 
Multivariate structural models are consistent with popular dynamic credit risk models such as 
CreditMetricsTM and Moody’s KMV. They permit to deal with joint credit migration (changes 
of credit ratings) amongst a wide range of names and with stochastic recovery, following the 
lines of Krekel (2008). Clearly, the multivariate Gaussian assumption is simplistic and 
questionable, but as in the previous Markov chain allows to derive unambiguous self-
financing replicating strategies for CDO tranches. 
 
I.9 Comparison with other approaches 
 
We have presented a dual view of complete market models, the former focusing on default 
risks while the latter concentrates on credit spread risks. The nature of default times differs 
from one case to another. In the former, default times are totally inaccessible stopping times, 
while in the latter case, default times are predictable. Given these two scholar models, we will 
set out the main theoretical features of hedging CDO tranches, coming to light whatever the 
underlying model. We will also try to highlight the commonalities (if any) between the 
approaches. 
 
a) Filtration 
 

                                                 
17 In the case of CDS, these PDE can be solved numerically either using finite difference methods or algorithms 
based on recombining trees. Regarding CDO tranche prices, the dimension of the PDE is too large to consider a 
direct numerical resolution method. CDO tranche prices should be computed using Monte Carlo simulations 
instead. 
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A first issue is related to the choice of filtration. In order to deal with the hedging issue in a 
consistent dynamical way, one must start with the specification of a filtration. However, there 
are several ways of defining the information flow that is available to the modeller.  
 
Enlargement of filtration 
 
A first approach (generally associated with reduced form models) involves a reference or 
background filtration, generally driven by a jump-diffusion process which captures the 
evolution of some macro-economic factors or prices of default-free assets. An important point 
is that the background filtration does not provide enough information to predict with certainty 
at a given date whether the default of a name occurs or not. In other words, default times are 
not stopping times with respect to the background filtration. One needs some extra 
information to predict defaults. A natural idea is to expand this initial filtration with the flow 
of information provided by the dynamics of defaults. This is referred to as the progressive 
enlargement of filtration technique which has been extensively studied in the literature. An 
important issue associated with this technique is the so-called immersion property or H-
hypothesis under which martingales in the reference filtration remain martingales in the 
global enlarged filtration. Indeed, to preclude arbitrage opportunities in the default-free 
market, discounted default-free asset prices are assumed to be martingales with respect to the 
reference filtration (under a risk-neutral measure). Under the H-hypothesis, the no-arbitrage 
property is preserved in the global filtration, which is only the case in very particular 
situations. This has been pointed out by Jeanblanc and Le Cam (2009) in a single-name 
setting or by Bielecki et al. (2010) for top-down credit risk models. For instance, it is well 
known that the H-hypothesis is satisfied in a single-name Cox model where the default time 
corresponds to the first jump instant of a doubly stochastic Poisson process. This is also the 
case in some very particular multivariate extensions of the latter framework where default 
times are assumed to be independent or ordered as shown in Ehlers and Schönbucher (2009). 
 
Direct specification of the entire set of information 
 
Another interesting and promising approach is the one proposed by Hitier and Hubert (2009). 
Compared with the previous approach, this construction follows the opposite direction. Hitier 
and Hubert (2009) consider a filtration for which default times are totally inaccessible 
stopping times and admit default intensities adapted to this filtration. Using the terminology 
of Jeanblanc and Le Cam (2007), this corresponds to an “intensity based approach” as 
opposed to the previous enlargement of filtration approach also called “hazard process 
approach”. The idea is then to divide the initial filtration into two subfiltrations, the first being 
associated with a background intensity process independent of default events and the second 
being driven by defaults. They however assume that the background intensities are equal to 
the initial intensities before the arrival of the corresponding default and show that this 
hypothesis is implied by the classical H-hypothesis. An alternative route (generally associated 
with structural models) is to start with a filtration under which default times are predictable 
stopping times (or at least accessible, i.e., not totally inaccessible). This is typically the case 
for jump-diffusion structural models for which the initial filtration contains information 
associated with the asset value process and possibly related to a random barrier.  
 
Alteration or reduction of the initial set of information 
 
However, it is reasonable to assume that CDS or bond investors do not have the same 
information set as firm managers. Starting from a structural approach, there are several ways 
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of specifying how the information set can be altered or obscured. Duffie and Lando (2001) 
build up the investor’s filtration by first adding noise to the asset value process and sampling 
this noisy information set at some particular discrete dates. Goldberg and Giesecke (2004) 
start with a random-barrier structural model and assume that the threshold level is not known 
by the investor. Çetin et al. (2004) assume that the investor only observe whether the firm’s 
cash-flows are positive or negative. In the approach by Guo et al. (2005), the asset value is 
only available at some discrete dates and with an additional delay or lag. In all the latter 
approaches, it is assumed that the investor can also observe the default event. As a 
consequence, the set of information available to the investor is defined by the smallest 
filtration containing the set of altered information and such that default times are stopping 
times. Interestingly, under this coarser filtration, default times are totally inaccessible 
stopping times and admit default intensities yielding to a reduced form modelling approach. 
As we fall in the class of reduced form approach, a natural investigation is to check whether 
the immersion property holds. When the asset value process is obscured by a diffusion 
process, this is effectively the case as shown in Coculescu et al. (2008). The reader is referred 
to Jarrow and Protter (2004) for a detailed analysis of the link between structural and reduced 
form models in the case of incomplete information.  
 
Whatever the techniques used to specify how information is dynamically disclosed to the 
modeller, default times are finally always defined as stopping times with respect to a given 
filtration. However, depending on the modeller’s access to the overall information, default 
times can be either predictable, totally inaccessible stopping times but also stopping times 
which are neither predictable nor totally inaccessible (as this is the case for instance for jump-
diffusion structural models where negative jumps can impact firms assets’ dynamics). 
 
b) Martingale representation theorem and completeness of the market 
 
The existence of a martingale representation theorem is a key ingredient regarding the 
hedging issue. Given a model specification, i.e., introduction of an underlying probability 
measure, description of sources of randomness, and construction of an information set, it 
provides a nice representation of martingale processes in terms of fundamental elementary 
martingales such as Brownian motions or compensated (marked) point processes. More 
precisely, it states that the dynamics of any martingale process can be expressed as a linear 
combination of some fundamental martingales, the weights being associated with some 
predictable processes. In particular, it allows one to represent the dynamics of any contingent 
claim in terms of the dynamics of the fundamental martingales. The martingale representation 
theorem is thus the right mathematical tool to study the completeness of the market model. 
 
c) Hedging instruments 
 
Another common ingredient associated with the hedging issue concerns the specification of 
tradable hedging instruments. Let us note obviously, that the question of the market 
completeness has to be addressed in connection with both the specification of a market model 
and the description of some liquid hedging instruments. Typically, one could think of credit 
index default swaps, CDS on names with possibly different maturities, standardized synthetic 
single tranche CDOs. However, to simplify the theoretical analysis, it is often convenient to 
assume in a first stage that stylized default-contingent products are traded on the market, 
provided that actually traded hedging instruments can be fully replicated using these 
simplified products. 
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e) Change of probability measure 
 
The natural way of defining a credit risk model is to start with the construction of default 
times under the physical probability measure. However, when arbitrage opportunities are 
precluded, one can find an equivalent probability measure also called pricing or risk-neutral 
measure under which discounted prices of (non-dividend bearing) primary assets are 
martingales. This is very convenient both on practical and theoretical grounds. The pricing 
measure is built up thanks to an equivalent change of probability measure involving a Radon-
Nikodym density similar to the one involved in the classical Girsanov’s theorem. However, 
Coculescu et al. (2007) show that, in an intensity model, the immersion property is not 
preserved by an equivalent change of probability measure, which may explain why in so 
many approaches, the model is directly specified under a given risk-neutral measure. 
 
II) From theory to hedging effectiveness 
 
In theory, theory and practice are the same. In practice, they are not. Albert Einstein 
 
Starting from the simplest cases of a complete market and either Markov chain or structural 
models, we tried to show that most multivariate models of defaults involve more or less the 
same basis ingredients, though we still lack a simple to state and comprehensive mathematical 
framework. 
 
Rather than concentrating on the internal features of a pricing (and possibly hedging) model, 
such as the relevant filtrations, conditional default probabilities, aggregate loss or credit 
spread dynamics, we should think of the outcomes of a hedging model for CDO tranches. 
These are rather simple: a set of hedging instruments, CDS in most cases, sometimes other 
CDO tranches are also considered, and hedge ratios with respect to the hedging instruments. 
A key point is that the outputs are the same for instance in the structural or in the Markov 
chain models described above. Thus, it will be possible to derive some comparisons between 
models built upon different premises, for instance their ability to reduce the risk of a CDO 
tranche through a dynamic trading strategy. This will lead to back-testing approaches and it 
turns out to be an econometric rather than a theoretical issue.  
 
More precisely, a pricing and hedging model is usually associated with a parameterized set of 
trading strategies and to proceed with any comparison, we must specify how the parameters, 
for instance some correlation or contagion parameters, are set and updated. As will be 
discussed below, such a choice is likely of first importance with respect to hedging 
performance, though such calibration or estimation of hedging parameters is usually neglected 
in theoretical approaches.  
 
We do not claim that pricing is irrelevant with respect to the hedging problem. Usually, 
pricing models are calibrated on liquid market quotes18. Then, such a calibrated model can be 
used in a predictive way. If we assume that the implied parameters, say, correlation 
parameters for base tranches, are constant over some (short) time interval or evolve according 
to some predefined rule, then, given some new quotes of underlying CDS (say), one should be 
able to predict the change in market value of a tranche and thus the required amount of 
hedging CDS. Thus, pricing models that are associated with implied parameters with smooth 
patterns over time are likely to be useful for risk management purpose too. The same line of 

                                                 
18 Provided that these are available, an assumption which is problematic during periods of market disruption. 
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reasoning will be detailed below when considering the connection between hedging and the 
pricing of bespoke CDO tranches. 
 
Going further along these general statements, we also recall that any pricing and hedging 
model associated with perfect replication will be rejected by data with probability one: first, 
such models are associated with non noisy relationships between CDO tranches. Then, 
completeness precludes any hedging residual. We thus deal with misspecified models and 
should not consider such misspecification as a rejection a priori of a pricing and risk 
management framework. We should rather focus on the degree of misspecification as for 
instance assessed by hedging performance19.  
 
Another important practical topic is related to stability of hedging performance over different 
periods and under different economic regimes or market contexts. Certainly, one would most 
likely chose an all-roader that could both cope with the idiosyncratic auto crisis of 2005 and 
the systemic crisis of 2007-2009. This view is also related to a stationary world and objective 
probabilities, which is rather comfortable, but is also questionable when dealing with financial 
markets. The notion of regimes of volatility, which has been popularized by Derman (1999) in 
equity markets might also be applicable in correlation markets. Clearly, identifying the 
relevant regime is an issue, but it seems a rather unrealistic objective that a simple to 
implement hedging strategy would supersede its competitors in any context20.  
 
The above remarks may look thought-provocative from the standard mathematical finance 
and modelling point of view. We do not claim that a model does not need to rely on 
understandable, sound and clear economic intuition and internal consistency. But on the other 
hand, looking for the perfect fit leads to extra implementation costs, blurs the key and 
ancillary features, obscure internal and external communication about risk management and 
increase operational risks. 
 
This is why we deliberately favoured the multivariate structural model and the Markovian loss 
models21. Both allow the derivation of replicating strategies of CDO tranches. Calibration is, 
at least at first sight, rather easy. Moreover, the one factor Gaussian copula has become the 
standard model as measured by market acceptance, for pricing and hedging purpose (see 
Finger (2009)). From Hull, Predescu and White (2005) or Cousin and Laurent (2008a), we 
know that the Gaussian copula dependence is quite similar to the one that comes out of the 
multivariate structural model: At least for investment grade names, default is not likely to 
occur shortly after inception. The Gaussian copula might be viewed as a one step version of 
the multivariate structural model. Thus, deltas with respect to underlying CDS are likely to be 
quite similar in the two approaches. We will follow thereafter this route22. Since deltas 
                                                 
19 One could argue that the new generation of top-down models takes the loss surface or equivalently the set of 
CDO tranches quotes as inputs, as is the case with HJM models in the interest rates framework. However, such 
models are not aimed at risk managing plain CDOs, which seems to be the key issue today, but rather focus on 
more complex payoffs, such as CPDOs or leverage super senior tranches. 
20 In a recent work, Cont et al. (2009) investigate the hedging abilities of the Gaussian copula model and of the 
Markovian contagion model (local intensity model in their terminology). They look for regimes where one 
model would outperform the other. They show some robustness of the Gaussian copula approach. 
21 Frey and Backhaus (2007, 2008), Arnsdorf and Halperin (2007) provide some Markovian loss models which 
are more versatile, but also more difficult to handle. 
22 We might have alternatively considered the Gaussian copula as a (non Markovian) contagion model. If one 
restricts to the natural filtration of default times, defaults are informative; they bring some information about the 
latent Gaussian variables of the non defaulted names. The jumps of credit spreads at default times depend upon 
derivatives of the survival function and there is a singularity at time zero. This is not however the common way 
to appraise the Gaussian copula. If one were to observe the path of assets associated with different names instead 
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associated with the multivariate structural model are well understood and lead to perfect 
replication of CDO tranches when concentrating on spread risk (defaults are predictable), we 
can think of deltas coming out of the Gaussian copula model to have some economic 
significance23. As discussed above, Fermanian and Vigneron (2009) propose a different 
approach. They look for some dynamic models consistent with the credit spread deltas 
obtained from the Gaussian copula model. 
 
II.1 Hedging with CDO tranches 
 
If you want to know the value of a security, use the price of another security that is as similar 
to it as possible. All the rest is modeling. Emmanuel Derman 
 
Hedging of CDO tranches with other tranches on similar underlying portfolios, with close 
attachment-detachment points and maturities is likely to be the more efficient and least costly 
way of pricing and risk managing a book. To go a bit further, we could speak of spatial versus 
dynamic hedging. To properly implement such a static hedging some kind of metrics or 
proximity between payoffs is required and this usually involves a model. For instance, given a 
joint distribution of default times in a bottom-up model, one might use a set of liquid CDO 
tranches to minimize the  2ℓ - norm hedging error within a book of bespoke tranches24.  
 
One could either proceed with a linear regression based on historical data. Obviously, to go 
along this approach, historical data is required25. Let us for instance consider the hedging of 
an equity tranche with a junior mezzanine tranche on a standard index such as iTraxx Europe 
Main or CDX NA IG. Here, one has to keep in mind that the historical and the model based 
approaches to static hedging are rather different. There is no reason why the static hedge ratio, 
i.e., the coefficient in the regression of the payoff to be hedged on the hedging payoff has to 
be constant over time. For instance, going further in the above example, as the expected loss 
on the underlying portfolios changes over time, the moneyness of the equity and junior 
mezzanine tranches do not change accordingly and the ratio of theoretical deltas (in almost 
any theoretical hedging model) is likely to vary. This first point is fairly obvious. Also, at 
different points in times, the market views may change. This does not concern only the mean 
of the underlying portfolio, but other statistical features, such as, say, the degree of 
dependence between default times. Eventually, there is no reason of a stable and linear 
relationship between tranches over time which weakens the purely statistical approach and 
calls for the use of a model for conditional (upon the current information) and epistemic26 
distributions of default times.  
 
                                                                                                                                                         
of the terminal values, contagion would disappear.  About ten years ago, while one of the authors was working 
on basket credit derivatives, the preferred model was a structural model based on multidimensional NIG 
processes and a factor structure. Prices and Greeks were computed by Monte Carlo, which was quite slow, 
especially for the Greeks. At one point in time, the model was downgraded to a static one, but in most cases, 
prices and Greeks were quite similar. We would definitely need a more systematic investigation of this point. 
23 In theory, one should start with the computation of the derivatives of the value of the CDO tranche and of 
hedging CDS with respect to underlying state variables, here the asset values at the current time. Then, the 
amount of hedging CDS is the ratio of the above derivatives. Market practitioners rather make the derivation 
with respect to the default barrier, or in a static approach with respect to the default threshold. This can also be 
seen as a shift in credit spreads, often of one basis point. 
24 Given a conditional (upon current information) joint distribution of default times, it is possible to compute the 
covariances of the bespoke payoff and of the liquid tranche payoffs and thus to derive the optimal static hedge. 
25 Typically, daily or weekly data are used. This requires prices for the payoffs to be hedged and the hedging 
instruments. As a consequence, this approach is not well suited to hedge non standard tranches. 
26 Reflecting risk managers views about the future. 
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Designing hedging strategies using CDO tranches does not require the minimization of some 
hedging error and can be conducted through some pricing model, usually some variant of the 
Gaussian copula model. 
 
Based upon a simple implementation of the Gaussian copula model27, Ammann and 
Brommundt (2009) report that the standard deviation of the changes in value of a delta-
hedged tranche, with an adjacent tranche, is about two times smaller than that of an unhedged 
portfolio. One could expand upon that, and use the Gaussian copula model to hedge, say, a 
junior mezzanine tranche against an equity tranche and the credit default swap index. In 
theory, one should be able to hedge both against small and large movements of the index, that 
is both delta and (parallel) gamma risks. Actually, since equity tranches are associated with 
large idiosyncratic gamma risks, such approach is perilous. Some still remember that similar 
trades with positive carry were popular up-to the 2005 auto crisis, when some investors had to 
cut positions with heavy losses: see Petrelli et al. (2006, 2007). We can also mention that this 
kind of Taylor expansion based approach to hedging lacks some theoretical rigour since 
higher order terms may not be associated with vanishing risks. Given this, it is not surprising 
that hedging a given CDO tranches with two different tranches may lead to a decrease in 
hedging performance (Ammann and Brommundt (2009)). 
 
An important and practical topic is the pricing and risk management of bespoke tranches. 
These are tranches based upon credit portfolios that differ from standard indexes, usually with 
higher credit spread names. Turc et al. (2006), Baheti and Morgan (2007) describe different 
ways to compute correlation parameters depending upon the average credit spread of the 
bespoke portfolio. Ding and Sherris (2009) use these ideas to build and check different 
hedging strategies of standard CDO tranches. Given some stated dependence between 
correlation and credit spreads, one can compute the total derivative of a CDO tranche with 
respect to a shift in credit spreads. For instance, using the moneyness matching approach in 
Turc et al. (2006), an increase in credit spreads is associated with an increase in the expected 
loss and thus a decrease in the detachment point of the “equivalent” equity tranche. Since base 
correlations curves are usually upward sloping, an increase in credit spreads is thus associated 
with a decrease in base correlations. Of course, keeping the correlation parameters constant is 
a special case corresponding to usual delta computations. 
 
Another common issue is the hedging of non standard tranches on standard indices, such as 
iTraxx or CDX. It may also concern super-senior tranches or on the contrary first losses 
tranches, thin tranchelets, for instance a [5%-6%] tranche on the iTraxx and eventually short 
term contracts especially as older series mature. Some commonly described approaches lead 
to difficulties28. One has to deal with standard no arbitrage constraints on expected tranche 
losses, which are also related to super-replication prices as discussed in Walker (2008). This 
actually provides some help, but still leads to a wide range of admissible prices and hedge 
ratios in a number of cases. This also raises the issue of the availability and reliability of 
prices of such non standard tranches. During the liquidity and credit crisis, the spreads of 
super senior tranches widened dramatically. This was partly due to the fear of systemic and 
contagion effects in the credit world. But it may also be that huge short positions by major 
participants, such as AIG, could not be held due to the lack of collateral, and possibly some 

                                                 
27 Large homogeneous portfolio approximation. 
28 For instance, careless approaches based upon the interpolation of base correlations may lead to negative 
tranchelets prices, the use of base correlations is associated with non local effects in correlation analysis and 
extrapolation is often hazardous. Moreover, hedge ratios also depend upon somehow arbitrary recovery rate 
assumptions. See below about delta scattering and model implementation. 
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predatory trading have emphasized the price of super senior protection. In such a period of 
stress and market dislocation, one can rightfully wonder about the significance of transaction 
prices. 
 
II.2 Back to back-testing 
 
A theory is something nobody believes, except the person who made it. An experiment is 
something everybody believes, except the person who made it. Albert Einstein. 
 
Let us now go back to comparing dynamic hedging strategies of CDO tranches based upon 
credit default swaps. We will focus upon a number of methodological issues and about some 
results that come out of the small number of empirical studies.  
 
Our message is twofold: 
 
First, there are numerous statistical and practical issues, when assessing hedging performance, 
which cannot clearly be seen from the bird’s-eye view of academic mathematical finance. 
These will be detailed thereafter and as a consequence drawing comparisons between 
different “models” is difficult. 
 
Then, credit spread deltas of CDO tranches, with respect to credit default swap indexes, as 
obtained from the Gaussian copula approximation of the structural model and default deltas 
are not that different one from another. Moreover, static deltas obtained from dynamic Cox 
models are not different either. The discrepancies between the models can be given some 
economic intuition, based upon the correlation dynamics or equivalently the mechanism of 
default contagion. These deltas lead to risk reducing hedging strategies. Actually, it suggests 
that market practice is far from being vacuous, since risk management amongst trading desks 
relies mainly upon variations of the Gaussian copula approach. This is rather good news at the 
level of an investment bank, though it does not necessarily solve for systemic issues, where 
major trading firms appear to have similar long or short exposures to be hedged.  
 
Our main focus regarding comparing models will be the use of the Gaussian copula and of the 
Markov loss model described above. As discussed earlier, the Gaussian copula is viewed here 
as some approximation of a costly to implement structural model. Both models are widely 
used amongst practitioners and have sound and easy to understand theoretical foundations. 
We will not pay of lot of attention to so-called intensity models, one should either say models 
based on Cox processes, due to their difficulties in dealing with the high degree of 
dependence between default events, as seen during the credit and liquidity crisis29. Similarly, 
we will only briefly deal with incomplete market approaches even though some seem to be 
associated with appealing hedging efficiency. These approaches are a bit trickier on 
theoretical grounds, since the connection between the pricing and the hedging is not as 
obvious as in the case of complete market models. 
 
Before going further in comparing hedging strategies, a few points need to be stated. 
 
At this stage, partly due to practical constraints, back-test studies have involved the use of 
indexes rather than individual credit default swaps. In other words, the amount of credit 
default swap used in the hedging portfolio is name independent. This is questionable 
                                                 
29 Regarding hedging issues, Laurent (2006) deals with such models. It is shown that due to default 
diversification in large portfolios, the hedging error can be controlled by hedging credit spread risk only. 
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especially when the dispersion of credit spreads amongst the underlying portfolio is 
significant. For instance, such name heterogeneity is likely to involve higher credit deltas in 
equity tranches for risky names. This issue is discussed below where the scattering of 
individual name delta is being considered. 
 
When trying to simultaneously deal with default and credit spread risk, a view shared by some 
academics is to deal with credit default swap indexes of different maturities. However, we 
still lack some empirical studies to support such a view and there might be some operational 
difficulties in implementing these ideas. For instance, hedge ratios could be of opposite signs 
and large magnitude. In the studies we are aware off, the preferred hedging instrument is thus 
the credit default swap index of the same maturity than the considered CDO tranche. It would 
definitely be some interesting investigation to assess whether the use of credit default swaps 
of different maturities actually increases hedging performance. Preliminary and indirect 
evidence discussed below tend to show that credit spread deltas and default deltas are not too 
far away and suggest that a given position in the underlying credit portfolio could lead at a 
good hedge both against default and credit spread risks. 
 
Regarding the computation and the calibration of parameters, there are different issues30. We 
already mentioned that the Markovian loss model, in its simplest form, involves a set of 
contagion parameters which has the same dimension as the number of names (say 125), while 
there are much less pricing constraints (typically 6 for one horizon). Depending upon the 
calibration method, the dependence of the loss intensities to the number of defaults may vary. 
This is not innocuous from the point of view of delta computations.  
 
In the Gaussian copula model, there are also a number of issues, related to the way correlation 
parameters are determined, whether base or implied correlations are being used, whether these 
correlations are kept constant or updated as credit spreads change (correlation regimes). The 
principles of the hedging and risk management are fairly simple: the pricing tools are used to 
compute sensitivities to market inputs and to market parameters, such as credit spreads of the 
constituents of the reference credit portfolio. The main focus is put on credit spread risk, 
while default risk is usually dealt with a reserve policy. Such risks are managed thanks to 
credit index default swaps or CDS on the underlying names of the basket. Other risks, such as 
idiosyncratic and parallel gamma31 credit spread risks, or correlation exposure can be in 
principle managed by trading liquid index tranches across the capital structure.  
 
Let us emphasize a key issue when computing credit deltas in the one factor Gaussian copula 
model with base correlations. There are actually two approaches that can be denoted as 
“sticky strike” and “sticky delta” to parallel the terminology used in equity derivatives 
markets (see Derman (1999)). In the sticky strike approach, the base correlations are kept 
unchanged when bumping the credit curves. When computing “sticky deltas”, one takes into 
account the change in base correlations due to the change in the moneyness of the tranche 
when credit spreads move up: the equity tranche becomes more junior, which actually leads to 
using a smaller base correlation. In other words, in the sticky delta approach an increase in 
credit spreads is associated with a smaller dependence between default events. As a 
consequence, the sticky delta of an equity tranche is lower than the delta computed under the 
sticky strike approach. 

                                                 
30 We already briefly discussed some issues regarding the computation of hedge ratios when considering affine 
intensity models. 
31 Idiosyncratic Gamma is also denoted as iGamma and referred to as “microconvexity”. Parallel Gamma is also 
known as Index Gamma and referred to as “macroconvexity”. 
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Morgan and Mortensen (2007) have investigated some anomalies when using the base 
correlation for the computation of sensitivities. They show that credit spread deltas on iTraxx 
S7 5Y [12-22%] tranche can be negative due to the steepness of the base correlation curve. 
Such a counterintuitive effect32 is illustrated in the graph below: 
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Figure 1. Negative deltas due to the steepness of the base correlation curve. 

 
Example: consider a mezzanine [6-9%] tranche on a bespoke portfolio. The expected loss on the 
portfolio at inception is equal to 10%. Figures in solid lines show the present value of the default leg 
of the [0-6%] and [0-9%] base correlation tranches as a function of the expected loss on the portfolio. 
The base correlation for the [0-9%] is assumed to be very high, thus the volatility of the reference 
portfolio is quite small as the time value of the base tranche. Conversely, the base correlation of the [0-
6%] tranche is much smaller which is consistent with steep upward base correlation curves. Thus, the 
volatility of the (same) reference portfolio is much higher as the time value of the option. The present 
value of the default leg of the mezzanine [6-9%] tranche is the difference between the present values 
of the [0-6%] and [0-9%] base correlation tranches and should remain between 0 and 3% to avoid 
plain arbitrage opportunities. Given this constraint, it may be (see Figure 1) that the delta of the more 
junior tranche is smaller than the delta of the more senior tranche for some levels of expected portfolio 
loss. In such regions, the present value of the mezzanine tranche will decrease as the expected loss on 
the underlying portfolio increases which is rather unlikely. 
 
Also, when considering a bump in credit spreads in order to compute a hedging exposure in 
the credit default swap index, one may, for instance, operate a translation or rather chose a 
multiplicative effect, which clearly will not lead to the same magnitude of credit deltas for the 
different tranches. Recently, recovery rate assumptions have appeared of key importance. 
Prior to the liquidity and credit crisis, most market participants relied upon a standard though 
arbitrary recovery rate assumption of 40%. Since then, it appeared that such an assumption 
would not be consistent with the large spreads quoted on senior tranches. Various 
amendments, including a recovery markdown or different specifications of state dependent 

                                                 
32 Schloegl et al. (2008) show that such effects can also occur in arbitrage-free models. 
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stochastic recovery rate have been proposed by the industry (see Amraoui et al. (2009)). This 
has actually a significant impact upon hedge ratios, especially at the individual name level. 
Typically, the use of a stochastic recovery rate or a recovery rate markdown will tend to lower 
the exposure of senior tranches to tight names. The basis risk between the spread of the credit 
default swap index and the average spread of its constituents is another seemingly minor issue 
when computing hedge ratios. Such basis risk is mostly related to “transaction costs” and can 
fluctuate widely, especially during times of turmoil. This raises some doubts regarding the 
effective level of spreads and thus of expected loss and can have some effect on the 
computation of hedge ratios. Various choices and adjustments can be envisaged, none of them 
could actually be neglected when considering hedging efficiency. Other seemingly minor 
issues have to be dealt with in order to compute correlation parameters that are consistent with 
market quotes, such as the amortization of premium legs and the term structure of CDO 
tranche spreads33. 
 
Let us stress that, when constructing hedge ratios, the use of parameters that calibrate prices 
may not be the first-best. Gouriéroux and Laurent (1996) have developed a concept of 
objective based inference and implied hedging parameter, which might be well suited when 
conducting back-tests with misspecified models. 
 
Regarding hedging efficiency, we would first like to emphasize some similarities between the 
deltas associated with dissimilar models, Gaussian copula, Markov loss model and affine 
intensity models. 
 
Eckner (2007) or Feldhütter (2008) rely on an affine specification of default intensities. 
Conditionally on the path of default intensities, default times are independent, i.e., there are 
no contagion effects at default times. The model is parametric with respect to the term 
structure of credit spreads and to CDO tranches. Eckner (2007) calibrates model parameters to 
credit spreads and liquid tranche quotes associated with the CDX NA IG5 index. Hedge ratios 
with respect to the credit default swap index are then computed34. The sensitivities of CDO 
tranche and index prices are calculated with respect to uniform and relative shifts of 
individual intensities. The model deltas can be compared with those computed from the 
Gaussian copula model. As can be seen from Table 1, though the figures differ, the orders of 
magnitude are roughly the same. The equity tranche deltas computed in Eckner (2007) are 
slightly larger than those computed under the Gaussian copula, as in a “sticky delta” 
approach. Such a result is consistent with a market where an increase in the average credit 
spread is the outcome of some idiosyncratic shifts and an increase in the dispersion of credit 
spreads. This is typical of the May 2005 correlation crisis, which was actually associated with 
smaller correlations on the equity tranches. At this stage, some methodological points are 
worth mentioning. First, while the model is dynamic, the way hedge ratios are computed is 
typically static. One shifts some parameters related to credit spreads without relating such 
bumps to a theoretical approach of dynamic hedging. More importantly, practical grounds, 
there are different ways to inflate credit spreads, associated with different hedge ratios. For 

                                                 
33 We refer to Jobst (2007) or Meissner et al. (2008) (chapter 18 of Meissner (2008)) for further discussions 
about hedging CDOs within the Gaussian copula framework. On the numerical side, Andersen, Sidenius and 
Basu (2003), Iscoe and Kreinin (2007), among many other authors, provide semi-analytical techniques to 
compute sensitivities within the Gaussian copula framework. Joshi and Kainth (2004), Rott and Fries (2005), 
Chen and Glasserman (2008) detail some improvements of the Monte Carlo approach which are applicable to the 
pricing and hedging of CDO tranches, especially when one falls outside the factor framework. 
34 Let us remark that this model would hardly be calibrated during the 2008 crisis on CDX and iTraxx tranches.  
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instance, one can privilege a shift associated with the systemic component of the intensity, 
such a shift will be therefore associated with an increase in the dependence between defaults.  
 

Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
market deltas 18.5 5.5 1.5 0.8 0.4
model deltas 21.7 6.0 1.1 0.4 0.1  

Table 1. Market deltas and model deltas as in Eckner (2007). 
 
Arnsdorf and Halperin (2007) consider a Markov chain that accounts for the dynamics of 
defaults and credit spreads. This can be seen as a “two dimensional” Markov chain. Contrary 
to the previous model, defaults are informative and credit spreads jump at the arrival of 
defaults. The theoretical properties of the model with respect to completeness are not studied 
but Arnsdorf and Halperin (2007) compute deltas of standard iTrraxx tranches with respect to 
the corresponding credit default swap index. As in Eckner (2007), the deltas with respect to 
individual credit default swaps are not provided. However, one could think of using the 
random thinning procedure discussed in Giesecke and Goldberg (2005) or Giesecke (2008) to 
provide such individual deltas. 
 

Tranches [0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.3 0.7 0.3
model deltas 21.9 4.8 1.6 0.8 0.4  

Table 2. Market and model deltas as in Arnsdorf and Halperin (2007). 
 
Table 2 shows some market (computed under the Gaussian copula model) and model deltas 
(corresponding to “model B” in Arnsdorf and Halperin (2007)) in March 2007, for five year 
CDO tranches. As in Table 1, it can be seen that the figures are roughly the same. However, it 
is noticeable that equity tranche deltas are smaller when using the Markov chain. 
 
From a risk management perspective, an interesting feature is that the deltas with respect to 
underlying credit default swaps have the same order of magnitude in the different approaches. 
Let us first recall that, in the case of zero default-free interest rates, the default leg of a senior 
CDO tranche can be seen as a call option on a portfolio of discount bonds maturing with the 
CDO tranche. The above delta feature suggests that at a portfolio level, say an iTraxx or CDX 
index, a shift of credit spreads or a default event would have roughly the same effect on the 
expected portfolio loss dynamics. In other words, the same amount of CDS would lead to 
protection both against credit spread and default risks. This is quite preliminary and needs to 
be further confirmed by using an embedding framework.  
 
Though the pricing methodology differs, Eckner (2007), Arnsdorf and Halperin (2007), 
Laurent et al. (2007), Cont and Kan (2008), Feldhütter (2008), Cont, Deguest and Kan (2009), 
Cont et al. (2009) provide some examples of the use of dynamic arbitrage free pricing models 
to compute sensitivities with respect to credit spreads and thus hedge ratios with respect to 
credit default swaps. As mentioned above driving comparisons is never an easy task since one 
has to decide about the way model parameters are determined. This can actually explain some 
discordance between empirical studies regarding hedging efficiency of different models, 
especially since there is not so much difference between the computed deltas. While, 
unsurprisingly, the authors stress the divergences between hedging strategies associated with 
different modelling approaches, the relative errors, as measured by root mean squared error or 
the mean average hedge error, do not differ that much. 
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Regarding statistical issues, when assessing hedging performance, one should be cautious 
about the issues related to data snooping, multiple hypothesis testing or false discovery rate. It 
is tempting to embed a simple model in a larger one which is likely to be more flexible and 
involve more parameters. Then, the simple model appears to be restricted version of a more 
sophisticated one and we can check this restriction on parameters35. If the base model is not 
rejected, then most likely researchers will look for another extension until a new model is 
found which is claimed to supersede the older one. This is not a fair contest since the best 
alternative is chosen and one has to correct test statistics accordingly. In and out of sample do 
not correct for this data driven model selection, because comparing out of sample hedging 
performance is part of the standard model selection methodology. This strengthens our focus 
on simple models36. 
 
II.3 Delta scattering 
 
Up to now, we mainly concentrated on the hedging of CDO tranches with respect to the 
underlying credit default swap index. However, in many cases it makes sense to hedge at the 
name level, especially when the spreads associated with the index constituents are dispersed. 
A name with a large spread is more likely to contribute to the value of an equity tranche, and 
thus should be associated with a larger hedge ratio than a tight name. Likewise, an increase in 
dispersion of spreads should be associated with an increase in the value of the default leg of 
an equity tranche (and conversely for senior tranches). 
 
By construction, bottom-up models and especially copula type models, allow a name per 
name derivation of hedge ratios37. Regarding top-down models, the building of individual 
deltas is currently being investigated; random thinning, as some researchers advocate, might 
do the job. We leave this point for further discussion.  
 
Another issue with models than involve some kind of contagion is the scope of contagion 
effects. For instance, failure of a name within the CDX index may lead to jumps in the credit 
spreads of names in the iTraxx. In theory, such exposure should be hedged, which may be 
forgotten if one would consider the North American world separately. Likewise, such hidden 
name dependence appears in bespoke CDOs due to the mapping onto liquid indexes. 
 
As mentioned in the first paragraph, one is likely to expect a smooth and increasing pattern of 
credit deltas with respect to the spreads of the underlying names for an equity tranche, a 
decreasing pattern for senior tranches and possibly a humped shape for some mezzanine 
tranches.  
 
However, other issues came to light, such as huge discrepancies between individual name 
deltas and subsequently very large positive or negative idiosyncratic Gammas in high 
correlation regimes, as observed in 2008 on the iTraxx and CDX markets. Actually, when the 
dependence level between default dates becomes quite high, as could be seen during the 
                                                 
35 This first step may not be straightforward since the distribution of hedging errors needs to be derived. 
36 Even though, looking in greater details, there are still a lot of rather arbitrary and often not noticed modelling 
choices. 
37 See Cousin and Laurent (2008a), Cousin and Laurent (2008c) or Burtschell et al. (2009) for reviews of such 
bottom-up models within a factor copula framework. The sensitivity approach applies to copulas models that, 
contrary to the base correlation approach, provide arbitrage-free CDO tranche quotes. Schloegl et al. (2008) 
prove that tranchelet sensitivities are always positive in such a framework. Dealing with large amounts of data 
and the cost of numerical implementation drove early back-test studies towards using credit default swap 
indexes. 
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liquidity and credit crisis, strange phenomena occur. Names cluster together according to the 
level of credit spreads and credit deltas are either equal to zero or one (see Burtschell et al. 
(2009) for a detailed analysis). For instance, when looking at an equity tranche, the names 
with the highest credit spreads have a delta equal to one38, while the remaining names have a 
delta equal to zero. Such a phenomenon also occurs in the stochastic correlation model 
described by Burtschell et al. (2007). The bumps in Figure 2 are related to the comonotonic 
(perfect dependence) state and the heterogeneity amongst credit spreads. Such a rather 
counterintuitive pattern precludes the use of the credit default swap index as hedging tool for 
CDO tranches. Other heterogeneity effects in individual credit deltas are reported by Houdain 
(2006). 
 

 
Figure 2. Irregular patterns of individual names deltas in regimes of high correlation. 

 
Figure 2 exhibits CDO tranche deltas with respect to the level of credit spreads computed on 
31-August-2005. Nominal is equal to 125. 5-year credit spreads on the x-axis are expressed in 
basis points per annum. Credit deltas of the equity tranche are on right axis. Figure 2 shows 
that individual credit deltas may actually differ significantly from one name to another. 
 
Such irregular patterns of credit spread deltas will occur whenever pricing models involve 
some kind of threshold. This is for instance the case with the popular random factor loading 
approach of Andersen and Sidenius (2005). We want to stress that these patterns of credit 
spread deltas with respect to the level of credit spreads convey a lot of information. They 
almost directly show the amount of idiosyncratic gamma risks by the looking at the slope of 
such a curve. The higher the increase of credit spread deltas with respect to the level of 
spreads, the higher will the corresponding idiosyncratic gamma39. 
 

                                                 
38 There is always a matter of norm. Here the reference is the credit default swap index. One has also to care 
about the notional of the tranche in certain cases. 
39 Such a reasoning is not rigorous and holds at the first order. However, the approximation is usually quite good. 
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The increased efficiency of hedging at a name level is an important issue for trading desks 
but, as mentioned above, cannot be fully assessed unless the details of the hedging strategy, 
including the ways hedging parameters are calibrated are disclosed. 
 
Conclusion 
 
The wise man bridges the gap by laying out the path by means of which he can get from 
where he is to where he wants to go. John Pierpont Morgan 
 
This paper dealt with the usefulness of pricing and hedging models for the risk management 
of synthetic CDOs. We show that replicating strategies of CDO tranches can be replicated 
with self-financing strategies within the basic implementations of the multivariate structural 
model and of the Markovian loss (or local intensity) model. The former approach is primarily 
designed to hedge credit spread risks. In the latter approach, focus is put on hedging default 
risks and may involve a high degree of default contagion. In both cases, credit default swaps 
are traded to hedge CDO tranches and the involved mathematical tools, such as conditional 
default probabilities or the use of some martingale representation theorem, are the same. On 
other grounds these models are strikingly different and each of them could be criticized as too 
simple and missing some desirable empirical features. The mathematics of the multivariate 
structural model are well-known40. The Gaussian copula model, widely used in the banking 
industry, may be seen as a one step approximation of the multivariate structural model, 
especially for investment grade names associated with small default probabilities. This might 
explain some kind of robustness of the model and lays the path for a better understanding of 
its limitations. Such an issue has already been studied as far as pricing is concerned, but a 
formal investigation is still required for hedging. 
 
The overall picture regarding risk management of CDOs looks quite gloomy in the aftermath 
of the liquidity and credit crisis. Misconceptions about CDO of subprimes, such as the 
understatement of dependence across minitranches are now well-known and discussed (see 
Crouhy et al. (2008))41. If one dares looking at facts eyes wide open, it seems clear that 
trading desks managing synthetic CDOs had dissimilar performances, which is not surprising, 
regarding the number of technical issues briefly addressed within this paper. This does not 
invalidate various quantitative developments in the credit correlation field. According to K. 
Popper’s evolutionary view of science, researchers look for falsification of a theory or a 
model which represents the state of the art. For this reason, the burgeoning of credit risk 
models and more recently of back-testing approaches testifies to a vivid research field rather 
than rigor mortis. Let us consider the supplementary (and somehow challenging) view of T. 
Kuhn, “No theory ever solves all the puzzles with which it is confronted at a given time; nor 
are the solutions already achieved often perfect. On the contrary, it is just the incompleteness 
and imperfection of the existing data-theory fit that, at any given time, define many of the 
puzzles that characterize normal science”. Whether it is time to shift to another paradigm or 

                                                 
40 However, some details are, surprisingly enough, not yet described in the academic literature. We can think of 
using hedging instruments which vanish before the maturity of the CDO tranche, but are not anymore required 
after extinction. 
41 We can however notice that it does not invalidate the Gaussian copula model per se, provided that this is 
applied at the lowest level rather than at the minitranche level. When considering well diversified MBS 
mezzanine tranches, the idiosyncratic risks are wiped out and only systemic risks such as the price level in the 
residential mortgage market remains. It is not surprising therefore that the correlation between these 
minitranches would be much higher than assessed by rating agencies and that senior tranches of ABS were 
overpriced. 
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even abandoning the current quantitative finance “research programme42” is thus still 
unobvious. 
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