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Abstract

This paper intends to provide insights about thpctd issue of risk managing synthetic CDOs. We
stand in the grey zone between mathematical financefinancial econometrics, between academic
and market practitioners approaches. We chosergb gresent two scholar models, each of them
leading to perfect replication of CDO tranches vatedit default swaps. Though they rely upon rather
simplistic assumptions and are built upon differgm@mises, they lead to similar hedge ratios. \8e al
stress that the study of the hedging issue in theseapproaches involves the same basic theoretical
ingredients. We then discuss various problemseeltd the use of such models in designing hedging
strategies for CDO tranches and back testing oesagsy hedging performance. At this stage, it
appears that model based hedging strategies doihéhe risk management process. Even though
correlation markets had to face serious tests, mata related to short term maturity equity tranche
spreads and plain CDS are required to discrimiagénst competing modelling approaches.

Keywords: CDOs, hedging, replication strategiestkaiacompleteness, Markovian contagion models,
hedging efficiency, back-testing.
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I ntroduction

The theory is when you know everything and nothiacks. The practice is when everything
works and nobody knows why. We have put togetleahtory and practice: there is nothing
that works... and nobody knows Whybert Einstein

The risk management and the hedging of CDOs aateceproducts are topics of tremendous
importance, yet much has to be done both on theatetnd empirical grounds. The risks at
hand are usually split into different categoriebjali may sometimes overlap, such as credit
spread and default risks, correlation and contagisks. These will be the centre of our
discussion. This does not mean that these riskomin@gonal, for instance an increase in
credit spreads is likely to increase the occurresfcdefaults; due to contagion effects, the
arrival of defaults may trigger jumps in credit spds and changes in the dependence
structure between default times, etc. For simplicite will focus on the hedging of synthetic
CDO tranches on reference indexes such as iTraxapeuor CDX.NA.IG. The 2007-2008
crisis also drove attention to liquidity, countetparisks and related issues such as recovery
risk, collateral management, downgrading of guanantbasis risks which we will briefly
address. Focus was concentrated on the risks vadmior tranches and tail risks. Conversely,
the 2005 crisis, was driven by some rather speeifent, namely the widening of spreads in
the automobile sector and led to some disrupticgisvden equity and junior mezzanine
tranches, associated with idiosyncratic gamma askkunwinding of positive carry trades.

1 ISFA Actuarial School, Université Lyon 1, Univegside Lyon, 50 avenue Tony Garnier, 69007, LyoanEe,
areski.cousin@univ-lyon1.fhttp://www.acousin.net

2 |SFA Actuarial School, Université Lyon 1, Univaéside Lyon, 50 avenue Tony Garnier, 69007, LyoanEe,
and BNP-Paribagaurent.jeanpaul@free, finttp://laurent.jeanpaul.free.fr




Before going any further with hedging of CDO traeshwe need to account for the way
models are used and the reliance upon market \d&gavill take as an example the modelling
of dependence of default dates of names withineditportfolio. A quick glance at the
literature should convince us that it is a key pairdisentangling the hedging puzzle.

Ingenuously, we could think of a probabilistic ctvastion of default times that matches the
actual behaviour of defaults, spreads, tranche eguotissume that this probabilistic
construction could be perfectly determined and gfnagn some set of well identified hedging
instruments, we end-up with, maybe, a self-finagaieplicating strategy for CDO tranches.
Then, the hedging and risk management puzzle wded solved thanks to good

computational skills and eventually some kind afoaithmic hedging would consecrate the
reign of robots and expel from the trading roontiss@ats of quantitative analysts, traders and
risk managers, which are nowadays considered byuraber of bright minds as an

hybridization of dummies and crooks abusing andusiigy mathematics. This would likely

be the final stage in the evolutionary process #red “end of history” as far as credit

derivatives are concerned.

Actually, we subsequently describe two scholar nsdene belonging to the category of
contagion models, the other one to that of strattonodels, so thawithin the modelperfect
hedging strategies of CDO tranches can be compiied. is somehow good news since
credit might eventually no longer be the ugly duallof mathematical finance..

However, when it comes to putting models at wdnk, issue appears trickier that it looked at
first sight and the picture becomes blurred. Letassume for a while that the above
ingenuous modeller with superlative skills reacties Holy Graif of designing the true
probabilistic description of default times. Suclprababilistic model is likely to involve a
small set of correlation parameters (say it is eap@tric model). There should be some
parameters such that CDO tranches of any matattgchment and detachment point should
be matched at one fell swoop at any time. But, eflvere were to restrict to CDO quotes for a
given maturity, all parametric models we have imaniail the perfect calibration test and are
thus misspecified As a consequence, one cannot predict from scratet would be the
hedging performance of such a model, assumingptidiéect replication of CDO tranches is
meaningful within the above model, i.e., some faimarket completeness is achieved. For
instance, the structural model associated with matetlying multivariate Brownian motion
would most likely fail to price junior, mezzaninenda senior tranches with some flat
correlation matriX In terms of model specification, this means thatmodel is rejected with
certainty, since it predicts deterministic relaships across prices, which are inconsistent
with observed data.

In order to circumvent this issue, the usual way igelax some assumptions, such as constant
correlation, Brownian increments in asset priceg8pducing some clustering effects through

® For instance, some academics tend to think tieatise of a Gumbel, Clayton or a t-copula would haxgided
the pitfalls of the Gaussian copula approach. Wer e Burtschellet al. (2009), Cousin and Laurent (2008a),
Cousin and Laurent (2008c) or Gregory and Laur@®08) for reviews of a number of popular pricing
approaches.

* For this reason, some authors have considered Isjadeere the expected tranche loss surface isaut i
parameter. While, consistency with traded tranames at a given point in time is fulfilled by ctmgtion, this
approach has its own difficulties. It is not cleahether the loss dynamics will be consistent witle t
recalibration process. Moreover, as is known initgguarkets, a dynamic model (say a local volatilodel)
that is consistent with market data can be asstiaith poor hedging properties.

® By “flat” correlation matrix, we mean that paingisorrelation parameters are constant across names.



stochastic volatilit). This is not priceless. First, it leads to inceshsomplexity both on
numerical grounds and in understanding the reledgnamics. Then, one might lose some
suitable properties of the simpler model, suchhesexistence of self-financing replicating
strategies, which leads to difficulties in designioptimal hedging strategies (in incomplete
markets). Parsimony is for sure an important prigpef a relevant model. When it comes to
models where the number of parameters is largegtms even larger than the number of
liquid calibrating prices, one can rightfully quest the usefulness of such an approach. Also,
one may feel growing unease looking at this daieedrinference, where the purpose is to
find some probability distribution over default #s1which matches observed dataooking

at the world of defaults through such glasses amdrieg a risk management process from
that premise is a perilous adventure.

The culmination of the inverse problem of modeligiedrom market prices leads to some
nonparametric approaches such as the local vojatilodel in the equity field and its local
intensity counterpart in the credit domain (see tGomd Minca (2008), Cont, Deguest. and
Kan (2009)). This relies upon some hidden thoughimeocuous assumptions such as the
absence of simultaneous defaults. Moreover, givanessparse market data, one usually
needs to parameterize the local intensity, foraimse assuming piecewise linear dependence
upon the number of defaults. The devil is in thigdkof detail since credit deltas may actually
greatly depend upon such kind of arbitrary numéscaeme. For instance, when computing
a default hedge in a local intensity loss modet would need to assess the change of the loss
intensity after a first default, something whichoat be directly inferred from CDO tranche
guotes. It is worth remarking that these impliedhayics are usually associated with a one
dimensional Markov process, which is quite convenfer simplicity, but is likely to shrink
the risks to be handled.

If one model as described above would be deemethwat should be time consistent. For
instance, in the case of a parametric model, @krparameters should remain constant over
time. As this is never the case, one actually deatls some unknown dynamics, possibly
some kind of incompleteness due to jumps in cadklorgparameters. It is also likely that
implied parameters are actually correlated with tinelerlying “assets”, say credit default
swaps spreads, thus one has to choose either tputerthe total or partial derivative to
derive hedge ratios. We just wanted to stressgiran that recalibration process, the possibly
desirable properties of the initial theoretical rabalre likely to be lost.

Moreover, given any model, market practice consistsumping initial conditions rather than
computing derivatives with respect to the undedyiassets (assuming a Markovian
framework). For instance, when using an intensiodet, instead of computing sensitivities
with respect to short-term intensifiesne will shift the credit curves, recalibrate thedel
and look for the change in the prices of CDO traschlhe computed deltas have little
connection if any, with the theoretical deltas.

® Here, we have implicitly assumed that the new rhetiebeds the older one. One could either switch to
distinct approach. In the credit field, there actually different seeds, say for simplicity suchsasictural and
reduced-form models. Some footbridges have alrbaéy thrown over the gap and we will mention thefuls
effort to integrate the probabilistic framework. dhuas the claim that stock prices are semimartasgate will
be left with a very small set of testable restoioti as the counterpart of our broad mathematieaV,wvhich is
clearly some issue for the purpose of building ulsefodels. As French say, “qui trop embrasse, rmalré”.

" The best use of such an approach is to providmsistent interpolation procedure to compute cossirices
of less liquid prices for accounting purpose.

8 Assuming that name predefault intensities follomuitivariate diffusion process.



Self financing replicating strategies are usuadlyy .\ within a theoretical context and, when
applied in a market context, have no reason to teaal replication of the promised payoff.
This is not surprising then, that the correspondimgpretical models are not dealt with by
market practitioners according to the theory, witeoomes to computing hedging ratios.
Hedging strategies derived from a hypothetical detepmarkets framework can be seen as a
convenient benchmark for further analysis, buteghemo guarantee that these would perform
better than a model with poorer theoretical or ayical properties. This is not to say that
financial models are useless; actually empiricalewe tends to show that model based
hedging outperforms statistical based hedging eadd to a significant reduction in risk. Let
us also point out that hedging performance canrbmaltically improved whenever a CDO
book is statically hedged, i.e., CDO tranches aaglkd with other similar CDO tranches, and
the dynamic hedging with credit default swaps asie only residual risks.

Trying to encompass such a large topic, we chosdisituss, in a first part, the theory that
underpins the two most documented and understoodthgrand hedging models as far as
CDO tranches are concerned. In a second part, @ fon a number of methodological and
implementation issues related to the use of suathetgo

I) Hedging of CDO tranches: theor etical issues and per spectives

As far as the laws of mathematics refer to realitygy are not certain. As far as they are
certain, they do not refer to realitplbert Einstein

|.1 Default times and aggr egate loss process

Throughout this chapter, we consider a credit pbafwith n risky obligors. The
corresponding default times,,...,7, are assumed to be non negative and finite random

variables defined on a common probability sp4€&A,P), where P is the historical

probability measure. The evolution of default sfabe the portfolio is driven by default
indicator processesl; =1 N =1, . Thatis, for any name=1.... n, N; =1 if firm

TlSt} ye oo

i has defaulted beforeor N/ =0 otherwise.

Let us remark that default times can be reintegor@t terms of a marked point process, i.e., a
sequence of ordered credit ever(iES)iDI satisfying T. <T,, associated with some other

random element$Z, )., , called marks, containing further information abdefaults, such as

the identity of names which have defaulted. In dgbkeeral case where simultaneous defaults
are possible, each mark may contain a set of nameshe size of the mark space is possibly
equal to2". This has a direct consequence on the completaigbhe market, since in that
case, the hedging of defaultable claim would reguon standard instruments whose default
payments are contingent to the arrival of jointadéts. Conversely, when simultaneous
defaults are precluded, the size of the mark spmaeduced ton. In what follows, we
consider that the latter assumption is satisfied.

° We refer to Laurengt al. (2007), Cousin and Laurent (2008b), Cousiral. (2009) for contributions related to
this chapter.



Regarding the pricing of CDO tranches, the key ¢tiams the fractional cumulative loss

processlL, =EZ(1—R)I\[i , whereR,,..., R denote the recovery rates in case of default of
Nz

namesi=1,...,n. The loss procesd, is thus an increasing right-continuous pure jump

process.

|.2 CDO tranche cash-flows

A synthetic CDO tranche is a structured producttasn an underlying portfolio of equally
weighted reference entities subject to credit'fiskhe cash-flows associated with a synthetic
CDO tranche only depend upon the realized patth@fcumulative losses on the reference
portfolio. Default losses on the credit portfoliceasplit along some thresholds (attachment
and detachment points) and allocated to the vatmamehes. A CDO tranche with attachment
point a, detachment poinb and maturityT is essentially a bilateral contract between a
protection seller and a protection buyer. We desdoelow the cash-flows associated with the
default payment leg (payments received by the ptiote buyer) and the premium payment
leg (payments received by the protection seller).

Default paymentsleg

The protection seller agrees to pay the protedbiayer default losses each time they impact
the tranchga, b] of the reference portfolio. More precisely, thentliative default payment

L*7on the tranchda, b] is equal to zero ifl, <a, to L, —a if a<L <band tob-a if
L, =b. Let us remark that!*” has a call spread payoff with respectlto and can be
expressed at*” = (L, -a)" - (L, —b)". Default payments are simply the increment 3,

i.e., there is a payment af*” —LL*9 from the protection seller at every jump time L&t”

occurring before contract maturilly. If r, denotes the continuously compounded default free
t

interest rate andB, =exp{—J' rsdsj the associated discount factor, the discountedfpay
0

corresponding to default payments can written as:

-_!:‘Btdl-[tab] :izzl: B ( 28— 20 )]hg} .

Premium payments leg

The protection buyer has to pay the protection sellgeriodic premium (quarterly for
standardized indexes) based on a fixed spreadeonipm S and proportional to the current

outstanding nominal of the tranche-a— L*”. Let us denote by, i=1,...,| the premium
payment dates with, =T and byA, the length of the " period [t,_,t ] (in fractions of a

year and witht, =0). The CDO premium payments are equalSy ( b- a E;'b]) at regular

19 We refer the reader to Meissner (2008), De Servayny Jobst (2007) textbooks or Kakodkaal. (2006) for
a detailed analysis of the CDO market and credivdgves cash-flows.



payment datest,i=1...,| . Moreover, when a default occurs between two prem

payment dates and when it affects the trancheddii@nal payment (the accrued coupon)
must be made at default time to compensate thegehemvalue of the tranche outstanding
nominal. For example, if nanjedefaults betweem_, andt , the associated accrued coupon

is equal to S(rj —t_l)( L[:'b] - L[,T‘_q). Eventually, the discounted payoff corresponding t

premium payments can be expressed as:
|

z[sqsai(rr o L)I Bg ) de? |

i=1
| .3 Filtration

A CDO tranche position is typically hedged by eimmgropposite positions on a portfolio of

liquid hedging instruments such as credit defawass referencing names in the reference
portfolio. Other examples of hedging instruments aredit default swaps standardized
indices or standard tranches referencing thesecaadiThe composition of the hedging

portfolio needs to be regularly adjusted as theketaenvironment quickly evolves. In order

to tackle the hedging issue in a dynamical way, needs to specify how information is

progressively disclosed to the market.

We first investigate the framework of contagioneimgity models for which the hedging of
CDO tranches can be fully described in a dynamica}. In a second step, we will try to
establish some connections with other hedging ambhes.

As we consider the hedging of CDO tranches whosh-tlaws are driven by the realization
of defaults in the portfolio, the smallest filtrati one shall consider may include information

associated with the arrival of defaults. Let us alenby H, :J(N‘S,ss t), i=1...,n,

H, = .@le- The filtration (Ht) is referred to as the natural filtration assoclateth the

default times.

tOR*

We moreover assume that there exist sqigH, ) —intensities associated with the counting
processesN,, i =1,...,n, i.e., there exist some (non negativid)— predictable processes

a'®,...,a™", such that the processes defined by

t
M{" =N/ -[al"ds, i=1..n
0

are (P, H,)— martingales. This implies in particular that, &ty name =1,...,n, the default
intensity processr"” must vanish after the default of namei.e., a;” =0 on the seft >7} .
Let us recall that simultaneous defaults are poduin this framework, i.e.l?(ri =T, ) =0
fori#j.



| .4 Predictablerepresentation theorem and equivalent changes of probability measure

The main theoretical tool for the analysis of tleglding issue is a predictable representation
theorem (see Brémaud (1981) textbook, chapter Itlijtates that, for anyd, —measurable

P —integrable random variabla, there exists somel, —predictable processé#,...,8" such
that:

A= EP[A]+Zn:].HS‘(dI\L—ai;P dg.

i=l o
This result provides a way to express any defauitingent payoff as a sum of stochastic
integrals with respect to the fundamental martiegdd; ", i =1,... n.

Interestingly, it can also be used to charactegigeivalent changes of probability measure.
From the predictable representation theorem, one staow that any Radon-Nikodym
derivative ¢ (that is, a strictly positive martingale with expation equal to 1) can be written

as

n

dZ,=¢, Y AdM”, ¢, =1

i=1
where 77',...,71"are someH, —predictable processes. Conversely, the uniqudisolof the
latter stochastic differential equation is the lavartingale (Doléans-Dade exponential)

n t n i

{ = exp[—Zj n‘sais'Pds] |_1| (1+ i )N‘ :

i=1 =
Note that, in order thaf is indeed a non-negative local martingale, onalsdeat 7z > —1.
Moreover, the procesé is a true martingale under some integrability ¢ows on thesr 's
(e.g., 7T,..., " bounded) or ifEP[Zt] =1for any t. We can now define a new probability
measureQ from P thanks to the Radon-Nikodym derivatiye

dqQ,, =¢,dA,, .
Eventually, it can be proved that under this neabpbility measureQ the default intensity
a'? of 1, is proportional to the default intensity” of 7, underP. More precisely, for any
namei =1,... ,n the procesM ' defined by

M€ = N —Jt.(1+n‘s)aifds
0

is a (Q, Ht)— martingale. We refer the reader to the book avadpy Cousiret al. (2009) for

more details on the construction of equivalent geanof probability measure in this
framework.

|.4 Hedging instruments

For the sake of simplicity, let us assume for alevthat instantaneous digital credit default
swaps are traded on the names. An instantaneomsl digedit default swap on nametraded
att, provides a payoff equal tdN/ —a;dt at t+dt. The quantitydN; corresponds to the
payment on the default leg amjdt is the (short term) premium on the default swapteN
that considering such instantaneous digital defawiaps rather than actually traded credit



default swaps is not a limitation of our purposéisTcan rather be seen as a convenient
choice of basis from a theoretical point of viéw

We assume that contractual sprearls...,a" are non negative processes adapted to the

filtration H, of default times. The natural filtration of defatimes can thus be seen as the

relevant information on economic grounds. Sincedeal with the filtration generated by
default times, the credit default swap premiumsdaterministic between two default events.
Therefore, we restrain ourselves to a market whehg default risk occurs and credit spreads
themselves are driven by the occurrence of defamltsur simple setting, there is no specific
credit spread risk. This corresponds to the frankevad Bieleckiet al (2007) and Bielecki,
Crépeyet al (2007).

For simplicity, we further assume that (continugusbmpounded) default-free interest rates
are constant and equal . Given some initial investment, and someH, —predictable

processesd’,...,0" associated with some self-financed trading stsatieginstantaneous
nT

digital credit default swaps, we attain at tifighe payoffv, e’ +ZI5;é“‘S’( dN-a’, d}.
i=1 o

By definition, &] is the nominal amount of instantaneous digitatli¢créefault swap on name

i held at times. This induces a net cash-flow 6j><(dN‘s—a‘Sds) at time s+ ds, which has

to be invested in the default-free savings accaprib timeT .

1.5 Pricing measure and perfect hedging

We define a pricing measure as a probability meaguequivalent toP and such that, under
Q, the default intensities associated with defanttes are exactly equal to the short-term

credit spreadsy’,...,a". From the previous analysis on equivalent charodesrobability
measure, one can readily describe the (uniquengrioeasure.

Firstly, it is natural to assume th%ut‘ >O}P:Zi's{at‘*'° >O} for all time t and all name
i =1,...,n. Indeed, from the absence of arbitrage opportutity short-term premium on a
given name at any date is positive @, >0) if and only if the default of that name is likely
to occur at time (a;" >0). As a consequence, for any 1,... ,n, the processr defined by

| gomfan)

t

is a H —predictable process such that>-1.

Secondly, following the previous analysis, the pssy’ defined by

n
1=

conf L o)

i=1 o

M Of course, it is possible to compute credit deltita respect to traded credit default swaps is framework.
We refer the reader to Lauregttal. (2007) for more details on this point.



is a true Radon-Nikodym derivative. Moreover, uniher probabilityQ build from P thanks
to the equivalent change of probability measd@H‘ =thP‘Ht , the processes

t
M{=N; -[aids, i =1,..,n
0

are (Q, Ht)—martingales. In particular the short term cregiteads a',...,a" are the

intensities of default times under the new probighiQ. Given a specification of default

intensities under the historical probability measdt, it is important to remark that the
pricing measure is uniquely determined by the dyinarof short-term credit spreads. In the
rest of the study, we will work under the pricingasureQ .

Unsurprisingly, the possibility of perfect hedgimyrelated to a martingale representation
theorem under the pricing measure. Let us consdene H,—measurableQ —integrable

payoff A. SinceA depends upon the default indicators of the nanpesoutime T, this
encompasses the cases of CDO tranches and badastt dsvaps, provided that recovery
rates are determinisifc It is possible to show that the predictable repneation theorem
described above also holds under the probabifjty There exists someH, —predictable

processes,...,8" such that:
n T
A=E[A+> [6i(dN-a'.dg.
i=1 o
Let us remark that, due to the predictable propeftyhe &'s, the processes defined by

t
t - jeg (dN‘S—a‘Sds) are also(Q, H,) —martingales. As a consequence,
0

n T . . .
A= [ AH]+3 [0 (aN - of.
i=1 ¢
The latter expression can be interpreted in théodahg way. Starting fromt, one can
replicate the payoffA with the initial investmentV, = EQ[e‘“H) 4 HJ (in the savings

account) and the trading strategy based on instaates digital credit default swaps defined
by 0. =6e""™ for 0<s<T andi =1,...,n. As there is no charge to enter an instantaneous

digital credit default swapy, = EQ[e‘“H) 4 HJ corresponds to the timefeplication price
of the claimA.

Let us remark that it is theoretically possiblebmild up a replication strategy based on
actually traded credit default swaps. Thanks to pgreglictable representation theorem, one
can express the dynamics of credit default swagsrims of the dynamics of instantaneous
digital CDS. The next step consists on invertidear system to obtain the representation of
any H,—measurable payoff with respect to the dynamicactdially traded CDS. The reader

is referred to the first chapter of Coush al. (2009) for a thorough presentation of this
method in the case of two names. Interestinglyexgdained in Cousin and Jeanblanc (2010),
the dynamics of portfolio loss derivatives can bityfdescribed using the dynamics of the
underlying CDS when default times are assumed tortered. In this particular case, the
hedging strategies can be computed explicitly gemeraln-dimensional framework.

12 or albeit H, —-measurable.



While the use of the representation theorem gueeanthat, in our framework, any basket
default swap can be perfectly hedged with respeatefault risks, it does not provide a

practical way of constructing hedging strategies tiis is the case with interest rate or equity
derivatives, exhibiting hedging strategies involgese Markovian assumptions.

|.7 Computation of hedging strategiesin a homogeneous Markovian setting

When going to implementing actual hedging stratggi@e needs extra assumptions, both for
the implementation to be feasible and to cope wiioted CDO tranches. We therefore

consider the simplest way to specialize the abowdai we assume that all risk-neutral pre-

default intensities are equal and only depend erctitrent number of defaults, i.e.,

ai=a(tN)L .y, i=1....n,

n .
where N, :z N, denotes the total number of defaults that haveroedun the portfolio up
i=1
to time t. We also assume that all recovery rates are aunataoss names and time. As a
consequence, the loss process is merely propoftiorthe number of defaults proced§

whose intensity is simply equal to the pre-defatknsity times the number of non-defaulted
names:

A(tN)=(n=-N)a(tN).
In that framework, it can be shown that the aggeedass process is a continuous-time

Markov chain, more precisely a pure death proct#smks to the no simultaneous defaults
assumption) with generator matrix:

“A(t,0) A¢,0) O 0 0
0 -t A¢,1) 0 0
A(t) = .
0 0 0 -A¢n-1) Atn-1)
0 0 0 0 0

Moreover, the replication price of a European-y®BO tranche payoff®(N;) can be

written as V(tk)=E[ " ®( N)|N= K and solves the backward Kolmogorov

differential equations:
oV (t, k) _
ot

=1V (t,k) = A(t, k) (V(t k+ )= V(£ K), k=0,...,n-1.

Regarding the hedging issue, homogeneous Markowiaadels are appealing because
replication strategies are the same for all (the-adefaulted) names, which results in a
dramatic dimensionality reduction. In that caseés gnough to consider the index portfolio as
a single hedging instrument, which is consistethwome market practices. If we denote by

V' (t,N)= E[ e ™' (N) I\I} the timet replication price of the CDS index (European-
type payoff), then by standard It6’s calculus, oar show that
dV(t N) =8 (L N)AV (t N)+( Mt N)- (£ N V(L N)

where:

10



5I (t, Nt) - \I/(t’ Nt +1)_Vl(t1 N)

VILNA+D-V (L, N)
is the credit delta, i.e., the proportion of th#éf-Seancing hedging portfolio invested in the
CDS index. In other words, the change in value GO tranche in a short peric[d,t +dt]

can be fully replicated by holding at tintea positiond' (t, N,) in the CDS index, for a total
value of d' (t,N,)V' (t, N), and by investing the remaining part of the pdidfosalue,

V(t,N)=3'(t, N)V' (t N), in the risk-free asset. The numerical impleméoaof hedging

strategies can be achieved in a more realistic taseigh a binomial tree as detailed in
Laurentet al.(2007) or by means of Markov chain techniques.

Eventually, we have build up a complete market rhadevhich CDO tranche prices can be
fully replicated by dynamically trading the CDS éd and the risk-free asset and the
associated hedging strategies can be derived @kpli©n practical grounds, another nice
feature of the model concerns the estimation ofehpdrameters from CDO tranche market
guotes. As described in Lauregtt al. (2007), the knowledge of upfront premiums of equity
CDO tranches with different maturities and detachinp®ints (and given some recovery rate)
is equivalent to the knowledge of marginal disttibns of the number of defaults at different
time horizons. Thanks to the forward Kolmogorov &tpns, one can then perfectly compute
the intensities of the aggregate loss processeopiti-default intensities. Such fully calibrated
and Markov model is also known as the local intignsnodel. This parallels the local
volatility approach of Dupire (1994) in the equdgrivatives context where the dynamics of
underlying assets are driven by a diffusion pro@ssspposed to a finite state Markov chain
in the case of credit portfolio derivatives. Adlacal volatility models, local intensity models
allow for a perfect match of unknown parametersnfra complete set of CDO tranches
guotes. In this context, Coet al. (2009) have computed an analogue, for credit plaotfo
derivatives, of the Dupire’s well known formula.i$hs based however on the (rather hidden)
assumption of no simultaneous defaults.

Another promising approach regarding hedging in @&Kkdvian environment is the Markov
Copula approach developed by Bieleak al. (2008). In this full dynamic bottom-up
framework, default indicators form a multivariateaMov process. The important point is that
each individual default indicator is assumed toabklarkov process (in its own filtration).
Under the latter assumption, there is no contagibect in the sense that the default of a
given name does not yield a change in the defatdinsities of the non-defaulted names.
However, as this is also the case in common-shatkslels, defaults may occur
simultaneousll?. The latter assumption is crucial on practicalugds since, it allows the
calibration of model parameters to be dealt withatly the same way as in a standard static
copula set-up. Indeed, the calibration processbeaperformed in two separate steps. Firstly,
individual default intensities can be pre-calibdaten single-name CDS curves and secondly,
dependence parameters (intensities of joint defpolin be fitted on CDO tranche quotes.
Bielecki et al. (2010) provide a common-shocks model interpratatb this framework so
that efficient convolution recursion procedures algo available for pricing and hedging
static basket instruments like CDO tranches. Adddlly, the Markovian structure of the
model allows one to address the hedging issualynamic and theoretically consistent way.

13 The possibility of simultaneous defaults may dlscseen as an extreme contagion effect.
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Until now, we have considered that credit spreaddaven by defaults and we have stressed
that it leads to a complete CDO tranche market e/kiee hedging can be fully described in a
dynamical way. We will now use the same methodoltmypnalyze the hedging issue in a
completely different framework where spreads andults are both driven by a multivariate
diffusion process. This corresponds to a multivariextension of the Black-Cox (1976)
structural model.

|.8 Hedging credit portfolio derivativesin multivariate structural models

One may compare the previous framework with thedsted structural approach, where
default time of a given name is defined as thd firgsing time of a barrier by a geometric
Brownian motion associated with the asset procégbeocorresponding name. Hudt al.

(2005) investigate the pricing of CDO tranches with Gaussian multivariate structural

model, similar to the one presented in this sectiat (V\/t)tzo, W, :(V\{lw‘) be an-

dimensional Brownian motion whose components areetaied by the same dependence
parameterp, i.e., for anyi # j, <W‘,Wj >t = pt. We denote b)( Ft‘) ,» the natural filtration

t=

associated withW', i=1...,n and (F)_,. F

n )
3 =_D1 F' the natural filtration associated with
i=

W. For any firmi=1...,n, we consider that the asset val#é follows a non-negative
diffusion process under the historical probabititgasureP, i.e.,

%Ai*:uidHaidW", i=1,...,n,
where the expected rate of returr=(44),__ and the diffusion rater=(o;) __ are R"-
valued. In this framework, the default times arérge by 7. :inf{t 20‘,6{ < b} , Whereb
denotes the threshold associated with firmin that structural model, dependence between
default times stems from the correlation betweenabset values. For calibration of default

probabilities over different time horizons, the fear needs however to be time dependent,
which does not change the main features of the mode

Roughly speaking, the value of assets for a givrem f can be replicated by holding the debt

and the equity part of its liabilities which cantlbdbe seen as tradable securities. This
legitimates, at least on theoretical grounds, thie of firm’'s assets as primary hedging

instruments in this framework. Using a multivariaidension of the Girsanov’s theorem for

correlated Brownian motion, it is possible to defim pricing measur®, equivalent to the

historical probability measur®, and such that discounted asset valuesCarenartingales.
Moreover, the latter change of probability measioes not perturb the dependence structure
among dynamics of asset values. More specific#lg, new Brownian motionsV*,...,W"

driving the dynamics ofA',..., A" under the probabilityQ are still correlated with the same
dependence parameter, i.e., for anyi # j, <Wi,Wj >t = pt. Furthermore, it is well known

that the completeness of the market is guarantedlhis framework as far as the correlation
matrix of Winvolving parametersg,,...,o, and o is invertible. One can then perfectly

replicate anyF; -measurable payoff by holding a self-financing fmi® composed of firm’s
assetsA',..., A" and the risk-free asset.
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In this first-passage structural model, the cashl of credit default swaps written on name
i =1,...,n can be synthesized as a combination of barrigomgt Indeed, the cash-flows on

the default leg are the same as the ones of a éoann barrier option with a fixed loss
payment at the time when the value of assets li@llew the pre-specified threshold. As for
the premium leg, it can be replicated using a detiawn-and-out barrier options with
maturity dates equal to premium payment datess thén possible to relate the replicating
price of a credit default swaps to replicating esiof barrier options. Clearly, the price of a
CDS written on a given name is a Markov process with respect to the natuttdation
associated withW' since the cash-flows are only driven by the dynanoicW' . As a result,
the dynamics of CD$ only involves the dynamics af' .

Credit default swaps are described here as derevatistruments, but they can be used to
dynamically hedge more complex products such as @Bxahes. This relies on the building
of a self-financing portfolio including the riskefe asset and the dividend-bearing credit
default swaps. Once the dynamics of each individG&)S has been found, it is
straightforward to describe the dynamics of thdicapng portfolio, given some pre-specified
hedging strategies (predictable processes).

The hedging of CDO tranche price is then theorliyideasible thanks to the predictable
representation theorem for multivariate Brownianrtingales that holds under the pricing

measureQ . Let us consider someg, —measurableQ —integrable payoffA. This typically
includes the payoff of CDO tranches or basket defavaps® maturing at datd . Then there
exists somer, —predictable processé,...,8" such that:

n T

A=E[ AR]+Y [6]dW .

=1t
Hence, the dynamics of CDO tranche prices can beritbed in terms of the dynamics of the
correlated Brownian motiong/”*,...,W". Theoretically, the hedging strategies can be doun

by identifying the Brownian terms in the dynamidstlee replicating portfolio and in the
dynamics of CDO tranche pric8s

Let us note that when a default event occurs, #ugimg position in the corresponding CDS
is used to cover the loss. Then, from that time,hdging portfolio contains one fewer CDS
than before. But, since future cash-flows of CD&nhthes are driven by the possible defaults
of the non-defaulted names, CDS are not anymongrestifor hedging after extinction. This
feature should be captured by the hedging strategimputed in this framework.

14 Let us note that this theorem is usually writtenhartingales adapted to a filtration generatec Isyandard
Brownian motion with independent components. Hoavewas an intermediary step, the correlated Brownia

motion W can be expressed as the product of the squareofdts correlation matrix with a standarnal-
dimensional Brownian motion with independent comgrane. As a result, any payoff contingent to theasyits

of W up to timeT can be described as a sum of stochastic integitiigespect toA*,...,W".

15 At least when recovery rates are assumed to leerdisistic.
6 Let us note however that the dynamics of CDO tnanprices is very difficult to make explicit in #hi
framework since it involves the joint law of sonwrelated first passage times.
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On practical grounds, one can remark that pricesredit default swaps and CDO tranches
are Markovian processes in this framework and, eynman-Kac’s theorem, they are also
solutions of particular partial differential equats (PDEY’.

While the former Markov chain approach focused efadlt risk, neglecting credit spread

risk, the structural approach deals with credieagdrrisk only. Default times are predictable
stopping times with respect to the Brownian filmatand do not constitute an extra source of
risk. Finally, the structural approach defines aptete CDO tranche market governed by
spread risk and in that sense it can be seen aktieounterpart of the Markovian contagion
approach.

Fermanian and Vigneron (2009) tackle the probleamfra slightly different perspective.
Starting from a one factor Gaussian copula modely tare able to specify the dynamics of
zero-coupon CDS (or equivalently conditional suaViprobabilities) that leads to perfect
replication of European-type payoffs. Unsurprisinglhe completeness of the market is
guaranteed when the correlation parameter usetieénohe factor Gaussian copula model
corresponds to the correlation between Browniarnanatriving the dynamics of zero-coupon
CDS. Subsequently, they attempt to relate themé&waork with the multivariate extension of
the structural model presented above but numenmagstigation in that case seems to be
cumbersome and is postponed for further researsimgunarket quotes of CDO tranches on
recent series of iTraxx and CDX main indices, tivstead perform a back-test investigation
of correlation parameters (called break-even catia) that would have been plugged in the
one-factor Gaussian copula model in order to p#yfeeplicate a CDO tranche with the
underlying single-name CDS, given a spread scen@his method is a first step towards the
practical implementation of hedging strategies icomplete market model driven by credit
spread risks.

Multivariate structural models are consistent vgtipular dynamic credit risk models such as
CreditMetrics™ and Moody’s KMV. They permit to deal with jointedit migration (changes
of credit ratings) amongst a wide range of namekveith stochastic recovery, following the
lines of Krekel (2008). Clearly, the multivariatea@sian assumption is simplistic and
guestionable, but as in the previous Markov chdlowa to derive unambiguous self-
financing replicating strategies for CDO tranches.

1.9 Comparison with other approaches

We have presented a dual view of complete marketetspthe former focusing on default

risks while the latter concentrates on credit sppnesks. The nature of default times differs
from one case to another. In the former, defanies are totally inaccessible stopping times,
while in the latter case, default times are predild. Given these two scholar models, we will
set out the main theoretical features of hedging@@QEanches, coming to light whatever the
underlying model. We will also try to highlight theommonalities (if any) between the

approaches.

a) Filtration

" 1n the case of CDS, these PDE can be solved noatigreither using finite difference methods oraaithms
based on recombining trees. Regarding CDO trandbesp the dimension of the PDE is too large tostter a
direct numerical resolution method. CDO trancheqwishould be computed using Monte Carlo simulation
instead.
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A first issue is related to the choice of filtratidn order to deal with the hedging issue in a
consistent dynamical way, one must start with fecdication of a filtration. However, there
are several ways of defining the information fldwattis available to the modeller.

Enlargement of filtration

A first approach (generally associated with redutmdn models) involves a reference or
background filtration, generally driven by a jumibigsion process which captures the
evolution of some macro-economic factors or priufedefault-free assets. An important point
is that the background filtration does not prove®ugh information to predict with certainty
at a given date whether the default of a name saounot. In other words, default times are
not stopping times with respect to the backgrounttation. One needs some extra
information to predict defaults. A natural ideaasexpand this initial filtration with the flow
of information provided by the dynamics of defaultéis is referred to as the progressive
enlargement of filtration technique which has be&tensively studied in the literature. An
important issue associated with this techniquehe go-called immersion property or H-
hypothesis under which martingales in the referefiit@tion remain martingales in the
global enlarged filtration. Indeed, to preclude itgge opportunities in the default-free
market, discounted default-free asset prices aenasd to be martingales with respect to the
reference filtration (under a risk-neutral measutéder the H-hypothesis, the no-arbitrage
property is preserved in the global filtration, wainiis only the case in very particular
situations. This has been pointed out by Jeanbdamt Le Cam (2009) in a single-name
setting or by Bielecket al. (2010) for top-down credit risk models. For imste, it is well
known that the H-hypothesis is satisfied in a gaghme Cox model where the default time
corresponds to the first jump instant of a doultbclastic Poisson process. This is also the
case in some very particular multivariate extersioh the latter framework where default
times are assumed to be independent or orderdtassn Ehlers and Schénbucher (2009).

Direct specification of the entire set of information

Another interesting and promising approach is the jproposed by Hitier and Hubert (2009).
Compared with the previous approach, this constmdbllows the opposite direction. Hitier
and Hubert (2009) consider a filtration for whiclefault times are totally inaccessible
stopping times and admit default intensities adipoethis filtration. Using the terminology
of Jeanblanc and Le Cam (2007), this correspondantdintensity based approach” as
opposed to the previous enlargement of filtratiggpraach also called “hazard process
approach”. The idea is then to divide the initiifdtion into two subfiltrations, the first being
associated with a background intensity processpeagent of default events and the second
being driven by defaults. They however assume ttiatbackground intensities are equal to
the initial intensities before the arrival of theresponding default and show that this
hypothesis is implied by the classical H-hypotheArs alternative route (generally associated
with structural models) is to start with a filt@ti under which default times are predictable
stopping times (or at least accessible, i.e., otatly inaccessible). This is typically the case
for jump-diffusion structural models for which theitial filtration contains information
associated with the asset value process and ppssiated to a random barrier.

Alteration or reduction of theinitial set of information

However, it is reasonable to assume that CDS od bowestors do not have the same
information set as firm managers. Starting frontracsural approach, there are several ways
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of specifying how the information set can be alleoe obscured. Duffie and Lando (2001)
build up the investor’s filtration by first addingise to the asset value process and sampling
this noisy information set at some particular diserdates. Goldberg and Giesecke (2004)
start with a random-barrier structural model ansua®e that the threshold level is not known
by the investor. Cetiet al. (2004) assume that the investor only observe vendtie firm’s
cash-flows are positive or negative. In the appndag Guoet al. (2005), the asset value is
only available at some discrete dates and with dditianal delay or lag. In all the latter
approaches, it is assumed that the investor cam alserve the default event. As a
consequence, the set of information available ® ittvestor is defined by the smallest
filtration containing the set of altered informatiand such that default times are stopping
times. Interestingly, under this coarser filtratiodefault times are totally inaccessible
stopping times and admit default intensities ymddio a reduced form modelling approach.
As we fall in the class of reduced form approachatural investigation is to check whether
the immersion property holds. When the asset valweess is obscured by a diffusion
process, this is effectively the case as shownoou@scuet al. (2008). The reader is referred
to Jarrow and Protter (2004) for a detailed analgsithe link between structural and reduced
form models in the case of incomplete information.

Whatever the techniques used to specify how inftonas dynamically disclosed to the

modeller, default times are finally always defiresl stopping times with respect to a given
filtration. However, depending on the modellersess to the overall information, default
times can be either predictable, totally inaccdss#bopping times but also stopping times
which are neither predictable nor totally inacdeles(as this is the case for instance for jump-
diffusion structural models where negative jumps icapact firms assets’ dynamics).

b) Martingale representation theorem and completeness of the market

The existence of a martingale representation timeoie a key ingredient regarding the
hedging issue. Given a model specification, ietroduction of an underlying probability
measure, description of sources of randomness,canstruction of an information set, it
provides a nice representation of martingale piEes$n terms of fundamental elementary
martingales such as Brownian motions or compensétetked) point processes. More
precisely, it states that the dynamics of any mgdie process can be expressed as a linear
combination of some fundamental martingales, theéghte being associated with some
predictable processes. In particular, it allows tmeepresent the dynamics of any contingent
claim in terms of the dynamics of the fundamentattmgales. The martingale representation
theorem is thus the right mathematical tool to wtind completeness of the market model.

¢) Hedging instruments

Another common ingredient associated with the heglgssue concerns the specification of
tradable hedging instruments. Let us note obviqusiyt the question of the market
completeness has to be addressed in connectiorbatiththe specification of a market model
and the description of some liquid hedging instrateeTypically, one could think of credit
index default swaps, CDS on names with possibligiht maturities, standardized synthetic
single tranche CDOs. However, to simplify the tletioal analysis, it is often convenient to
assume in a first stage that stylized default-cqamnt products are traded on the market,
provided that actually traded hedging instrumeng® te fully replicated using these
simplified products.
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€) Change of probability measure

The natural way of defining a credit risk modeltésstart with the construction of default
times under the physical probability measure. Hawewhen arbitrage opportunities are
precluded, one can find an equivalent probabiligasure also callegricing or risk-neutral
measure under which discounted prices of (non-dividend rivgg primary assets are
martingales. This is very convenient both on pcattand theoretical grounds. The pricing
measure is built up thanks to an equivalent chafgeobability measure involving a Radon-
Nikodym density similar to the one involved in tblassical Girsanov’'s theorem. However,
Coculescuet al. (2007) show that, in an intensity model, the inmsi@r property is not
preserved by an equivalent change of probabilitasuee, which may explain why in so
many approaches, the model is directly specifiedeua given risk-neutral measure.

I1) From theory to hedging effectiveness
In theory, theory and practice are the same. Incfice, they are notAlbert Einstein

Starting from the simplest cases of a complete staakd either Markov chain or structural
models, we tried to show that most multivariate sledf defaults involve more or less the
same basis ingredients, though we still lack a Ertgstate and comprehensive mathematical
framework.

Rather than concentrating on the internal featafes pricing (and possibly hedging) model,
such as the relevant filtrations, conditional défgrobabilities, aggregate loss or credit
spread dynamics, we should think of the outcomea bedging model for CDO tranches.
These are rather simple: a set of hedging instrtsn&DS in most cases, sometimes other
CDO tranches are also considered, and hedge matilbgespect to the hedging instruments.
A key point is that the outputs are the same fstaince in the structural or in the Markov
chain models described above. Thus, it will be fbsdo derive some comparisons between
models built upon different premises, for instatioeir ability to reduce the risk of a CDO
tranche through a dynamic trading strategy. Thié le@d to back-testing approaches and it
turns out to be an econometric rather than a thiearéssue.

More precisely, a pricing and hedging model is Uguwessociated with a parameterized set of
trading strategies and to proceed with any compayigre must specify how the parameters,
for instance some correlation or contagion pararagtare set and updated. As will be

discussed below, such a choice is likely of firstportance with respect to hedging

performance, though such calibration or estimatibinedging parameters is usually neglected
in theoretical approaches.

We do not claim that pricing is irrelevant with pest to the hedging problem. Usually,
pricing models are calibrated on liquid market @6t Then, such a calibrated model can be
used in a predictive way. If we assume that theliedpparameters, say, correlation
parameters for base tranches, are constant ovex @brart) time interval or evolve according
to some predefined rule, then, given some new guaftenderlying CDS (say), one should be
able to predict the change in market value of actna and thus the required amount of
hedging CDS. Thus, pricing models that are assegtiaith implied parameters with smooth
patterns over time are likely to be useful for meknagement purpose too. The same line of

18 provided that these are available, an assumptivchvis problematic during periods of market digioip.
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reasoning will be detailed below when considerimg tonnection between hedging and the
pricing of bespoke CDO tranches.

Going further along these general statements, we @call that any pricing and hedging
model associated with perfect replication will legected by data with probability one: first,
such models are associated with non noisy relatipgsbetween CDO tranches. Then,
completeness precludes any hedging residual. We dleal with misspecified models and
should not consider such misspecification as actiee a priori of a pricing and risk

management framework. We should rather focus onddgree of misspecification as for
instance assessed by hedging performance

Another important practical topic is related tobslity of hedging performance over different
periods and under different economic regimes oikatazontexts. Certainly, one would most
likely chose an all-roader that could both copenwtiite idiosyncratic auto crisis of 2005 and
the systemic crisis of 2007-2009. This view is alslated to a stationary world and objective
probabilities, which is rather comfortable, butliso questionable when dealing with financial
markets. The notion of regimes of volatility, whichs been popularized by Derman (1999) in
equity markets might also be applicable in corretatmarkets. Clearly, identifying the
relevant regime is an issue, but it seems a ratineealistic objective that a simple to
implement hedging strategy would supersede its etitops in any context.

The above remarks may look thought-provocative fitie standard mathematical finance
and modelling point of view. We do not claim thatnedel does not need to rely on
understandable, sound and clear economic intugtr@hinternal consistency. But on the other
hand, looking for the perfect fit leads to extraplementation costs, blurs the key and
ancillary features, obscure internal and extereahmunication about risk management and
increase operational risks.

This is why we deliberately favoured the multivégiatructural model and the Markovian loss
model$®. Both allow the derivation of replicating strategiof CDO tranches. Calibration is,
at least at first sight, rather easy. Moreover,dhe factor Gaussian copula has become the
standard model as measured by market acceptanceriéing and hedging purpose (see
Finger (2009)). From Hull, Predescu and White (3085Cousin and Laurent (2008a), we
know that the Gaussian copula dependence is guiiéasto the one that comes out of the
multivariate structural model: At least for invesimh grade names, default is not likely to
occur shortly after inception. The Gaussian copuight be viewed as a one step version of
the multivariate structural model. Thus, deltasweéspect to underlying CDS are likely to be
quite similar in the two approaches. We will follothereafter this roufd Since deltas

9 One could argue that the new generation of toprdmwdels takes the loss surface or equivalentlysétef
CDO tranches quotes as inputs, as is the caseHdith models in the interest rates framework. Howgsach
models are not aimed at risk managing plain CDOs¢hvseems to be the key issue today, but rathwrsfon
more complex payoffs, such as CPDOs or leveragersgnior tranches.

% n a recent work, Coret al. (2009) investigate the hedging abilities of theu@san copula model and of the
Markovian contagion model (local intensity modeltheir terminology). They look for regimes whereeon
model would outperform the other. They show soniistness of the Gaussian copula approach.

2 Frey and Backhaus (2007, 2008), Arnsdorf and Halp@007) provide some Markovian loss models which
are more versatile, but also more difficult to hand

22 We might have alternatively considered the Gaussipula as a (non Markovian) contagion model.né o
restricts to the natural filtration of default timalefaults are informative; they bring some infation about the
latent Gaussian variables of the non defaulted saffige jumps of credit spreads at default timesdeéppon
derivatives of the survival function and there isirmgularity at time zero. This is not however toenmon way
to appraise the Gaussian copula. If one were tergbghe path of assets associated with differantes instead
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associated with the multivariate structural moded well understood and lead to perfect
replication of CDO tranches when concentrating mread risk (defaults are predictable), we
can think of deltas coming out of the Gaussian tpuodel to have some economic
significancé®. As discussed above, Fermanian and Vigneron (2@@8pose a different
approach. They look for some dynamic models comsistvith the credit spread deltas
obtained from the Gaussian copula model.

I1.1 Hedging with CDO tranches

If you want to know the value of a security, useptice of another security that is as similar
to it as possible. All the rest is modelitgnmanuel Derman

Hedging of CDO tranches with other tranches on lamminderlying portfolios, with close
attachment-detachment points and maturities i$yliteebe the more efficient and least costly
way of pricing and risk managing a book. To gotdunither, we could speak of spatial versus
dynamic hedging. To properly implement such a sthgdging some kind of metrics or
proximity between payoffs is required and this liguavolves a model. For instance, given a
joint distribution of default times in a bottom-mpodel, one might use a set of liquid CDO
tranches to minimize the, - norm hedging error within a book of bespoke theast.

One could either proceed with a linear regressiasetl on historical data. Obviously, to go
along this approach, historical data is requfitetet us for instance consider the hedging of
an equity tranche with a junior mezzanine tranah@ standard index such as iTraxx Europe
Main or CDX NA IG. Here, one has to keep in mindttthe historical and the model based
approaches to static hedging are rather diffefidmdre is no reason why the static hedge ratio,
i.e., the coefficient in the regression of the gayo be hedged on the hedging payoff has to
be constant over time. For instance, going furtheéhe above example, as the expected loss
on the underlying portfolios changes over time, theneyness of the equity and junior
mezzanine tranches do not change accordingly andatio of theoretical deltas (in almost
any theoretical hedging model) is likely to vanhig first point is fairly obvious. Also, at
different points in times, the market views mayrgd@ This does not concern only the mean
of the underlying portfolio, but other statistickatures, such as, say, the degree of
dependence between default times. Eventually, tieeneo reason of a stable and linear
relationship between tranches over time which weskée purely statistical approach and
calls for the use of a model for conditional (upbe current information) and episteffic
distributions of default times.

of the terminal values, contagion would disappe&bout ten years ago, while one of the authors waiking

on basket credit derivatives, the preferred modak va structural model based on multidimensional NIG
processes and a factor structure. Prices and Greekes computed by Monte Carlo, which was quite slow
especially for the Greeks. At one point in times thodel was downgraded to a static one, but in wasts,
prices and Greeks were quite similar. We wouldrdigfiy need a more systematic investigation of pasnt.

% In theory, one should start with the computatiérihe derivatives of the value of the CDO tranche af
hedging CDS with respect to underlying state vdembhere the asset values at the current timen, Tihe
amount of hedging CDS is the ratio of the abovavdtves. Market practitioners rather make the \dion
with respect to the default barrier, or in a stafiproach with respect to the default thresholds Thn also be
seen as a shift in credit spreads, often of onis ipant.

4 Given a conditional (upon current information)npdistribution of default times, it is possibledompute the
covariances of the bespoke payoff and of the ligueidche payoffs and thus to derive the optimdicstedge.

% Typically, daily or weekly data are used. Thisuiees prices for the payoffs to be hedged and tdgimg
instruments. As a consequence, this approach welbsuited to hedge non standard tranches.

% Reflecting risk managers views about the future.
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Designing hedging strategies using CDO tranches doérequire the minimization of some
hedging error and can be conducted through soregngnmodel, usually some variant of the
Gaussian copula model.

Based upon a simple implementation of the Gaussiapula modéf, Ammann and
Brommundt (2009) report that the standard deviatbrihe changes in value of a delta-
hedged tranche, with an adjacent tranche, is alautimes smaller than that of an unhedged
portfolio. One could expand upon that, and useGheassian copula model to hedge, say, a
junior mezzanine tranche against an equity traraning the credit default swap index. In
theory, one should be able to hedge both againsil amd large movements of the index, that
is both delta and (parallel) gamma risks. Actuadiywce equity tranches are associated with
large idiosyncratic gamma risks, such approacrerdqus. Some still remember that similar
trades with positive carry were popular up-to tb@2 auto crisis, when some investors had to
cut positions with heavy losses: see Petetlil. (2006, 2007). We can also mention that this
kind of Taylor expansion based approach to heddmegs some theoretical rigour since
higher order terms may not be associated with Wargsrisks. Given this, it is not surprising
that hedging a given CDO tranches with two différe|mnches may lead to a decrease in
hedging performance (Ammann and Brommundt (2009)).

An important and practical topic is the pricing amsk management of bespoke tranches.
These are tranches based upon credit portfoliagtfiar from standard indexes, usually with
higher credit spread names. Twtcal. (2006), Baheti and Morgan (2007) describe differen
ways to compute correlation parameters dependirun upe average credit spread of the
bespoke portfolio. Ding and Sherris (2009) use dhieleas to build and check different
hedging strategies of standard CDO tranches. Gs@me stated dependence between
correlation and credit spreads, one can computeotiaé derivative of a CDO tranche with
respect to a shift in credit spreads. For instanseyg the moneyness matching approach in
Turcet al. (2006), an increase in credit spreads is assdcwitd® an increase in the expected
loss and thus a decrease in the detachment padingé déquivalent” equity tranche. Since base
correlations curves are usually upward slopingnarease in credit spreads is thus associated
with a decrease in base correlations. Of coursepikg the correlation parameters constant is
a special case corresponding to usual delta cortiguga

Another common issue is the hedging of non stanttartches on standard indices, such as
iTraxx or CDX. It may also concern super-senionttzes or on the contrary first losses
tranches, thin tranchelets, for instance a [5%-6%jche on the iTraxx and eventually short
term contracts especially as older series matuwwmeScommonly described approaches lead
to difficulties’®. One has to deal with standard no arbitrage cainséron expected tranche

losses, which are also related to super-replicgtroces as discussed in Walker (2008). This
actually provides some help, but still leads to idewange of admissible prices and hedge
ratios in a number of cases. This also raises gbeei of the availability and reliability of

prices of such non standard tranches. During tipgidity and credit crisis, the spreads of

super senior tranches widened dramatically. This paxtly due to the fear of systemic and
contagion effects in the credit world. But it magaabe that huge short positions by major
participants, such as AlG, could not be held duthéolack of collateral, and possibly some

27 Large homogeneous portfolio approximation.

% For instance, careless approaches based upomtér@dlation of base correlations may lead to riegat
tranchelets prices, the use of base correlatiomsssciated with non local effects in correlatioralgsis and
extrapolation is often hazardous. Moreover, hedg®s also depend upon somehow arbitrary recovate r
assumptions. See below about delta scattering axinmplementation.
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predatory trading have emphasized the price ofrssg@eior protection. In such a period of
stress and market dislocation, one can rightfulbnger about the significance of transaction
prices.

I1.2 Back to back-testing

A theory is something nobody believes, except énisop who made it. An experiment is
something everybody believes, except the persormaklde it Albert Einstein.

Let us now go back to comparing dynamic hedgingtagies of CDO tranches based upon
credit default swaps. We will focus upon a numbfemethodological issues and about some
results that come out of the small number of erogirstudies.

Our message is twofold:

First, there are numerous statistical and pracissales, when assessing hedging performance,
which cannot clearly be seen from the bird’'s-eyewiof academic mathematical finance.
These will be detailed thereafter and as a conseguelrawing comparisons between
different “models” is difficult.

Then, credit spread deltas of CDO tranches, wisipeet to credit default swap indexes, as
obtained from the Gaussian copula approximatiothefstructural model and default deltas
are not that different one from another. Moreowtatic deltas obtained from dynamic Cox
models are not different either. The discrepanbieisveen the models can be given some
economic intuition, based upon the correlation dywca or equivalently the mechanism of
default contagion. These deltas lead to risk redpbiedging strategies. Actually, it suggests
that market practice is far from being vacuousgeinsk management amongst trading desks
relies mainly upon variations of the Gaussian caydproach. This is rather good news at the
level of an investment bank, though it does notessarily solve for systemic issues, where
major trading firms appear to have similar longlort exposures to be hedged.

Our main focus regarding comparing models will tbe ise of the Gaussian copula and of the
Markov loss model described above. As discussdiéedahe Gaussian copula is viewed here
as some approximation of a costly to implementcstmal model. Both models are widely
used amongst practitioners and have sound andteasyderstand theoretical foundations.
We will not pay of lot of attention to so-calledemsity models, one should either say models
based on Cox processes, due to their difficultiesdealing with the high degree of
dependence between default events, as seen dhengedit and liquidity crisf. Similarly,

we will only briefly deal with incomplete market pqeaches even though some seem to be
associated with appealing hedging efficiency. Thegproaches are a bit trickier on
theoretical grounds, since the connection betwd&enpricing and the hedging is not as
obvious as in the case of complete market models.

Before going further in comparing hedging strategeéefew points need to be stated.
At this stage, partly due to practical constraifiack-test studies have involved the use of

indexes rather than individual credit default swalpsother words, the amount of credit
default swap used in the hedging portfolio is name&ependent. This is questionable

# Regarding hedging issues, Laurent (2006) deal wiich models. It is shown that due to default
diversification in large portfolios, the hedgingarcan be controlled by hedging credit spread oisly.
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especially when the dispersion of credit spreadomgst the underlying portfolio is
significant. For instance, such name heterogeneitikely to involve higher credit deltas in
equity tranches for risky names. This issue is udised below where the scattering of
individual name delta is being considered.

When trying to simultaneously deal with default @neldit spread risk, a view shared by some
academics is to deal with credit default swap irdesf different maturities. However, we
still lack some empirical studies to support sucheav and there might be some operational
difficulties in implementing these ideas. For im&t@, hedge ratios could be of opposite signs
and large magnitude. In the studies we are awdy¢hef preferred hedging instrument is thus
the credit default swap index of the same matuhién the considered CDO tranche. It would
definitely be some interesting investigation toegsswhether the use of credit default swaps
of different maturities actually increases hedgpgrformance. Preliminary and indirect
evidence discussed below tend to show that crpdéasl deltas and default deltas are not too
far away and suggest that a given position in th@edying credit portfolio could lead at a
good hedge both against default and credit spiisksl. r

Regarding the computation and the calibration c&peters, there are different isstiesve
already mentioned that the Markovian loss modelitsnsimplest form, involves a set of
contagion parameters which has the same dimensitmeanumber of names (say 125), while
there are much less pricing constraints (typicéllyor one horizon). Depending upon the
calibration method, the dependence of the losssities to the number of defaults may vary.
This is not innocuous from the point of view of tdetomputations.

In the Gaussian copula model, there are also a eunfbssues, related to the way correlation
parameters are determined, whether base or imptigrdlations are being used, whether these
correlations are kept constant or updated as cspdeiads change (correlation regimes). The
principles of the hedging and risk management airé/fsimple: the pricing tools are used to
compute sensitivities to market inputs and to mapleeameters, such as credit spreads of the
constituents of the reference credit portfolio. Thain focus is put on credit spread risk,
while default risk is usually dealt with a resem@licy. Such risks are managed thanks to
credit index default swaps or CDS on the underlyiages of the basket. Other risks, such as
idiosyncratic and parallel gamiacredit spread risks, or correlation exposure canirb
principle managed by trading liquid index tranchesoss the capital structure.

Let us emphasize a key issue when computing cdetiis in the one factor Gaussian copula
model with base correlations. There are actuallg approaches that can be denoted as
“sticky strike” and “sticky delta” to parallel theerminology used in equity derivatives
markets (see Derman (1999)). In the sticky strigpr@ach, the base correlations are kept
unchanged when bumping the credit curves. When atingp“sticky deltas”, one takes into
account the change in base correlations due talihage in the moneyness of the tranche
when credit spreads move up: the equity trancherbhes more junior, which actually leads to
using a smaller base correlation. In other wordghe sticky delta approach an increase in
credit spreads is associated with a smaller depmeddetween default events. As a
consequence, the sticky delta of an equity tramsth@ver than the delta computed under the
sticky strike approach.

%0 We already briefly discussed some issues regatti@gomputation of hedge ratios when considerffigea
intensity models.

3 |diosyncratic Gamma is also denoted as iGammaefedred to as “microconvexity”. Parallel Gammaiso
known as Index Gamma and referred to as “macrocatyve
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Morgan and Mortensen (2007) have investigated seamemalies when using the base
correlation for the computation of sensitivitiehely show that credit spread deltas on iTraxx
S7 5Y [12-22%] tranche can be negative due to tbepsess of the base correlation curve.
Such a counterintuitive efféétis illustrated in the graph below:

Expected portfolio loss

9% [0-9%] tranche payoff

PV of [0-9%] tranche

[0-6%] tranche payoff

»/-,PV of [0-6%] tranche

6%

[6-9%] tranche payoff

3%

2% 6% 9%  10% 12% Portfolio loss
Figure 1. Negative deltas due to the steepnedwedidse correlation curve.

Example: consider a mezzanine [6-9%] tranche orespdke portfolio. The expected loss on the
portfolio at inception is equal to 10%. Figuressoiid lines show the present value of the defagt |

of the [0-6%] and [0-9%] base correlation tranchss function of the expected loss on the portfolio
The base correlation for the [0-9%)] is assumeddovéry high, thus the volatility of the reference
portfolio is quite small as the time value of trese tranche. Conversely, the base correlationedith
6%] tranche is much smaller which is consistenhwteep upward base correlation curves. Thus, the
volatility of the (same) reference portfolio is nhuligher as the time value of the option. The prese
value of the default leg of the mezzanine [6-9%hthe is the difference between the present values
of the [0-6%] and [0-9%] base correlation tranched should remain between 0 and 3% to avoid
plain arbitrage opportunities. Given this constrraiilnmay be (see Figure 1) that the delta of tlogam
junior tranche is smaller than the delta of the erg@nior tranche for some levels of expected dartfo
loss. In such regions, the present value of thezewméme tranche will decrease as the expected loss o
the underlying portfolio increases which is rathelikely.

Also, when considering a bump in credit spreadsrder to compute a hedging exposure in
the credit default swap index, one may, for instaraperate a translation or rather chose a
multiplicative effect, which clearly will not leatd the same magnitude of credit deltas for the
different tranches. Recently, recovery rate assiompthave appeared of key importance.
Prior to the liquidity and credit crisis, most mearlparticipants relied upon a standard though
arbitrary recovery rate assumption of 40%. Sin@ntht appeared that such an assumption
would not be consistent with the large spreads egliobn senior tranches. Various

amendments, including a recovery markdown or afierspecifications of state dependent

32 Schloeglet al. (2008) show that such effects can also occurhitrage-free models.
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stochastic recovery rate have been proposed byndustry (see Amraoiet al. (2009)). This
has actually a significant impact upon hedge ratspecially at the individual name level.
Typically, the use of a stochastic recovery rata oecovery rate markdown will tend to lower
the exposure of senior tranches to tight names.bakes risk between the spread of the credit
default swap index and the average spread of fistitoents is another seemingly minor issue
when computing hedge ratios. Such basis risk iglgpnosated to “transaction costs” and can
fluctuate widely, especially during times of turmdihis raises some doubts regarding the
effective level of spreads and thus of expected lasd can have some effect on the
computation of hedge ratios. Various choices anadsatients can be envisaged, none of them
could actually be neglected when considering heggifficiency. Other seemingly minor
issues have to be dealt with in order to computestation parameters that are consistent with
market quotes, such as the amortization of premegs and the term structure of CDO
tranche spread$

Let us stress that, when constructing hedge ratesuse of parameters that calibrate prices
may not be the first-best. Gouriéroux and Laureki96) have developed a concept of
objective based inference and implied hedging pateamwhich might be well suited when
conducting back-tests with misspecified models.

Regarding hedging efficiency, we would first likieemphasize some similarities between the
deltas associated with dissimilar models, Gauss@ula, Markov loss model and affine
intensity models.

Eckner (2007) or Feldhatter (2008) rely on an &fispecification of default intensities.
Conditionally on the path of default intensitiegfallt times are independent, i.e., there are
no contagion effects at default times. The modepasametric with respect to the term
structure of credit spreads and to CDO tranchdené&iq2007) calibrates model parameters to
credit spreads and liquid tranche quotes assocwatbdhe CDX NA IG5 index. Hedge ratios
with respect to the credit default swap index &entcomputetf. The sensitivities of CDO
tranche and index prices are calculated with raspecuniform and relative shifts of
individual intensities. The model deltas can be parad with those computed from the
Gaussian copula model. As can be seen from Talileigh the figures differ, the orders of
magnitude are roughly the same. The equity tramgles computed in Eckner (2007) are
slightly larger than those computed under the GQanssopula, as in a “sticky delta”
approach. Such a result is consistent with a maxketre an increase in the average credit
spread is the outcome of some idiosyncratic shifi$ an increase in the dispersion of credit
spreads. This is typical of the May 2005 correlatoisis, which was actually associated with
smaller correlations on the equity tranches. As tfiage, some methodological points are
worth mentioning. First, while the model is dynantite way hedge ratios are computed is
typically static. One shifts some parameters rdldte credit spreads without relating such
bumps to a theoretical approach of dynamic heddihgre importantly, practical grounds,
there are different ways to inflate credit spreadssociated with different hedge ratios. For

33 We refer to Jobst (2007) or Meissraral. (2008) (chapter 18 of Meissner (2008)) for furtkéscussions
about hedging CDOs within the Gaussian copula fremnk. On the numerical side, Andersen, Sidenius and
Basu (2003), Iscoe and Kreinin (2007), among matheroauthors, provide semi-analytical techniques to
compute sensitivities within the Gaussian coputaniework. Joshi and Kainth (2004), Rott and FrieG08),
Chen and Glasserman (2008) detail some improvenoétit® Monte Carlo approach which are applicabléhe
pricing and hedging of CDO tranches, especiallymbiee falls outside the factor framework.

34 Let us remark that this model would hardly behralied during the 2008 crisis on CDX and iTraxxttzes.
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instance, one can privilege a shift associated Wiehsystemic component of the intensity,
such a shift will be therefore associated withrasrease in the dependence between defaults.

Tranches [0-3%] [3-7%] [7-10%)] [10-15%)] [15-309%]
market deltas 18.5 55 1.5 0.8 0.4
model deltas 21.7 6.0 1.1 0.4 0.1

Table 1. Market deltas and model deltas as in Bol@897).

Arnsdorf and Halperin (2007) consider a Markov ohtiat accounts for the dynamics of
defaults and credit spreads. This can be seerfta@alimensional” Markov chain. Contrary
to the previous model, defaults are informative anedit spreads jump at the arrival of
defaults. The theoretical properties of the modéh wespect to completeness are not studied
but Arnsdorf and Halperin (2007) compute deltastahdard iTrraxx tranches with respect to
the corresponding credit default swap index. A&akner (2007), the deltas with respect to
individual credit default swaps are not providecbwever, one could think of using the
random thinning procedure discussed in GieseckeGaidberg (2005) or Giesecke (2008) to
provide such individual deltas.

Tranches [0-3%] [3-6%] [6-9%] [9-12%] [12-22%)]
market deltas 26.5 4.5 1.3 0.7 0.3
model deltas 21.9 4.8 1.6 0.8 0.4

Table 2. Market and model deltas as in Arnsdorfidabberin (2007).

Table 2 shows some market (computed under the @Gausspula model) and model deltas
(corresponding to “model B” in Arnsdorf and Halpe(R007)) in March 2007, for five year
CDO tranches. As in Table 1, it can be seen tleafigjures are roughly the same. However, it
is noticeable that equity tranche deltas are smathen using the Markov chain.

From a risk management perspective, an intere$tiatire is that the deltas with respect to
underlying credit default swaps have the same atlaragnitude in the different approaches.
Let us first recall that, in the case of zero diffree interest rates, the default leg of a senior
CDO tranche can be seen as a call option on agfiortéf discount bonds maturing with the
CDO tranche. The above delta feature suggeststt@aportfolio level, say an iTraxx or CDX
index, a shift of credit spreads or a default eweotild have roughly the same effect on the
expected portfolio loss dynamics. In other worde same amount of CDS would lead to
protection both against credit spread and defaksr This is quite preliminary and needs to
be further confirmed by using an embedding framé&wor

Though the pricing methodology differs, Eckner (2Q0Arnsdorf and Halperin (2007),
Laurentet al. (2007), Cont and Kan (2008), Feldhitter (2008 ntCbeguest and Kan (2009),
Contet al. (2009) provide some examples of the use of dynamiiitrage free pricing models
to compute sensitivities with respect to creditesiis and thus hedge ratios with respect to
credit default swaps. As mentioned above drivingngarisons is never an easy task since one
has to decide about the way model parameters &gendaed. This can actually explain some
discordance between empirical studies regardinggihgdefficiency of different models,
especially since there is not so much differencevéen the computed deltas. While,
unsurprisingly, the authors stress the divergebedween hedging strategies associated with
different modelling approaches, the relative errassmeasured by root mean squared error or
the mean average hedge error, do not differ thahmu
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Regarding statistical issues, when assessing hgdmrformance, one should be cautious
about the issues related to data snooping, muhliygb®thesis testing or false discovery rate. It
is tempting to embed a simple model in a larger whieh is likely to be more flexible and
involve more parameters. Then, the simple modekargpto be restricted version of a more
sophisticated one and we can check this restriciioparameters If the base model is not
rejected, then most likely researchers will look &mother extension until a new model is
found which is claimed to supersede the older diés is not a fair contest since the best
alternative is chosen and one has to correct tastics accordingly. In and out of sample do
not correct for this data driven model selectioacduse comparing out of sample hedging
performance is part of the standard model selectiethodology. This strengthens our focus
on simple modef§.

I1.3 Delta scattering

Up to now, we mainly concentrated on the hedgindCBXO tranches with respect to the
underlying credit default swap index. However, iany cases it makes sense to hedge at the
name level, especially when the spreads assoamdthdhe index constituents are dispersed.
A name with a large spread is more likely to cdnité to the value of an equity tranche, and
thus should be associated with a larger hedge ttsio a tight name. Likewise, an increase in
dispersion of spreads should be associated withagase in the value of the default leg of
an equity tranche (and conversely for senior trasth

By construction, bottom-up models and especiallput® type models, allow a name per
name derivation of hedge ratfdsRegarding top-down models, the building of indial
deltas is currently being investigated; randomrilmg, as some researchers advocate, might
do the job. We leave this point for further dis¢oss

Another issue with models than involve some kindcofitagion is the scope of contagion
effects. For instance, failure of a name within @2X index may lead to jumps in the credit
spreads of names in the iTraxx. In theory, suchosdpe should be hedged, which may be
forgotten if one would consider the North Americaorld separately. Likewise, such hidden
name dependence appears in bespoke CDOs duert@mfimng onto liquid indexes.

As mentioned in the first paragraph, one is likelgexpect a smooth and increasing pattern of
credit deltas with respect to the spreads of thderlyping names for an equity tranche, a
decreasing pattern for senior tranches and possibiyymped shape for some mezzanine
tranches.

However, other issues came to light, such as higmepancies between individual name
deltas and subsequently very large positive or thegaddiosyncratic Gammas in high

correlation regimes, as observed in 2008 on thax)and CDX markets. Actually, when the
dependence level between default dates becomes lyjgih, as could be seen during the

% This first step may not be straightforward sirtoe distribution of hedging errors needs to be @efiv

3% Even though, looking in greater details, theresdilea lot of rather arbitrary and often not ruetil modelling
choices.

37 See Cousin and Laurent (2008a), Cousin and La@28®8c) or Burtschekt al. (2009) for reviews of such
bottom-up models within a factor copula framewcrke sensitivity approach applies to copulas mots,
contrary to the base correlation approach, proeidstrage-free CDO tranche quotes. Schloegl e{24108)
prove that tranchelet sensitivities are alwaystp@sin such a framework. Dealing with large amauot data
and the cost of numerical implementation drove yearck-test studies towards using credit defaulapsw

indexes
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liquidity and credit crisis, strange phenomena ocblames cluster together according to the
level of credit spreads and credit deltas are eidggial to zero or one (see Burtsctetllal.
(2009) for a detailed analysis). For instance, wlnaking at an equity tranche, the names
with the highest credit spreads have a delta emuahe€® while the remaining names have a
delta equal to zero. Such a phenomenon also ogoutise stochastic correlation model
described by Burtschedit al. (2007). The bumps in Figure 2 are related to thraanotonic
(perfect dependence) state and the heterogeneipngsh credit spreads. Such a rather
counterintuitive pattern precludes the use of tleglit default swap index as hedging tool for
CDO tranches. Other heterogeneity effects in irlial credit deltas are reported by Houdain
(2006).
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Figure 2. Irregular patterns of individual namekatein regimes of high correlation.

Figure 2 exhibits CDO tranche deltas with respedhe level of credit spreads computed on
31-August-2005. Nominal is equal to 125. 5-yeaditrepreads on theaxis are expressed in
basis points per annum. Credit deltas of the edugiyche are on right axis. Figure 2 shows
that individual credit deltas may actually diffégrsficantly from one name to another.

Such irregular patterns of credit spread deltas @atur whenever pricing models involve

some kind of threshold. This is for instance theecwith the popular random factor loading
approach of Andersen and Sidenius (2005). We wastress that these patterns of credit
spread deltas with respect to the level of cregieads convey a lot of information. They

almost directly show the amount of idiosyncratiengaa risks by the looking at the slope of
such a curve. The higher the increase of crediéagprdeltas with respect to the level of
spreads, the higher will the corresponding idiosgtic gammZ’.

% There is always a matter of norm. Here the refazen the credit default swap index. One has alscate
about the notional of the tranche in certain cases.
%9 Such a reasoning is not rigorous and holds dirteorder. However, the approximation is usuajljte good.
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The increased efficiency of hedging at a name leveln important issue for trading desks
but, as mentioned above, cannot be fully assessiedauthe details of the hedging strategy,
including the ways hedging parameters are calidrate disclosed.

Conclusion

The wise man bridges the gap by laying out the jpgthmeans of which he can get from
where he is to where he wants to gohn Pierpont Morgan

This paper dealt with the usefulness of pricing hadging models for the risk management
of synthetic CDOs. We show that replicating stregegf CDO tranches can be replicated
with self-financing strategies within the basic lerpentations of the multivariate structural
model and of the Markovian loss (or local intensityodel. The former approach is primarily
designed to hedge credit spread risks. In therlagiproach, focus is put on hedging default
risks and may involve a high degree of default agiun. In both cases, credit default swaps
are traded to hedge CDO tranches and the involvathematical tools, such as conditional
default probabilities or the use of some martingajgresentation theorem, are the same. On
other grounds these models are strikingly diffesard each of them could be criticized as too
simple and missing some desirable empirical featufbe mathematics of the multivariate
structural model are well-knowh The Gaussian copula model, widely used in thekiban
industry, may be seen as a one step approximafictheo multivariate structural model,
especially for investment grade names associatddsmiall default probabilities. This might
explain some kind of robustness of the model agd fae path for a better understanding of
its limitations. Such an issue has already beediexfuas far as pricing is concerned, but a
formal investigation is still required for hedging.

The overall picture regarding risk management ofdSooks quite gloomy in the aftermath
of the liquidity and credit crisis. Misconceptiom®out CDO of subprimes, such as the
understatement of dependence across minitrancleescav well-known and discussed (see
Crouhy et al. (2008). If one dares looking at facts eyes wide operseitms clear that
trading desks managing synthetic CDOs had dissimpéaormances, which is not surprising,
regarding the number of technical issues brieflgraglsed within this paper. This does not
invalidate various quantitative developments in ¢hedit correlation field. According to K.
Popper’s evolutionary view of science, researcheo& for falsification of a theory or a
model which represents the state of the art. For rason, the burgeoning of credit risk
models and more recently of back-testing approatdstgies to a vivid research field rather
than rigor mortis. Let us consider the supplementand somehow challenging) view of T.
Kuhn, “No theory ever solves all the puzzles with whigh donfronted at a given time; nor
are the solutions already achieved often perfectti@ contrary, it is just the incompleteness
and imperfection of the existing data-theory fiatthat any given time, define many of the
puzzles that characterize normal sciénd&hether it is time to shift to another paradigm

0 However, some details are, surprisingly enoughyebdescribed in the academic literature. We thark of
using hedging instruments which vanish before tlaunity of the CDO tranche, but are not anymoreauireg
after extinction.

“1 We can however notice that it does not invalidhte Gaussian copula model per se, provided thatishi
applied at the lowest level rather than at the tmnche level. When considering well diversified SIB
mezzanine tranches, the idiosyncratic risks areegviput and only systemic risks such as the pricel e the
residential mortgage market remains. It is not ssimg therefore that the correlation between these
minitranches would be much higher than assesserhtiyg agencies and that senior tranches of ABS wer
overpriced.
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even abandoning the current quantitative financeseéarch programrf® is thus still
unobvious.
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