Comparison results for credit risk portfolios

Areski COUSIN

Université Claude Bernard Lyon 1, ISFA

AFFI Paris Finance International Meeting - 20 December 2007
Joint work with Jean-Paul LAURENT
Introduction

- Presentation devoted to risk analysis of credit portfolios
- In credit risk portfolio modelling, dependence among default events is a crucial assumption
- We will investigate tranches of Collateralized Debt Obligation (CDO)
- Which is the impact of the dependence on
 - CDO tranche premiums?
 - Risk measures on the aggregate loss?
CDO tranches

- Slice the credit portfolio into different risk levels or CDO tranches
- ex: CDO tranche on standardized Index such as CDX North America or Itraxx Europe

- [0, 3%] equity tranche is subordinated to [3, 6%] junior mezzanine tranche
- [3, 6%] junior mezzanine tranche is subordinated to [6, 9%] mezzanine tranche and so on,...
CDO tranches

- Each CDO tranche is a bilateral contract between a buyer of protection and a seller of protection:

 ![Diagram]

 - Buyer of Protection
 - Seller of Protection
 - Quarterly premium payments
 - Payment when defaults affect the tranche

- CDO tranche cash flows are driven by the aggregate loss process
CDO tranches

- Credit portfolio with \(n \) reference entities
- \(\tau_1, \ldots, \tau_n \) default times
- \((D_1, \ldots, D_n) = (1_{\tau_1 \leq t}, \ldots, 1_{\tau_n \leq t})\) default indicators at time \(t \)
- \(M_1, \ldots, M_n \) losses given default assumed to be independent of default times
- Aggregate loss:

\[
L_t = \sum_{i=1}^{n} M_i 1_{\tau_i \leq t}
\]

- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with \(n \) reference entities
- \(\tau_1, \ldots, \tau_n \) default times
- \((D_1, \ldots, D_n) = (1_{\tau_1 \leq t}, \ldots, 1_{\tau_n \leq t})\) default indicators at time \(t \)
- \(M_1, \ldots, M_n \) losses given default assumed to be independent of default times
- Aggregate loss:
 \[
 L_t = \sum_{i=1}^{n} M_i 1_{\tau_i \leq t}
 \]
- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with n reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:
 \[L_t = \sum_{i=1}^{n} M_i 1_{\{\tau_i \leq t\}} \]
- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with \(n \) reference entities
- \(\tau_1, \ldots, \tau_n \) default times
- \((D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})\) default indicators at time \(t \)
- \(M_1, \ldots, M_n \) losses given default assumed to be independent of default times
- Aggregate loss:

\[
L_t = \sum_{i=1}^{n} M_i 1_{\{\tau_i \leq t\}}
\]

- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with \(n \) reference entities
- \(\tau_1, \ldots, \tau_n \) default times
- \((D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})\) default indicators at time \(t \)
- \(M_1, \ldots, M_n \) losses given default assumed to be independent of default times
- Aggregate loss:
 \[
 L_t = \sum_{i=1}^{n} M_i 1_{\{\tau_i \leq t\}}
 \]
- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with n reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1\{\tau_1 \leq t\}, \ldots, 1\{\tau_n \leq t\})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:
 \[L_t = \sum_{i=1}^{n} M_i 1\{\tau_i \leq t\} \]
- Dynamics of the aggregate loss process:
Credit portfolio with \(n \) reference entities

\(\tau_1, \ldots, \tau_n \) default times

\((D_1, \ldots, D_n) = (1_{\tau_1 \leq t}, \ldots, 1_{\tau_n \leq t}) \) default indicators at time \(t \)

\(M_1, \ldots, M_n \) losses given default assumed to be independent of default times

Aggregate loss:

\[
L_t = \sum_{i=1}^{n} M_i 1_{\tau_i \leq t}
\]

Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with \(n \) reference entities
- \(\tau_1, \ldots, \tau_n \) default times
- \((D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})\) default indicators at time \(t \)
- \(M_1, \ldots, M_n \) losses given default assumed to be independent of default times
- Aggregate loss:

\[
L_t = \sum_{i=1}^{n} M_i 1_{\{\tau_i \leq t\}}
\]

- Dynamics of the aggregate loss process:
CDO tranches

- Credit portfolio with n reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\tau_1 \leq t}, \ldots, 1_{\tau_n \leq t})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:
 \[
 L_t = \sum_{i=1}^{n} M_i 1_{\tau_i \leq t}
 \]
- Dynamics of the aggregate loss process:
$L_t^{(a,b)}$ has a call spread payoff with respect to the aggregate loss:

\[
L_t^{(a,b)} = (L_t - a)^+ - (L_t - b)^+
\]

Loss on CDO tranche $[a, b]$:

\[
L_t^{(a,b)} = (L_t - a)^+ - (L_t - b)^+
\]

Tranche premiums only involves call options on the aggregate loss L_t:

\[
E [(L_t - a)^+] - E [(L_t - b)^+]
\]
Motivation

- Specify the dependence structure of default indicators D_1, \ldots, D_n which leads to:
 - an increase of the value of call options $E \left[(L_t - a)^+ \right]$ for all strike level $a > 0$
 - an increase of convex risk measures on L_t (TVaR, Wang risk measures)
- Comparison between homogeneous credit portfolios
 - D_1, \ldots, D_n are assumed to be exchangeable Bernoulli random variables
 - De Finetti Theorem leads to a factor representation
- Application to several default risk models
Homogeneity assumption: default indicators D_1, \ldots, D_n forms an exchangeable Bernoulli random vector.

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1, \ldots, D_n) \overset{d}{=} (D_{\sigma(1)}, \ldots, D_{\sigma(n)})$$
De Finetti theorem and factor representation

- Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables.
- Thanks to de Finetti theorem, there exists a random factor \tilde{p} such that D_1, \ldots, D_n are conditionally independent given \tilde{p}.
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p}, then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum d_i} (1 - p)^{n - \sum d_i} F_{\tilde{p}}(dp)$$

- \tilde{p} is characterized by:

$$\frac{1}{n} \sum_{i=1}^n D_i \overset{a.s.}{\rightarrow} \tilde{p} \quad \text{as} \quad n \rightarrow \infty$$
The convex order compares the dispersion level of two random variables.

\[X \leq_{cx} Y \text{ if } E[f(X)] \leq E[f(Y)] \text{ for all convex functions } f \]

Particularly, if \(X \leq_{cx} Y \) then \(E[X] = E[Y] \) and \(\text{Var}(X) \leq \text{Var}(Y) \).

Two important consequences of the convex order:

- If \(X \leq_{cx} Y \) then \(E[(X - a)^+] \leq E[(Y - a)^+] \) for all \(a > 0 \).
- If \(X \leq_{cx} Y \) then \(\rho(X) \leq \rho(Y) \) for all law invariant and convex risk measures \(\rho \) (Bäuerle and Müller(2005)).
Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- \((X_1, \ldots, X_n) \leq_{sm} (Y_1, \ldots, Y_n)\) if \(E[f(X_1, \ldots, X_n)] \leq E[f(Y_1, \ldots, Y_n)]\) for all supermodular function \(f\)

Definition (Supermodular function)

A function \(f : \mathbb{R}^n \rightarrow \mathbb{R}\) is **supermodular** if for all \(x \in \mathbb{R}^n\), \(1 \leq i < j \leq n\) and \(\varepsilon, \delta > 0\) holds

\[
f(x_1, \ldots, x_i + \varepsilon, \ldots, x_j + \delta, \ldots, x_n) - f(x_1, \ldots, x_i + \varepsilon, \ldots, x_j, \ldots, x_n) \\
\geq f(x_1, \ldots, x_i, \ldots, x_j + \delta, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n)
\]

- Consequences of new defaults are always worse when other defaults have already occurred
- If \((D_1, \ldots, D_n) \leq_{sm} (D_1, \ldots, D_n)\) then \(\sum_{i=1}^{n} M_i D_i \leq_{cx} \sum_{i=1}^{n} M_i D_i\) (Müller(1997))
Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^{n} M_i D_i$ and $L_t^* = \sum_{i=1}^{n} M_i D_i^*$.
- Let D_1, \ldots, D_n be exchangeable Bernoulli random variables associated with the mixture factor \tilde{p}.
- D_1^*, \ldots, D_n^* exchangeable Bernoulli random variables associated with the mixture factor \tilde{p}^*.

Theorem

$$\tilde{p} \preceq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \preceq_{sm} (D_1^*, \ldots, D_n^*)$$

$$\Rightarrow E[(L_t - a)^+] \leq E[(L_t^* - a)^+] \text{ for all } a > 0$$

$$\Rightarrow \rho(L_t) \leq \rho(L_t^*) \text{ for all convex risk measures } \rho$$

Theorem

$$(D_1, \ldots, D_n) \preceq_{sm} (D_1^*, \ldots, D_n^*), \forall n \in \mathbb{N} \Rightarrow \tilde{p} \preceq_{cx} \tilde{p}^* \quad (1)$$
Additive factor copula approaches

- The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:
 - $V_i = \rho V + \sqrt{1 - \rho^2} \bar{V}_i, \ i = 1 \ldots n$
 - $V, \bar{V}_i, \ i = 1 \ldots n$ independent
 - $\tau_i = G^{-1}(H_\rho(V_i)), \ i = 1 \ldots n$
 - G: distribution function of τ_i
 - H_ρ: distribution function of V_i
 - $D_i = 1\{\tau_i \leq t\}, \ i = 1 \ldots n$ are conditionally independent given V
 - $\frac{1}{n} \sum_{i=1}^{n} D_i \rightarrow E[D_i \mid V] = P(\tau_i \leq t \mid V) = \tilde{p}$
Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by $D_i = 1\{\tau_i \leq t\}$, $i = 1 \ldots n$ and $D_i^* = 1\{\tau_i^* \leq t\}$, $i = 1 \ldots n$ the default indicators corresponding to (resp.) ρ and ρ^*, then:

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula - the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2005)
 - Double Variance Gamma: Moosbrucker(2005)
Hull, Predescu and White (2005)

- Consider \(n \) firms
- Let \(X^i_t, \ i = 1 \ldots n \) be their asset dynamics
 \[
 X^i_t = \rho W_t + \sqrt{1 - \rho^2} W^i_t, \ i = 1 \ldots n
 \]
- \(W, W^i, \ i = 1 \ldots n \) are independent standard Wiener processes
- Default times as first passage times:
 \[
 \tau_i = \inf \{ t \in \mathbb{R}^+ | X^i_t \leq f(t) \}, \ i = 1 \ldots n,\ f : \mathbb{R} \to \mathbb{R} \text{ continuous}
 \]
- \(D_i = 1_{\{\tau_i \leq T\}}, \ i = 1 \ldots n \) are conditionally independent given \(\sigma(W_t, t \in [0, T]) \)
Theorem

For any fixed time horizon T, denote by $D_i = 1_{\{\tau_i \leq T\}}$, $i = 1 \ldots n$ and $D_i^* = 1_{\{\tau_i^* \leq T\}}$, $i = 1 \ldots n$ the default indicators corresponding to (resp.) ρ and ρ^*, then:

$$\rho \leq \rho^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$$
Archimedean copula

<table>
<thead>
<tr>
<th>Copula name</th>
<th>Generator φ</th>
<th>V-distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clayton</td>
<td>$t^{-\theta} - 1$</td>
<td>Gamma$(1/\theta)$</td>
</tr>
<tr>
<td>Gumbel</td>
<td>$(-\ln(t))^{\theta}$</td>
<td>α-Stable, $\alpha = 1/\theta$</td>
</tr>
<tr>
<td>Frank</td>
<td>$-\ln \left[(1 - e^{-\theta t})/(1 - e^{-\theta}) \right]$</td>
<td>Logarithmic series</td>
</tr>
</tbody>
</table>

Theorem

$\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$

- Other comparison results for multivariate Poisson models
When considering homogeneous credit portfolios, the factor representation of default indicators is not restrictive.

- Thanks to De Finetti’s theorem, there exists a mixture probability \tilde{p} such that default indicators are conditionally independent given \tilde{p}

This mixture probability is the key input to analyze the impact of dependence on:

- CDO tranche premiums
- Convex risk measures on the aggregate loss

This analysis can be performed for several popular default risk models