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Introduction

Presentation devoted to risk analysis of credit portfolios

In credit risk portfolio modelling, dependence among default events is a
crucial assumption

We will investigate tranches of Collateralized Debt Obligation (CDO)

Which is the impact of the dependence on

CDO tranche premiums ?
Risk measures on the aggregate loss ?
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CDO tranches

Slice the credit portfolio into different risk levels or CDO tranches

ex: CDO tranche on standardized Index such as CDX North America or Itraxx
Europe

[0, 3%] equity tranche is subordinated to [3, 6%] junior mezzanine tranche

[3, 6%] junior mezzanine tranche is subordinated to [6, 9%] mezzanine tranche
and so on,. . .
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CDO tranches

Each CDO tranche is a bilateral contract between a buyer of protection
and a seller of protection:

CDO tranche cash flows are driven by the aggregate loss process
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CDO tranches

Credit portfolio with n reference entities
τ1, . . . , τn default times
(D1, . . . , Dn) = (1{τ1≤t}, . . . , 1{τn≤t}) default indicators at time t
M1, . . . , Mn losses given default assumed to be independent of default
times
Aggregate loss:

Lt =
n∑

i=1

Mi1{τi≤t}

Dynamics of the aggregate loss process:

t

Lt

a

b
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CDO tranches

L(a,b)
t has a call spread payoff with respect to the aggregate loss:

Lt

L(a,b)
t

b − a

a b

b − a

Loss on CDO tranche [a, b]:

L(a,b)
t = (Lt − a)+ − (Lt − b)+

Tranche premiums only involves call options on the aggregate loss Lt :

E
[
(Lt − a)+]

− E
[
(Lt − b)+]
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Motivation
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Stochastic orders
Main results

Motivation

Specify the dependence structure of default indicators D1, . . . , Dn which
leads to:

an increase of the value of call options E
[
(Lt − a)+]

for all strike
level a > 0
an increase of convex risk measures on Lt (TVaR, Wang risk
measures)

Comparison between homogeneous credit portfolios

D1, . . . , Dn are assumed to be exchangeable Bernoulli random
variables
De Finetti Theorem leads to a factor representation

Application to several default risk models
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De Finetti theorem and factor representation

Homogeneity assumption: default indicators D1, . . . , Dn forms an
exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D1, . . . , Dn) is exchangeable if its distribution function is
invariant for every permutations of its coordinates: ∀σ ∈ Sn

(D1, . . . , Dn)
d
= (Dσ(1), . . . , Dσ(n))r
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De Finetti theorem and factor representation

Assume that D1, . . . , Dn, . . . is an exchangeable sequence of Bernoulli
random variables

Thanks to de Finetti theorem, there exists a random factor p̃ such that

D1, . . . , Dn are conditionally independent given p̃

Denote by Fp̃ the distribution function of p̃, then:

P(D1 = d1, . . . , Dn = dn) =

∫ 1

0
p

∑
i di (1− p)n−

∑
i di Fp̃(dp)

p̃ is characterized by:

1
n

n∑
i=1

Di
a.s−→ p̃ as n →∞
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Convex order

The convex order compares the dispersion level of two random variables

X ≤cx Y if E [f (X )] ≤ E [f (Y )] for all convex functions f

Particularly, if X ≤cx Y then E [X ] = E [Y ] and Var(X ) ≤ Var(Y )

Two important consequences of the convex order:

If X ≤cx Y then E [(X − a)+] ≤ E [(Y − a)+] for all a > 0
If X ≤cx Y then ρ(X ) ≤ ρ(Y ) for all law invariant and convex risk
measures ρ (Bäuerle and Müller(2005))
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Supermodular order

The supermodular order captures the dependence level among coordinates
of a random vector

(X1, . . . , Xn) ≤sm (Y1, . . . , Yn) if E [f (X1, . . . , Xn)] ≤ E [f (Y1, . . . , Yn)] for
all supermodular function f

Definition (Supermodular function)

A function f : Rn → R is supermodular if for all x ∈ IRn, 1 ≤ i < j ≤ n and
ε, δ > 0 holds

f (x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f (x1, . . . , xi + ε, . . . , xj , . . . , xn)

≥ f (x1, . . . , xi , . . . , xj + δ, . . . , xn)− f (x1, . . . , xi , . . . , xj , . . . , xn)

Consequences of new defaults are always worse when other defaults have
already occurred

If (D1, . . . , Dn) ≤sm (D1, . . . , Dn) then
∑n

i=1 MiDi ≤cx
∑n

i=1 MiDi

(Müller(1997))
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Main results

Let us compare two credit portfolios with aggregate loss Lt =
∑n

i=1 MiDi

and L∗t =
∑n

i=1 MiD∗
i

Let D1, . . . , Dn be exchangeable Bernoulli random variables associated
with the mixture factor p̃

D∗
1 , . . . , D∗

n exchangeable Bernoulli random variables associated with the
mixture factor p̃∗

Theorem

p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )

⇒ E [(Lt − a)+] ≤ E [(L∗t − a)+] for all a > 0

⇒ ρ(Lt) ≤ ρ(L∗t ) for all convex risk measures ρ

Theorem

(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n ),∀n ∈ N ⇒ p̃ ≤cx p̃∗ (1)
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Additive factor copula approaches

The dependence structure of default times is described by some latent
variables V1, . . . , Vn such that:

Vi = ρV +
√

1− ρ2V̄i , i = 1 . . . n

V , V̄i , i = 1 . . . n independent

τi = G−1(Hρ(Vi )), i = 1 . . . n

G : distribution function of τi

Hρ: distribution function of Vi

Di = 1{τi≤t}, i = 1 . . . n are conditionally independent given V
1
n

∑n
i=1 Di

a.s−→ E [Di | V ] = P(τi ≤ t | V ) = p̃
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Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by Di = 1{τi≤t}, i = 1 . . . n and
D∗

i = 1{τ∗i ≤t}, i = 1 . . . n the default indicators corresponding to (resp.) ρ and
ρ∗, then:

ρ ≤ ρ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )

This framework includes popular factor copula models:

One factor Gaussian copula - the industry standard for the pricing of
CDO tranches
Double t: Hull and White(2004)
NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2005)
Double Variance Gamma: Moosbrucker(2005)
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Structural model

Hull, Predescu and White(2005)

Consider n firms

Let X i
t , i = 1 . . . n be their asset dynamics

X i
t = ρWt +

√
1− ρ2W i

t , i = 1 . . . n

W , W i , i = 1 . . . n are independent standard Wiener processes

Default times as first passage times:

τi = inf{t ∈ IR+|X i
t ≤ f (t)}, i = 1 . . . n, f : IR → IR continuous

Di = 1{τi≤T} , i = 1 . . . n are conditionally independent
given σ(Wt , t ∈ [0, T ])
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Structural model

Theorem

For any fixed time horizon T , denote by Di = 1{τi≤T}, i = 1 . . . n and
D∗

i = 1{τ∗i ≤T}, i = 1 . . . n the default indicators corresponding to (resp.) ρ
and ρ∗, then:

ρ ≤ ρ∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Archimedean copula

Copula name Generator ϕ V -distribution
Clayton t−θ − 1 Gamma(1/θ)
Gumbel (− ln(t))θ α-Stable, α = 1/θ

Frank − ln
[
(1− e−θt)/(1− e−θ)

]
Logarithmic series

Theorem

θ ≤ θ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )

Other comparison results for multivariate Poisson models
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Conclusion

When considering homogeneous credit portfolios, the factor representation
of default indicators is not restrictive

Thanks to De Finetti’s theorem, there exists a mixture probability p̃
such that default indicators are conditionally independent given p̃

This mixture probability is the key input to analyze the impact of
dependence on:

CDO tranche premiums
Convex risk measures on the aggregate loss

This analysis can be performed for several popular default risk models
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