Comparison results for credit risk portfolios

Areski COUSIN

Université Claude Bernard Lyon 1, ISFA

AFFI Paris Finance International Meeting - 20 December 2007 Joint work with Jean-Paul LAURENT

Introduction

- Presentation devoted to risk analysis of credit portfolios
- In credit risk portfolio modelling, dependence among default events is a crucial assumption
- We will investigate tranches of Collateralized Debt Obligation (CDO)
- Which is the impact of the dependence on
 - CDO tranche premiums ?
 - Risk measures on the aggregate loss ?

CDO tranches

- Slice the credit portfolio into different risk levels or CDO tranches
- ex: CDO tranche on standardized Index such as CDX North America or Itraxx Europe

- [0, 3%] equity tranche is subordinated to [3, 6%] junior mezzanine tranche
- [3,6%] junior mezzanine tranche is subordinated to [6,9%] mezzanine tranche and so on,...

CDO tranches

• Each CDO tranche is a bilateral contract between a buyer of protection and a seller of protection:

• CDO tranche cash flows are driven by the aggregate loss process

글 🕨 🛛 글

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1,\ldots,D_n) = (1_{\{\tau_1 \leq t\}},\ldots,1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

CDO tranches

• $L_t^{(a,b)}$ has a call spread payoff with respect to the aggregate loss:

• Loss on CDO tranche [a, b]:

$$L_t^{(a,b)} = (L_t - a)^+ - (L_t - b)^+$$

• Tranche premiums only involves call options on the aggregate loss L_t :

$$E\left[(L_t-a)^+
ight]-E\left[(L_t-b)^+
ight]$$

Motivation De Finetti theorem and factor representation Stochastic orders Main results

Motivation

- Specify the dependence structure of default indicators D_1, \ldots, D_n which leads to:
 - an increase of the value of call options E [(L_t a)⁺] for all strike level a > 0
 - an increase of convex risk measures on *L_t* (TVaR, Wang risk measures)
- Comparison between homogeneous credit portfolios
 - D_1, \ldots, D_n are assumed to be exchangeable Bernoulli random variables
 - De Finetti Theorem leads to a factor representation
- Application to several default risk models

()→ ()→

Motivation De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

• Homogeneity assumption: default indicators D_1, \ldots, D_n forms an exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1,\ldots,D_n)\stackrel{d}{=} (D_{\sigma(1)},\ldots,D_{\sigma(n)})r$$

Motivation De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

- Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables
- Thanks to de Finetti theorem, there exists a random factor \tilde{p} such that
- D_1, \ldots, D_n are conditionally independent given \tilde{p}
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p} , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\tilde{p}}(dp)$$

• \tilde{p} is characterized by:

$$\frac{1}{n}\sum_{i=1}^n D_i \xrightarrow{\text{a.s.}} \tilde{p} \quad \text{as} \ n \to \infty$$

CDO tranches Motivation Comparison results De Finetti theorem and factor representation Application to credit risk management Conclusion Conclusion Main results

Convex order

- The convex order compares the dispersion level of two random variables
- $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f
- Particularly, if $X \leq_{cx} Y$ then E[X] = E[Y] and $Var(X) \leq Var(Y)$
- Two important consequences of the convex order:
 - If $X \leq_{cx} Y$ then $E[(X a)^+] \leq E[(Y a)^+]$ for all a > 0
 - If X ≤_{cx} Y then ρ(X) ≤ ρ(Y) for all law invariant and convex risk measures ρ (Bäuerle and Müller(2005))

- 4 戸下 - 4 戸下

CDO tranches Motivation Comparison results De Finetti theorem and factor representation Application to credit risk management Stochastic orders Conclusion Main results

Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- $(X_1, \ldots, X_n) \leq_{sm} (Y_1, \ldots, Y_n)$ if $E[f(X_1, \ldots, X_n)] \leq E[f(Y_1, \ldots, Y_n)]$ for all supermodular function f

Definition (Supermodular function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x \in \mathbb{R}^n$, $1 \le i < j \le n$ and $\varepsilon, \delta > 0$ holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

 $\geq f(x_1,\ldots,x_i,\ldots,x_j+\delta,\ldots,x_n) - f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)$

- Consequences of new defaults are always worse when other defaults have already occurred
- If $(D_1, \ldots, D_n) \leq_{sm} (D_1, \ldots, D_n)$ then $\sum_{i=1}^n M_i D_i \leq_{cx} \sum_{i=1}^n M_i D_i$ (Müller(1997))

э

イロト イポト イラト イラト

CDO tranches Comparison results Application to credit risk management Conclusion Conclusion Conclusion Conclusion Comparison results Conclusion Comparison results

Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^n M_i D_i$ and $L_t^* = \sum_{i=1}^n M_i D_i^*$
- Let D_1, \ldots, D_n be exchangeable Bernoulli random variables associated with the mixture factor \tilde{p}
- D_1^*, \ldots, D_n^* exchangeable Bernoulli random variables associated with the mixture factor \tilde{p}^*

Theorem

$$\begin{split} \tilde{p} \leq_{cx} \tilde{p}^* & \Rightarrow \quad (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*) \\ & \Rightarrow \quad E[(L_t - a)^+] \leq E[(L_t^* - a)^+] \text{ for all } a > 0 \\ & \Rightarrow \quad \rho(L_t) \leq \rho(L_t^*) \text{ for all convex risk measures } \rho \end{split}$$

Theorem

$$(D_1,\ldots,D_n)\leq_{sm}(D_1^*,\ldots,D_n^*), \forall n\in\mathbb{N}\Rightarrow \widetilde{p}\leq_{cx}\widetilde{p}^*$$

(1)

Additive factor copula approaches Structural model Archimedean copula

Additive factor copula approaches

• The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:

•
$$V_i = \rho V + \sqrt{1 - \rho^2} \bar{V}_i, \ i = 1 \dots n$$

• $V, \bar{V}_i, i = 1 \dots n$ independent

•
$$\tau_i = G^{-1}(H_{\rho}(V_i)), \ i = 1...n$$

- G: distribution function of τ_i
- H_{ρ} : distribution function of V_i
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, i = 1 \dots n$ are conditionally independent given V
- $\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V) = \tilde{p}$

э

4 3 5 4 3 5

Additive factor copula approaches Structural model Archimedean copula

Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by $D_i = 1_{\{\tau_i \leq t\}}$, i = 1...n and $D_i^* = 1_{\{\tau_i^* \leq t\}}$, i = 1...n the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2005)
 - Double Variance Gamma: Moosbrucker(2005)

Additive factor copula approaches Structural model Archimedean copula

Structural model

Hull, Predescu and White(2005)

- Consider *n* firms
- Let X_t^i , $i = 1 \dots n$ be their asset dynamics

$$X_t^i = \rho W_t + \sqrt{1 - \rho^2} W_t^i, \quad i = 1 \dots n$$

- W, W^i , $i = 1 \dots n$ are independent standard Wiener processes
- Default times as first passage times:

 $au_i = \inf\{t \in \mathbf{R}^+ | X_t^i \le f(t)\}, \ i = 1 \dots n, \ f : \mathbf{R} \to \mathbf{R} \text{ continuous}$

• $D_i = \mathbb{1}_{\{\tau_i \leq \tau\}}$, $i = 1 \dots n$ are conditionally independent given $\sigma(W_t, t \in [0, T])$

4 3 5 4 3 5

Additive factor copula approaches Structural model Archimedean copula

Structural model

Theorem

For any fixed time horizon *T*, denote by $D_i = 1_{\{\tau_i \leq \tau\}}$, $i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq \tau\}}$, $i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

 $\rho \leq \rho^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$

ヨート

Additive factor copula approaches Structural model Archimedean copula

Archimedean copula

Copula name	Generator $arphi$	V-distribution
Clayton	$t^{- heta}-1$	Gamma(1/ heta)
Gumbel	$(-\ln(t))^{ heta}$	lpha-Stable, $lpha=1/ heta$
Frank	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	Logarithmic series

Theorem

$$\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

• Other comparison results for multivariate Poisson models

3 k 3

Conclusion

- When considering homogeneous credit portfolios, the factor representation of default indicators is not restrictive
 - Thanks to De Finetti's theorem, there exists a mixture probability \tilde{p} such that default indicators are conditionally independent given \tilde{p}
- This mixture probability is the key input to analyze the impact of dependence on:
 - CDO tranche premiums
 - Convex risk measures on the aggregate loss
- This analysis can be performed for several popular default risk models

