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Exchangeability assumption

n defaultable firms

τ1, . . . , τn default times

(D1, . . . , Dn) = (1{τ1≤t}, . . . , 1{τn≤t}) default indicators

Homogeneity assumption: default dates are assumed to be exchangeable

Definition (Exchangeability)

A random vector (τ1, . . . , τn) is exchangeable if its distribution function is
invariant by permutation: ∀σ ∈ Sn

(τ1, . . . , τn)
d
= (τσ(1), . . . , τσ(n))

Same marginals

Areski COUSIN Comparison results for homogenous credit portfolios



Comparison of Exchangeable Bernoulli random vectors
Application to Credit Risk Management

Conclusion

Exchangeability assumption
De Finetti Theorem and Factor representation
Stochastic orders

De Finetti Theorem and Factor representation

Suppose that D1, . . . , Dn, . . . is an exchangeable sequence of Bernoulli
random variables

There exists a random factor p̃ such that

D1, . . . , Dn are independent knowing p̃

Denote by Fp̃ the distribution function of p̃, then:

P(D1 = d1, . . . , Dn = dn) =

∫ 1

0
p

∑
i di (1− p)n−

∑
i di Fp̃(dp)

p̃ is characterized by:

1
n

n∑
i=1

Di
a.s−→ p̃ as n →∞
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Stochastic orders

X ≤cx Y if E [f (X )] ≤ E [f (Y )] for all convex functions f

X ≤sl Y if E [(X − K)+] ≤ E [(Y − K)+] for all K ∈ IR

X ≤sl Y and E [X ] = E [Y ] ⇔ X ≤cx Y

X ≤sm Y if E [f (X )] ≤ E [f (Y )] for all supermodular functions f

Definition (Supermodular function)

A function f : Rn → R is supermodular if for all x ∈ IRn, 1 ≤ i < j ≤ n and
ε, δ > 0 holds

f (x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f (x1, . . . , xi + ε, . . . , xj , . . . , xn)

≥ f (x1, . . . , xi , . . . , xj + δ, . . . , xn)− f (x1, . . . , xi , . . . , xj , . . . , xn)

consequences of new defaults are always worse when other defaults have
already occurred
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Stochastic orders

(D1, . . . , Dn) and (D∗
1 . . . , D∗

n ) two exchangeable default indicator vectors

Mi loss given default

Aggregate losses:

Lt =
n∑

i=1

MiDi

L∗t =
n∑

i=1

MiD∗
i

Müller(1997)
Stop-loss order for portfolios of dependent risks.

(D1, . . . , Dn) ≤sm (D∗
1 . . . , D∗

n ) ⇒ Lt ≤sl L∗t
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Stochastic orders

Theorem

Let D = (D1, . . . , Dn) and D∗ = (D∗
1 , . . . , D∗

n ) be two exchangeable Bernoulli
random vectors with (resp.) F and F ∗ as mixture distributions. Then:

F ≤cx F ∗ ⇒ D ≤sm D∗ and

Theorem

Let D1, . . . , Dn, . . . and D∗
1 , . . . , D∗

n , . . . be two exchangeable sequences of
Bernoulli random variables. We denote by F (resp. F ∗) the distribution
function associated with the mixing measure. Then,

(D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n ),∀n ∈ N ⇒ F ≤cx F ∗.
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Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

N̄ i
t Poisson with parameter λ̄: idiosyncratic risk

Nt Poisson with parameter λ: systematic risk

(B i
j )i,j Bernoulli random variable with parameter p

All sources of risk are independent

N i
t = N̄ i

t +
∑Nt

j=1 B i
j , i = 1 . . . n

τi = inf{t > 0|N i
t > 0}, i = 1 . . . n
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Multivariate Poisson model

τi ∼ Exp(λ̄ + pλ)

Di = 1{τi≤t}, i = 1 . . . n are independent knowing Nt

1
n

∑n
i=1 Di

a.s−→ E [Di | Nt ] = P(τi ≤ t | Nt)

Conditional default probability:

p̃ = 1− (1− p)Nt exp(−λ̄t)
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Multivariate Poisson model

Comparison of two multivariate Poisson models with parameter sets
(λ̄, λ, p) and (λ̄∗, λ∗, p∗)

Supermodular order comparison requires equality of marginals:
λ̄ + pλ = λ̄∗ + p∗λ∗

Comparison directions:

p = p∗: λ̄ v.s λ
λ = λ∗: λ̄ v.s p
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Multivariate Poisson model

Theorem (p = p∗)

Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + pλ∗,
then:

λ ≤ λ∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Multivariate Poisson model

Theorem (λ = λ∗)

Let parameter sets (λ̄, λ, p) and (λ̄∗, λ∗, p∗) be such that λ̄ + pλ = λ̄∗ + p∗λ,
then:

p ≤ p∗, λ̄ ≥ λ̄∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Structural Model

Hull, Predescu and White(2005)

Consider n firms

Let X i
t , i = 1 . . . n be their asset dynamics

X i
t = ρWt +

√
1− ρ2W i

t , i = 1 . . . n

W , W i , i = 1 . . . n are independent standard Wiener processes

Default times as first passage times:

τi = inf{t ∈ IR+|X i
t ≤ f (t)}, i = 1 . . . n, f : IR → IR continuous

Di = 1{τi≤T} , i = 1 . . . n are independent knowing σ(Wt , t ∈ [0, T ])

1
n

∑n
i=1 Di

a.s−→ p̃
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Structural Model

Theorem

For any fixed time horizon T , denote by Di = 1{τi≤T}, i = 1 . . . n and
D∗

i = 1{τ∗i ≤T}, i = 1 . . . n the default indicators corresponding to (resp.) ρ
and ρ∗, then:

ρ ≤ ρ∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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p̃(ρ) ≤cx p̃(ρ∗)
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Archimedean copula

Copula name Generator ϕ V -distribution
Clayton t−θ − 1 Gamma(1/θ)
Gumbel (− ln(t))θ α-Stable, α = 1/θ

Franck − ln
[
(1− e−θt)/(1− e−θ)

]
Logarithmic series

Theorem

α ≤ α∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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p̃(θ) ≤cx p̃(θ∗)
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Additive copula framework

Vi = ρV +
√

1− ρ2V̄i

V , Vi i = 1 . . . n independent

Laws of V , Vi i = 1 . . . n do not depend on the dependence parameter ρ

Standard copula models:

Gaussian, Student t
Double t: Hull and White(2004)
NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid
and Werner(2005)
Double Variance Gamma: Moosbrucker(2005)

Theorem

ρ ≤ ρ∗ ⇒ p̃ ≤cx p̃∗ ⇒ (D1, . . . , Dn) ≤sm (D∗
1 , . . . , D∗

n )
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Conclusion

Characterization of supermodular order for exchangeable Bernoulli random
vectors

Comparison of CDO tranche premiums in several pricing models

Unified way of presenting default risk models
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