# Comparison results for homogenous credit portfolios

#### Areski COUSIN Jean-Paul LAURENT

#### Université Claude Bernard Lyon 1 ISFA - Laboratoire Sciences Actuarielle et Financière

#### Séminaire Transversal "Monnaie - Banque - Finance - Assurance" ENS Cachan - 20 Décembre 2006



## Contents

#### Comparison of Exchangeable Bernoulli random vectors

- Exchangeability assumption
- De Finetti Theorem and Factor representation
- Stochastic orders

#### 2 Application to Credit Risk Management

- Multivariate Poisson model
- Structural model
- Factor copula models
  - Archimedean copula
  - Additive copula framework



Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

# Exchangeability assumption

- n defaultable firms
- $\tau_1, \ldots, \tau_n$  default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$  default indicators
- Homogeneity assumption: default dates are assumed to be exchangeable

#### Definition (Exchangeability)

A random vector  $(\tau_1, \ldots, \tau_n)$  is exchangeable if its distribution function is invariant by permutation:  $\forall \sigma \in S_n$ 

$$(\tau_1,\ldots,\tau_n) \stackrel{d}{=} (\tau_{\sigma(1)},\ldots,\tau_{\sigma(n)})$$

Same marginals

Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

## De Finetti Theorem and Factor representation

- Suppose that  $D_1, \ldots, D_n, \ldots$  is an exchangeable sequence of Bernoulli random variables
- There exists a random factor  $\tilde{p}$  such that
- $D_1, \ldots, D_n$  are independent knowing  $\tilde{p}$
- Denote by  $F_{\tilde{p}}$  the distribution function of  $\tilde{p}$ , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\bar{p}}(dp)$$

•  $\tilde{p}$  is characterized by:

$$\frac{1}{n}\sum_{i=1}^n D_i \overset{\text{a.s.}}{\longrightarrow} \tilde{p} \quad \text{as} \ n \to \infty$$



# Stochastic orders

•  $X \leq_{cx} Y$  if  $E[f(X)] \leq E[f(Y)]$  for all convex functions f

• 
$$X \leq_{sl} Y$$
 if  $E[(X - K)^+] \leq E[(Y - K)^+]$  for all  $K \in \mathbb{R}$ 

• 
$$X \leq_{sl} Y$$
 and  $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$ 

•  $X \leq_{sm} Y$  if  $E[f(X)] \leq E[f(Y)]$  for all supermodular functions f

#### Definition (Supermodular function)

A function  $f : \mathbb{R}^n \to \mathbb{R}$  is supermodular if for all  $x \in \mathbb{R}^n$ ,  $1 \le i < j \le n$  and  $\varepsilon, \delta > 0$  holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

 $\geq f(x_1,\ldots,x_i,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)$ 

• consequences of new defaults are always worse when other defaults have already occurred



マボン イラン イラン

# Stochastic orders

- $(D_1, \ldots, D_n)$  and  $(D_1^* \ldots, D_n^*)$  two exchangeable default indicator vectors
- M; loss given default
- Aggregate losses:

$$L_t = \sum_{i=1}^n M_i D_i$$
$$L_t^* = \sum_{i=1}^n M_i D_i^*$$

Müller(1997)

Stop-loss order for portfolios of dependent risks.

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*\ldots,D_n^*) \Rightarrow L_t\leq_{sl} L_t^*$$



Exchangeability assumption De Finetti Theorem and Factor representation Stochastic orders

# Stochastic orders

#### Theorem

Let  $\mathbf{D} = (D_1, \dots, D_n)$  and  $\mathbf{D}^* = (D_1^*, \dots, D_n^*)$  be two exchangeable Bernoulli random vectors with (resp.) F and  $F^*$  as mixture distributions. Then:

 $F \leq_{cx} F^* \Rightarrow \mathbf{D} \leq_{sm} \mathbf{D}^*$  and

#### Theorem

Let  $D_1, \ldots, D_n, \ldots$  and  $D_1^*, \ldots, D_n^*, \ldots$  be two exchangeable sequences of Bernoulli random variables. We denote by F (resp.  $F^*$ ) the distribution function associated with the mixing measure. Then,

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*,\ldots,D_n^*), \forall n\in\mathbb{N}\Rightarrow F\leq_{cx}F^*.$$



Multivariate Poisson model Structural model Factor copula models

### Multivariate Poisson model

#### Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- $\bar{N}_t^i$  Poisson with parameter  $\bar{\lambda}$ : idiosyncratic risk
- $N_t$  Poisson with parameter  $\lambda$ : systematic risk
- $(B_i^i)_{i,j}$  Bernoulli random variable with parameter p
- All sources of risk are independent

• 
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

• 
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$



Multivariate Poisson model Structural model Factor copula models

### Multivariate Poisson model

- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, \ i = 1 \dots n$  are independent knowing  $N_t$
- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid N_{t}] = P(\tau_{i} \leq t \mid N_{t})$
- Conditional default probability:

$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

Multivariate Poisson model Structural model Factor copula models

### Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets  $(\bar{\lambda},\lambda,p)$  and  $(\bar{\lambda}^*,\lambda^*,p^*)$
- Supermodular order comparison requires equality of marginals:  $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- Comparison directions:
  - *p* = *p*\*: λ v.s λ
     λ = λ\*: λ v.s *p*



Multivariate Poisson model Structural model Factor copula models

## Multivariate Poisson model

#### Theorem $(p = p^*)$

Let parameter sets  $(\bar{\lambda}, \lambda, p)$  and  $(\bar{\lambda}^*, \lambda^*, p^*)$  be such that  $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$ , then:

$$\lambda \leq \lambda^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow oldsymbol{ ilde{p}} \leq_{\mathsf{cx}} oldsymbol{ ilde{p}}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



Areski COUSIN Comparison results for homogenous credit portfolios

Multivariate Poisson model Structural model Factor copula models

## Multivariate Poisson model

#### Theorem $(\lambda = \lambda^*)$

Let parameter sets  $(\bar{\lambda}, \lambda, p)$  and  $(\bar{\lambda}^*, \lambda^*, p^*)$  be such that  $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$ , then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow ar{p} \leq_{\sf cx} ar{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\sf sm} (D_1^*, \dots, D_n^*)$$





Areski COUSIN Comparison results for homogenous credit portfolios

Multivariate Poisson model Structural model Factor copula models

# Structural Model

#### Hull, Predescu and White(2005)

- Consider *n* firms
- Let  $X_t^i$ ,  $i = 1 \dots n$  be their asset dynamics

$$X_t^i = \rho W_t + \sqrt{1 - \rho^2} W_t^i, \quad i = 1 \dots n$$

- W, W<sup>i</sup>, i = 1...n are independent standard Wiener processes
- Default times as first passage times:

$$au_i = \inf\{t \in I\!\!R^+ | X^i_t \leq f(t)\}, \;\; i = 1 \dots n, \; f: I\!\!R o I\!\!R$$
 continuous

•  $D_i = 1_{\{\tau_i \leq T\}}$ ,  $i = 1 \dots n$  are independent knowing  $\sigma(W_t, t \in [0, T])$ •  $\frac{1}{n} \sum_{i=1}^n D_i \xrightarrow{a.s} \tilde{p}$ 



Multivariate Poisson model Structural model Factor copula models

## Structural Model

#### Theorem

For any fixed time horizon T, denote by  $D_i = \mathbb{1}_{\{\tau_i \leq T\}}$ ,  $i = 1 \dots n$  and  $D_i^* = \mathbb{1}_{\{\tau_i^* \leq T\}}$ ,  $i = 1 \dots n$  the default indicators corresponding to (resp.)  $\rho$  and  $\rho^*$ , then:

$$ho \leq 
ho^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



Areski COUSIN

Multivariate Poisson model Structural model Factor copula models

### Archimedean copula

| Copula name | Generator $arphi$                                 | V-distribution              |
|-------------|---------------------------------------------------|-----------------------------|
| Clayton     | $t^{-	heta}-1$                                    | Gamma(1/	heta)              |
| Gumbel      | $(-\ln(t))^{	heta}$                               | lpha-Stable, $lpha=1/	heta$ |
| Franck      | $-\ln\left[(1-e^{-	heta t})/(1-e^{-	heta}) ight]$ | Logarithmic series          |

#### Theorem

 $\alpha \leq \alpha^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$ 



Multivariate Poisson model Structural model Factor copula models

# Additive copula framework

- $V_i = \rho V + \sqrt{1 \rho^2} \overline{V}_i$
- $V, V_i \ i = 1 \dots n$  independent
- Laws of  $V, V_i \ i = 1 \dots n$  do not depend on the dependence parameter  $\rho$
- Standard copula models:
  - Gaussian, Student t
  - Double t: Hull and White(2004)
  - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2005)
  - Double Variance Gamma: Moosbrucker(2005)

#### Theorem

$$ho \leq 
ho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



# Conclusion

- Characterization of supermodular order for exchangeable Bernoulli random vectors
- Comparison of CDO tranche premiums in several pricing models
- Unified way of presenting default risk models

