Comparison results for credit risk portfolios

Areski COUSIN

Université Claude Bernard Lyon 1, ISFA

Groupe de travail - Chaire Risque de Crédit - Evry 17 Janvier 2008 Joint work with Jean-Paul LAURENT

Introduction

- In credit risk portfolio modelling, dependence among default events is a crucial assumption
- We will investigate tranches of Collateralized Debt Obligation (CDO)
- Which is the impact of dependence on
 - CDO tranche premiums ?
 - Risk measures on the aggregate loss associated with the reference portfolio ?

CDO tranches

Comparison results Application to several popular CDO pricing models Conclusion

Contents

Comparison results

- Motivation
- De Finetti theorem and factor representation
- Stochastic orders
- Main results

Application to several popular CDO pricing models

- Factor copula approaches
- Structural model
- Multivariate Poisson model

CDO tranches

- Slice the credit portfolio into different risk levels or CDO tranches
- ex: CDO tranche on standardized Index such as CDX North America or Itraxx Europe

- [0, 3%] equity tranche is subordinated to [3, 6%] junior mezzanine tranche
- [3, 6%] junior mezzanine tranche is subordinated to [6, 9%] mezzanine tranche and so on,...

CDO tranches

- Credit portfolio with *n* reference entities
- τ_1, \ldots, τ_n default times
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default indicators at time t
- M_1, \ldots, M_n losses given default assumed to be independent of default times
- Aggregate loss:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

• Dynamics of Losses $\mathcal{L}_t^{[a,b]}$ affecting CDO tranche [a,b]:

CDO tranches

• $L_t^{[a,b]}$ has a call spread payoff with respect to the aggregate loss:

- Loss on CDO tranche [a, b]: $L_t^{[a, b]} = (L_t a)^+ (L_t b)^+$
- Computation of CDO Tranche premiums only involves call options on the aggregate loss *L*_t:

$$E\left[(L_t-a)^+
ight]-E\left[(L_t-b)^+
ight]$$

• for different time horizons t

CDO tranches Motivation Comparison results De Finetti theorem and factor representation Application to several popular CDO pricing models Stochastic orders Conclusion Main results

Contents

2 Comparison results

- Motivation
- De Finetti theorem and factor representation
- Stochastic orders
- Main results

- Factor copula approaches
- Structural model
- Multivariate Poisson model

Motivation De Finetti theorem and factor representation Stochastic orders Main results

Motivation

- Specify the dependence structure of default indicators D_1, \ldots, D_n which leads to:
 - an increase of the value of call options E [(L_t a)⁺] for all strike level a > 0
 - an increase of convex risk measures on *L_t* (TVaR, Wang risk measures)
- Comparison between homogeneous credit portfolios
 - D_1, \ldots, D_n are assumed to be exchangeable Bernoulli random variables
 - De Finetti's theorem leads to a factor representation of D_1, \ldots, D_n
- Application to several popular CDO pricing models

・ 同 ト・ イ ヨ ト・ イ ヨ ト

Motivation De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

• Homogeneity assumption: default indicators D_1, \ldots, D_n forms an exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1,\ldots,D_n)\stackrel{d}{=}(D_{\sigma(1)},\ldots,D_{\sigma(n)})$$

Same marginals

Motivation De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

- Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables
- Thanks to de Finetti's theorem, there exists a random factor \tilde{p} such that
- D_1, \ldots, D_n are conditionally independent given \tilde{p}
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p} , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\bar{p}}(dp)$$

Finite exchangeability only leads to a sign measure Jaynes (1986) *p* is characterized by:

$$\frac{1}{n}\sum_{i=1}^n D_i \xrightarrow{\text{a.s.}} \tilde{p} \quad \text{as} \quad n \to \infty$$

• \tilde{p} is exactly the loss of the infinitely granular portfolio (Bâle 2 terminology)

CDO tranches Comparison results Application to several popular CDO pricing models Conclusion Conclusion Application to several popular CDO pricing models Conclusion

Stochastic orders

- The convex order compares the dispersion level of two random variables
- Convex order: X ≤_{cx} Y if E[f(X)] ≤ E[f(Y)] for all convex functions f
- Stop-loss order: $X \leq_{sl} Y$ if $E[(X K)^+] \leq E[(Y K)^+]$ for all $K \in \mathbb{R}$

•
$$X \leq_{sl} Y$$
 and $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$

• $X \leq_{cx} Y$ if E[X] = E[Y] and F_X , the distribution function of X and F_Y , the distribution function of Y are such that:

CDO tranches Comparison results Application to several popular CDO pricing models Conclusion Conclusion Conclusion CDO tranches Motivation De Finetti theorem and factor representation Stochastic orders Main results

Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- $(X_1, \ldots, X_n) \leq_{sm} (Y_1, \ldots, Y_n)$ if $E[f(X_1, \ldots, X_n)] \leq E[f(Y_1, \ldots, Y_n)]$ for all supermodular function f

Definition (Supermodular function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x \in \mathbb{R}^n$, $1 \le i < j \le n$ and $\varepsilon, \delta > 0$ holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n) - f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

 $\geq f(x_1,\ldots,x_i,\ldots,x_j+\delta,\ldots,x_n) - f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)$

• Consequences of new defaults are always worse when other defaults have already occurred

イロト イポト イヨト イヨト

Motivation De Finetti theorem and factor representation Stochastic orders Main results

Review of literature

Müller(1997)

Stop-loss order for portfolios of dependent risks

$$(D_1,\ldots,D_n)\leq_{sm}(D_1^*,\ldots,D_n^*)\Rightarrow\sum_{i=1}^nM_iD_i\leq_{sl}\sum_{i=1}^nM_iD_i^*$$

Bäuerle and Müller(2005)

Stochastic orders ans risk measures: Consistency and bounds

$$X \leq_{sl} Y \Rightarrow \rho(X) \leq \rho(Y)$$

for all law-invariant, convex risk measures ρ

Lefèvre and Utev(1996)

Comparing sums of exchangeable Bernoulli random variables

$$\tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow \sum_{i=1}^n D_i \leq_{sl} \sum_{i=1}^n D_i^*$$

Application to several popular CDO pricing models Conclusion Main results	CDO tranches Comparison results Application to several popular CDO pricing models Conclusion	Motivation De Finetti theorem and factor representation Stochastic orders Main results
--	--	---

Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^n M_i D_i$ and $L_t^* = \sum_{i=1}^n M_i D_i^*$
- Let D_1, \ldots, D_n be exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}
- Let D₁^{*},..., D_n^{*} exchangeable Bernoulli random variables associated with the mixture probability p̃^{*}

Theorem

$$\tilde{\rho} \leq_{cx} \tilde{\rho}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

• In particular, if $\tilde{p} \leq_{cx} \tilde{p}^*$, then:

- $E[(L_t a)^+] \le E[(L_t^* a)^+]$ for all a > 0.
- $ho(L_t) \leq
 ho(L_t^*)$ for all convex risk measures ho

э

CDO tranches Comparison results Application to several popular CDO pricing models Conclusion Conclusion Conclusion Conclusion Comparison results Conclusion Conclusion

Main results

- Let D_1, \ldots, D_n, \ldots be exchangeable Bernoulli random variables associated with the mixture probability \tilde{p}
- Let D^{*}₁,..., D^{*}_n,... be exchangeable Bernoulli random variables associated with the mixture probability p^{*}

Theorem (reverse implication)

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*,\ldots,D_n^*), \forall n\in\mathbb{N}\Rightarrow \tilde{p}\leq_{cx} \tilde{p}^*.$$

4 注入

Factor copula approaches Structural model Multivariate Poisson model

Contents

Comparison results

- Motivation
- De Finetti theorem and factor representation
- Stochastic orders
- Main results

3 Application to several popular CDO pricing models

- Factor copula approaches
- Structural model
- Multivariate Poisson model

Factor copula approaches Structural model Multivariate Poisson model

Ordering of CDO tranche premiums

Burtschell, Gregory, and Laurent(2008)

A comparative analysis of CDO pricing models

- Analysis of the dependence structure within some factor copula models such as:
 - Gaussian, Student t, Double t, Clayton, Marshall-Olkin copula
- An increase of the dependence parameter leads to:
 - a decrease of [0%, b] equity tranches premiums (which guaranties the uniqueness of the market base correlation)
 - an increase of [a, 100%] senior tranches premiums

Factor copula approaches Structural model Multivariate Poisson model

Additive factor copula approaches

• The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:

•
$$V_i = \rho V + \sqrt{1 - \rho^2} \bar{V}_i, \ i = 1 \dots n$$

• $V, \bar{V}_i, i = 1 \dots n$ independent

•
$$\tau_i = G^{-1}(H_{\rho}(V_i)), \ i = 1 \dots n$$

- G: distribution function of τ_i
- H_{ρ} : distribution function of V_i
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, i = 1 \dots n$ are conditionally independent given V
- $\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V) = \tilde{p}$

4 3 5 4 3 5

Factor copula approaches Structural model Multivariate Poisson model

Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by $D_i = 1_{\{\tau_i \leq t\}}$, i = 1...n and $D_i^* = 1_{\{\tau_i^* \leq t\}}$, i = 1...n the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2007)
 - Double Variance Gamma: Moosbrucker(2006)

Factor copula approaches Structural model Multivariate Poisson model

Archimedean copula

- Schönbucher and Schubert(2001), Gregory and Laurent(2003), Madan *et al.*(2004), Friend and Rogge(2005)
 - V is a positive random variable with Laplace transform φ^{-1}
 - U_1, \ldots, U_n are independent Uniform random variables independent of V
 - $V_i = \varphi^{-1}\left(-\frac{\ln U_i}{V}\right), i = 1...n$ (Marshall and Olkin (1988))
 - (V_1,\ldots,V_n) follows a φ -archimedean copula
 - $P(V_1 \le v_1, ..., V_n \le v_n) = \varphi^{-1}(\varphi(v_1) + ... + \varphi(v_n))$
 - $\tau_i = G^{-1}(V_i)$
 - G: distribution function of τ_i
 - $D_i = 1_{\{\tau_i \leq t\}}, i = 1 \dots n$ independent knowing V
 - $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid V] = P(\tau_{i} \leq t \mid V)$

- 4 戸下 - 4 戸下

Factor copula approaches Structural model Multivariate Poisson model

Archimedean copula

• Conditional default probability: $\tilde{p} = \exp \{-\varphi(G(t)V)\}$

Copula	Generator $arphi$	Parameter
Clayton	$t^{- heta}-1$	$ heta \geq 0$
Gumbel	$(-\ln(t))^{ heta}$	$ heta \geq 1$
Franck	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	$ heta\in I\!\!R^*$

Theorem

$$\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

э

< ∃⇒

Factor copula approaches Structural model Multivariate Poisson model

Archimedean copula

- Clayton copula
- Mixture distributions are ordered with respect to the convex oder

3 k 3

Structural model

Hull, Predescu and White(2005)

- Consider *n* firms
- Let $V_{i,t}$, $i = 1 \dots n$ be their asset dynamics

$$V_{i,t} = \rho V_t + \sqrt{1 - \rho^2} \overline{V}_{i,t}, \quad i = 1 \dots n$$

- V, \overline{V}_i , $i = 1 \dots n$ are independent standard Wiener processes
- Default times as first passage times:

 $\tau_i = \inf\{t \in \mathbf{R}^+ | V_{i,t} \le f(t)\}, \ i = 1 \dots n, \ f : \mathbf{R} \to \mathbf{R} \text{ continuous}$

• $D_i = 1_{\{\tau_i \leq T\}}$, $i = 1 \dots n$ are conditionally independent given $\sigma(V_t, t \in [0, T])$

4 3 5 4 3 5

Factor copula approaches Structural model Multivariate Poisson model

Structural model

Theorem

For any fixed time horizon *T*, denote by $D_i = 1_{\{\tau_i \leq \tau\}}$, $i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq \tau\}}$, $i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

 $\rho \leq \rho^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$

Factor copula approaches Structural model Multivariate Poisson model

Structural model

• $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} \tilde{p}$

•
$$\frac{1}{n} \sum_{i=1}^{n} D_i^* \xrightarrow{a.s} \tilde{p}^*$$

• Empirically, mixture probabilities are ordered with respect to the convex order: $\tilde{p} \leq_{cx} \tilde{p}^*$

э

< ∃⇒

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- \bar{N}_t^i Poisson with parameter $\bar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ : systematic risk
- $(B_i^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent

•
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

•
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

- Dependence structure of (τ_1, \ldots, τ_n) is the Marshall-Olkin copula
- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, i = 1 \dots n$ are conditionally independent given N_t
- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid N_{t}] = P(\tau_{i} \leq t \mid N_{t})$
- Conditional default probability:

$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

4 3 5 4 3 5

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets $(\bar{\lambda},\lambda,p)$ and $(\bar{\lambda}^*,\lambda^*,p^*)$
- Supermodular order comparison requires equality of marginals: $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- 3 comparison directions:

•
$$p = p^*$$
: $\overline{\lambda}$ v.s λ
• $\lambda = \lambda^*$: $\overline{\lambda}$ v.s p
• $\overline{\lambda} = \overline{\lambda}^*$: λ v.s p

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(p = p^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$, then:

$$\lambda \leq \lambda^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow \widetilde{p} \leq_{cx} \widetilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t a)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When λ increases, the aggregate loss increases with respect to stop-loss order

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow ar{p} \leq_{\sf cx} ar{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\sf sm} (D_1^*, \dots, D_n^*)$$

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow ar{p} \leq_{\sf cx} ar{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\sf sm} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When *p* increases, the aggregate loss increases with respect to stop-loss order

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(ar{\lambda}=ar{\lambda}^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $p\lambda = p^*\lambda^*$, then:

$$p \leq p^*, \ \lambda \geq \lambda^* \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{\mathsf{sm}} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When p increases, the aggregate loss increases with respect to stop-loss order

Conclusion

- When considering an exchangeable vector of default indicators, the conditional independence assumption is not restrictive thanks to de Finetti's theorem
- The mixture probability (the factor) can be viewed as the loss of an infinitely granular portfolio
- We completely characterize the supermodular order between exchangeable default indicator vectors in term of the convex ordering of corresponding mixture probabilities
- We show that the mixture probability is the key input to study the impact of dependence on CDO tranche premiums
- Comparison analysis can be performed with the same method within a large number of popular CDO pricing models

