Comparison results for homogenous credit portfolios

Areski COUSIN

Université Claude Bernard Lyon 1 ISFA

Séminaire Lyon-Lausanne - 11 Décembre 2006

General background context

- n defaultable firms or policies
- τ_1, \ldots, τ_n default times or claim occurrences
- $(D_1, \ldots, D_n) = (1_{\{\tau_1 \leq t\}}, \ldots, 1_{\{\tau_n \leq t\}})$ default or claim indicators
- M_i loss given default or claim amount
- Aggregate loss or total claim amount:

$$L_t = \sum_{i=1}^n M_i \mathbb{1}_{\{\tau_i \le t\}}$$

- Stop Loss order results for L_t ?
- Ordering of convex risk measures on L_t?

Interest

- Specify the dependence structure between D_1, \ldots, D_n which leads to:
 - an increase of stop loss premiums
 - an increase of convex risk measures
- Exchangeability of D_1, \ldots, D_n
 - De Finetti Theorem leads to a factor representation
 - Simplifies comparison analysis
- Comparison of Exchangeable Bernoulli random vectors
- Application to several models of default and insurance
 - Measure the impact of parameters governing the dependence
 - Comparing copula, structural, multivariate Poisson models

Contents

Comparison of Exchangeable Bernoulli random vectors

- De Finetti Theorem and Stochastic Orders
- Review of literature
- Main result

2 Application to Insurance and credit risk management

- Multivariate Poisson model
- Structural model
- Factor copula models
 - Archimedean copula
 - Double t copula

De Finetti Theorem and Stochastic Orders Review of literature Main result

Exchangeability of default times

• Homogeneity assumption: default dates are assumed to be exchangeable

Conclusion

Definition (Exchangeability)

A random vector (τ_1, \ldots, τ_n) is exchangeable if its distribution function is invariant by permutation: $\forall \sigma \in S_n$

$$(\tau_1,\ldots,\tau_n) \stackrel{d}{=} (\tau_{\sigma(1)},\ldots,\tau_{\sigma(n)})$$

Same marginals

Application to Insurance and credit risk management Comparison of different models Conclusion De Finetti Theorem and Stochastic Orders Review of literature Main result

De Finetti Theorem and Factor representation

Theorem (De Finetti)

Suppose that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables, then there is a mixture probability measure ν such that $\forall n, \forall (d_1, \ldots, d_n) \in \{0, 1\}^n$:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} d\nu(p)$$

• Usual De Finetti involves infinite sequences

• Finite exchangeability only leads to a sign measure Jaynes 1986

De Finetti Theorem and Stochastic Orders Review of literature Main result

De Finetti Theorem and Factor representation

- Denote by F the distribution function of ν: F(p) = ν (]0, p])
- There exists a random factor \tilde{p} distributed as F such that:
- D_1, \ldots, D_n are independent knowing \tilde{p}
- \tilde{p} is a.s unique and such that:

$$\frac{1}{n}\sum_{i=1}^n D_i \xrightarrow{a.s} \tilde{p} \text{ as } n \to \infty$$

Application to Insurance and credit risk management Comparison of different models Conclusion De Finetti Theorem and Stochastic Orders Review of literature Main result

Stochastic orders

- $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f
- $X \leq_{icx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all increasing convex functions f
- $X \leq_{sl} Y$ if $E[(X K)^+] \leq E[(Y K)^+]$ for all $K \in \mathbb{R}$
 - stop loss order and icx-order are equivalent

•
$$X \leq_{sl} Y$$
 and $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$

• $X \leq_{less-dangerous} Y$ if there exists x_0 such that $F_X(x) \leq F_Y(x)$ for all $x \leq x_0$ and $F_X(x) \geq F_Y(x)$ for all $x \geq x_0$ and moreover $E[X] \leq E[Y]$

 $\bullet\,$ less dangerous order $\Rightarrow\,$ icx-order or stop loss order

Application to Insurance and credit risk management Comparison of different models Conclusion

Stochastic orders

De Finetti Theorem and Stochastic Orders Review of literature Main result

Definition (Supermodular function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x, y \in \mathbb{R}^n$

$$f(x \wedge y) + f(x \vee y) \ge f(x) + f(y)$$
 when

 $x \wedge y = (\min(x_1, y_1), \dots, \min(x_n, y_n))$ and $x \vee y = (\max(x_1, y_1), \dots, \max(x_n, y_n))$

• $X \leq_{sm} Y$ if $E[f(X)] \leq E[f(Y)]$ for all supermodular functions f

Application to Insurance and credit risk management Comparison of different models Conclusion De Finetti Theorem and Stochastic Orders Review of literature Main result

Review of literature

Naked and Shanthikumar(1994)

Stochastic Orders and Their Applications.

Müller and Stoyan(2002)

Comparison Methods for Stochastic Models and Risks.

🌑 Denuit, Dhaene, Goovaerts and Kaas(2005)

Actuarial Theory for Dependent Risks - Measures, Orders and Models.

De Finetti Theorem and Stochastic Orders Review of literature Main result

Review of literature

Müller(1997)

Stop-loss order for portfolios of dependent risks.

Conclusion

$$(X_1,\ldots,X_n) \leq_{sm} (Y_1,\ldots,Y_n) \Rightarrow \sum_{i=1}^n M_i X_i \leq_{sl} \sum_{i=1}^n M_i Y_i$$

Bäuerle and Müller(2005)

Stochastic orders ans risk measures: Consistency and bounds

$$X \leq_{icx} Y \Rightarrow \rho(X) \leq \rho(Y)$$

for all law-invariant, convex risk measures ρ

Lefèvre and Utev(1996)

Comparing sums of exchangeable bernoulli random variables.

$$\tilde{p} \leq_{\mathit{icx}} \tilde{p}^* \Rightarrow \sum_{i=1}^n D_i \leq_{\mathit{sl}} \sum_{i=1}^n D_i$$

Application to Insurance and credit risk management Comparison of different models Conclusion De Finetti Theorem and Stochastic Orders Review of literature Main result

Supermodular order for Exchangeable Bernoulli random vectors

Theorem

Let $\mathbf{D} = (D_1, \dots, D_n)$ and $\mathbf{D}^* = (D_1^*, \dots, D_n^*)$ be two exchangeable Bernoulli random vectors with (resp.) F and F^* as mixture distributions. Then:

$$\begin{array}{rcl} F \leq_{cx} F^* & \Rightarrow & \mathbf{D} \leq_{sm} \mathbf{D}^* & and \\ F \leq_{icx} F^* & \Rightarrow & \mathbf{D} \leq_{ism} \mathbf{D}^* \end{array}$$

Application to Insurance and credit risk management Comparison of different models Conclusion De Finetti Theorem and Stochastic Orders Review of literature Main result

Supermodular order for Exchangeable Bernoulli random vectors

Theorem

Let D_1, \ldots, D_n, \ldots and $D_1^*, \ldots, D_n^*, \ldots$ be two exchangeable sequences of Bernoulli random variables. We denote by F (resp. F^*) the distribution function associated with the mixing measure. Then,

$$(D_1,\ldots,D_n) \leq_{sm} (D_1^*,\ldots,D_n^*), \forall n \in \mathbb{N} \Rightarrow F \leq_{cx} F^*.$$
(1)

Lt

ß

 α

Multivariate Poisson model Structural model Factor copula models

Ordering of CDO tranche premiums

- CDO: Collateralized Debt Obligation
 - insurance contract which covers portfolio losses L_t
 - $\bullet\,$ in a certain tranche $[\alpha,\beta]$ of the total notional

Multivariate Poisson model Structural model Factor copula models

Ordering of CDO tranche premiums

Burtschell, Gregory, and Laurent(2005a)

A Comparative Analysis of CDO Pricing Models

- Supermodular order for some factor copula models
 - Gaussian copula
 - Student t copula
 - Clayton copula
 - Marshall-Olkin copula

Burtschell, Gregory, and Laurent(2005b)

Beyond the Gaussian Copula: Stochastic and Local Correlation

• Stochastic correlation

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- \bar{N}_t^i Poisson with parameter $\bar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ : systematic risk
- $(B_i^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent

•
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

•
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$

$$\frac{\bar{N}_{t}^{i}=0}{N_{t}=1, B_{i,1}=0} \qquad N_{t}=2, B_{i,2}=0 \qquad N_{t}=N_{t}^{i}=0$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- Dependence structure of (au_1, \dots, au_n) is the Marshall-Olkin copula
- $D_i = \mathbb{1}_{\{\tau_i \leq t\}}, \ i = 1 \dots n$ are independent knowing N_t
- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} E[D_{i} \mid N_{t}] = P(\tau_{i} \leq t \mid N_{t})$
- Conditional default probability:

$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$
- Supermodular order comparison requires equality of marginals: $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- 3 comparison directions:

•
$$p = p^*$$
: $\overline{\lambda}$ v.s λ
• $\lambda = \lambda^*$: $\overline{\lambda}$ v.s p

• $\bar{\lambda} = \bar{\lambda}^*$: λ v.s p

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem
$$(p=p^*)$$

Let parameter sets
$$(\bar{\lambda}, \lambda, p)$$
 and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$, then:

$$\lambda \leq \lambda^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, \ i = 1 \dots n$
- Stop-loss premiums are ordered...

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets
$$(\bar{\lambda}, \lambda, p)$$
 and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem
$$(\lambda=\lambda^*)$$

Let parameter sets
$$(\bar{\lambda}, \lambda, p)$$
 and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow \widetilde{p} \leq_{cx} \widetilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, \ i = 1 \dots n$
- Stop-loss premiums are ordered...

Multivariate Poisson model Structural model Factor copula models

Multivariate Poisson model

Theorem $(ar{\lambda}=ar{\lambda}^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $p\lambda = p^*\lambda^*$, then:

$$p \leq p^*, \ \lambda \geq \lambda^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, \ i = 1 \dots n$
- Stop-loss premiums are ordered...

Multivariate Poisson model Structural model Factor copula models

Structural Model

Hull, Predescu and White(2005)

- Consider *n* firms
- Let X_t^i , $i = 1 \dots n$ be their asset dynamics

$$X_t^i = \sqrt{\rho} W_t + \sqrt{1-\rho} W_t^i, \quad i = 1 \dots n$$

- W, W^i , $i = 1 \dots n$ are independent standard Wiener processes
- Default times as first passage times:

 $\tau_i = \inf\{t \in \mathbf{R}^+ | X_t^i \le f(t)\}, \ i = 1 \dots n, \ f : \mathbf{R} \to \mathbf{R} \text{ continuous}$

•
$$D_i = 1_{\{\tau_i \leq T\}}, i = 1 \dots n$$
 are independent knowing $\sigma(W_t, t \in [0, T])$

Multivariate Poisson model Structural model Factor copula models

Structural Model

Theorem

For any fixed time horizon T, denote by $D_i = 1_{\{\tau_i \leq T\}}$, $i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq T\}}$, $i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Multivariate Poisson model Structural model Factor copula models

Structural Model

- $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} \tilde{p}$
- $\frac{1}{n}\sum_{i=1}^{n}D_{i}^{*} \xrightarrow{a.s} \tilde{p}^{*}$
- Less Dangerous order for mixture distributions

Multivariate Poisson model Structural model Factor copula models

Archimedean copula

- Cossette, Gaillardetz, Marceau and Rioux(2002), Wei and Hu(2002)
- V is a positive random variable with Laplace transform φ^{-1}
- U_1, \ldots, U_n are independent Uniform random variables independent of V

•
$$V_i = \varphi^{-1}\left(-\frac{\ln U_i}{V}\right), \ i = 1 \dots n$$

• (V_1, \ldots, V_n) follows a φ -archimedean copula

•
$$P(V_1 \leq v_1, \ldots, V_n \leq v_n) = \varphi^{-1}(\varphi(v_1) + \ldots + \varphi(v_n))$$

•
$$\tau_i = G^{-1}(V_i)$$

- G: distribution function of τ_i
- $D_i = 1_{\{\tau_i \leq t\}}, i = 1 \dots n$ independent knowing V
- $\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V)$
- Conditional default probability:

$$\tilde{p} = \exp\left\{-\varphi(G(t)V)\right\}$$

Multivariate Poisson model Structural model Factor copula models

Archimedean copula

Copula name	Generator $arphi$	V-distribution
Clayton	$t^{- heta}-1$	Gamma(1/ heta)
Gumbel	$(-\ln(t))^{ heta}$	$lpha extsf{-Stable},\ lpha=1/ heta$
Franck	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	Logarithmic series

Theorem

$$heta \leq heta^* \Rightarrow ilde{p} \leq_{cx} ilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

• The proof derived from the following result:

Theorem

Let V and V^{*} be two positive random variables. Denote by φ^{-1} et ψ^{-1} their Laplace transform. Consider $\tilde{p} = \exp(-\varphi(G(t))V)$ and $\tilde{p}^* = \exp(-\psi(G(t))V^*)$, the corresponding conditional default probabilities, then:

 $\varphi \circ \psi^{-1} \in \mathscr{L}_{\infty}^{*} = \{f: \boldsymbol{R}^{+} \to \boldsymbol{R}^{+} | (-1)^{n-1} f^{(n)} \geq 0 \; \forall n \geq 1\} \Rightarrow \tilde{p} \leq_{\mathsf{cx}} \tilde{p}^{*}$

Multivariate Poisson model Structural model Factor copula models

Archimedean copula

- Clayton copula
- Less Dangerous order for mixture distributions

Multivariate Poisson model Structural model Factor copula models

Archimedean copula

- Previous result is consistent with
 - Cossette, Gaillardetz, Marceau and Rioux(2002)
- Computation of $E[(L_t u)^+]$ with $L_t = \sum_{i=1}^{20} M_i D_i$
- (D_1, \ldots, D_{20}) follows a Clayton copula with parameter lpha
- $P(D_i = 1) = 0.05$
- *M_i* ∼ Gamma(1, 2)

Multivariate Poisson model Structural model Factor copula models

Double t copula

Hull and White(2004)

• $V \sim t(
u)$, $ar{V}_i \sim t(ar{
u})$ Student with u (resp.) $ar{
u}$ degree of freedom

$$V_i =
ho \left(rac{
u - 2}{
u}
ight)^{1/2} V + \sqrt{1 -
ho^2} \left(rac{ar
u - 2}{ar
u}
ight)^{1/2} ar V_i$$

•
$$\tau_i = G^{-1}(H_{\rho}(V_i)), \ i = 1...n$$

- G: distribution function of τ_i
- H_{ρ} : distribution function of V_i
- $D_i = 1_{\{\tau_i \leq t\}}, i = 1 \dots n$ independent knowing V
- $\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V)$
- Conditional default probability:

$$\tilde{p} = t_{\tilde{\nu}} \left(\left(\frac{\bar{\nu}}{\bar{\nu} - 2} \right)^{1/2} \frac{H_{\rho}^{-1}(G(t)) - \rho \left(\frac{\nu - 2}{\nu} \right)^{1/2} V}{\sqrt{1 - \rho^2}} \right)$$

 $\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{c_X} \tilde{p}^* \Rightarrow (D_1, \ldots, D_n) \leq_{sm} (D_1^*, \ldots, D_n^*)$

Double t copula

Theorem

Multivariate Poisson model Structural model Factor copula models

Areski COUSIN Comparison results for homogenous credit portfolios

- Stop loss premium: $E[(L_t K)^+]$ with $L_t = \frac{1}{n} \sum_{i=1}^n D_i$
- Comparison criteria:
 - same default marginals for all models
 - dependence parameters set to get equal premiums for K = 0.03

Conclusion

- Characterization of supermodular order for exchangeable Bernoulli random vectors
- Comparison of CDO tranche premiums or reinsurance premiums in the individual life model
- Unified way of presenting default risk models...

