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Abstract

While the Gaussian copula model is commonly used as a static quotation device

for CDO tranches, its use for hedging is questionable. In particular, the spread delta

computed from the Gaussian copula model assumes constant base correlations, whereas

we show that the correlations are dynamic and correlated to the index spread. It might

therefore be expected that a dynamic model of credit risk, which is able to capture the

dependence between the base correlations and the index spread, will have better hedging

performances. In this paper, we compare delta hedging of spread risk based on the

Gaussian copula model, to the implementation of jump-to-default ratio computed from

the dynamic local intensity model. Theoretical and empirical analysis are illustrated

by using the market data in both before and after the subprime crisis. We observe that

delta hedging of spread risk outperforms the implementation of jump-to-default ratio

in the pre-crisis period associated with CDX.NA.IG series 5, and the two strategies

have comparable performance for crisis period associated with CDX.NA.IG series 9 and

10. This shows that, although the local intensity model is a dynamic model, it is not

sufficient to explain the joint dynamic of the index spread and the base correlations,

and a richer dynamic model is required to obtain better hedging results. Moreover,

although different specifications of the local intensity can be fitted to the market data

equally well, their hedging results can be significant different. This reveals substantial

model risk when hedging CDO tranches.
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1 Introduction

A difficulty in financial modeling is the unavoidable gap between markets and their mathe-
matics. There are at least two reasons for this. The first point is the complexity of financial
markets, far beyond that of any tractable model. The second point is the scarceness of mar-
ket data that can be used to determine the value of the model parameters. With portfolio
credit derivatives these difficulties are exacerbated. Regarding the first point, it is enough to
think of the complexity of the ‘universe’ underlying a collateralized debt obligation (CDO),
not to mention a CDO of ABSs or CDO square. As for the second point, one must mention
the rarity of default events and also the small number of liquid instruments, e.g., CDO
tranches quoted on a credit index at a given time. Given this uncertainty inherent to credit
markets, a particularly important issue in the risk management of credit derivatives is of
course that of the robustness of the models and of the hedging strategies. We refer readers
to [5, 9, 21, 22, 26, 28] for a review of market practices regarding risk management of index
CDO tranches.

In practice, the most commonly used hedging strategy for CDO tranches is delta hedg-
ing small movements in the underlying credit index or credit default swap (CDS) spread
based on the Gaussian copula model, which is also known as hedging of spread risk. Its
corresponding hedge ratio, the spread delta, is defined as the ratio of the change in tranche
value over the change in the underlying index or CDS value with respect to small changes
in the underlying index or CDS spread, while assuming constant correlations. However, the
Gaussian copula model is essentially a static quotation device and its use for hedging is
questionable. As we will show in Section 3, the correlations are dynamic and correlated to
the index spread. It might therefore be expected that a dynamic model of credit risk, which
is able to capture the dependence between the base correlations and the index spread, will
have better hedging performances.

In Cont and Kan [5], a wide variety of dynamic models were considered, and one of the
conclusions is that essentially two concepts of hedging strategy emerge: hedging of spread
risk and default risk. While delta hedging under the Gaussian copula model as described
above is the common strategy for hedging of spread risk, the natural hedge ratio for hedging
of default risk is the jump-to-default ratio, which is defined as the change in tranche value
over the change in the underlying index or CDS value with respect to one additional default.
Therefore, also inspired by the analogous studies of equity derivatives by Derman [13] and
Crépey [12] who study hedging under the Black-Scholes model and the local volatility model,
our goal is to compare delta hedging of spread risk based on the Gaussian copula model (as
an analog to Black-Scholes model in [12, 13]) to the hedging of default risk based on the
dynamic local intensity model (as an analog to local volatility model in [12, 13]).

The hedging of CDO tranches in local intensity models has been, among others, studied
by Frey and Backhaus [17, 18], Laurent, Cousin and Fermanian [23], Cousin, Jeanblanc and
Laurent [11], Cont and Kan [5], and Cont, Deguest and Kan [4]. As far as index CDO
tranches are concerned, only few empirical papers analyze the performance of alternative
quantitative methods for hedging. Cont and Kan [5] perform a comprehensive backtest
of hedging performances using different frameworks including the Gaussian copula model
and the local intensity model. Ammann and Brommundt [1] investigates the ability of
the one-factor Gaussian copula model to hedge iTraxx CDO tranches between June 2004
and September 2007. In this empirical study, the authors compare the compound and the
base correlation methods to hedge an iTraxx tranche with other tranches. They find that
hedging based on base correlation method outperforms compound correlation method and
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that adjacent tranches give better hedge than other tranches. Cousin and Laurent [10]
review the main theoretical and operational issues associated with hedging in the Gaussian
copula and the local intensity approaches.

With respect to the above references, our contributions include:

∙ We perform an empirical analysis on the hedging performance by using dataset before
and after the subprime crisis, whereas [5] only used data during the crisis. More-
over, we characterize two market regimes in our dataset, normal/steady as opposed to
crisis/systemic.

∙ We provide a theoretical explanation of the relative position of the spread delta with
respect to the jump-to-default ratio depending on the market regime.

∙ We illustrate the results on both one-day and five-day time intervals. While the time
scale of trading and risk managing credit derivatives is typically of the order of 5
business days, the results obtained from one-day time interval as in [5] may be domi-
nated by ‘noise’ and short-term volatility. Therefore we systematically present all the
numerical results for two time horizons.

∙ While Cont, Deguest and Kan [4] study the differences of the hedge ratios implied by
the local intensity among different calibration schemes, we also backtest their hedging
performance which reveals significant model risk when hedging CDO tranches.

The paper is organized as follows. Section 2 presents a brief introduction to CDS index
and CDO tranches, and also the dataset that will be used for analysis. Sections 3 and 4
respectively study the Gaussian copula model and the local intensity model, as well as the
related hedging strategies. In Sections 5 and 6 we compare the two models from a theoretical
point of view. In Sections 5 we identify different market conditions in which the spread delta
and the local deltas can be ordered. Building on the dynamic feature of the local intensity
model, this ordering of the deltas is then used in Section 6 for comparing the resulting P&Ls,
in case either delta is used for hedging a CDO tranche. Backtesting experiments on the real
dataset are conducted and discussed in Section 7. We conclude our results in Section 8.

2 CDS index and CDO tranches

2.1 Standardized CDO Tranches

Let us recall that synthetic CDOs are structured products based on an underlying portfolio of
reference entities subject to credit risk. It allows investors to sell or buy protection on specific
risky portions or tranches of the underlying credit portfolio depending on their desired risk
profile. We concentrate our numerical investigation of hedging performance on the most
liquid segment of the market, namely CDO tranches written on standard CDS indexes
such as the CDX.NA.IG index. As illustrated in Figure 1, the CDX.NA.IG index contains
125 investment grade CDS, written on North-American corporations. Market makers of
this index have also agreed to quote prices for the standard tranches on these portfolios.
Each tranche is defined by its attachment point which is the level of subordination and its
detachment point which is the maximum loss of the underlying portfolio that would result
in a full loss of tranche notional. The first-loss 0%-3% equity tranche is exposed to the
first several defaults in the underlying portfolio. This tranche is the riskiest as there is
no benefit of subordination but it also offers high returns if no default occurs. The junior
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mezzanine 3%-7% and the senior mezzanine 7%-10% tranches are less immediately exposed
to the portfolio defaults but the premium received by the protection seller is smaller than for
the equity tranche. The 10%-15% tranche is the senior tranche, while the 15%-30% tranche
is the low-risk super senior piece.

Figure 1: Standardized CDO tranches on CDX.NA.IG.

Considering a pool (portfolio) of n credit names, we denote by �i the default time
corresponding to the i-th name, and by R an homogeneous and constant recovery rate at
default, taken as 40% in all our numerics. We define the cumulative default process N and
the cumulative loss process L by Nt =

∑n
i=1 1�i≤t and Lt = 1

n
(1 − R)Nt. Note that L

is expressed per unit of nominal exposure (in percentage). The cash-flows associated with
a synthetic CDO tranche with attachment point a and detachment point b (a and b in
percentage) are driven by losses that affect the tranche, i.e.

L
(a,b)
t = (Lt − a)+ − (Lt − b)+ .

A CDO tranche is a swap with two legs, a default protection leg and a fee leg, and a notion
of fair spread defined much as in the case of interest rate swaps, so that the two legs of the
contract would have equal values. Note that the contractual spread of the CDO tranche
is fixed once a particular contract is traded, and the changes in value of the contract can
be presented by the market par spread. We refer the reader to, for instance, Cousin and
Laurent [8] or Cont and Kan [5] for more details on the cash-flows of synthetic CDO tranches
and related products.

For the theoretical aspects of the paper we assume nil interest rates to simplify the
notation. A constant interest rate r = 3% is throughout used in the numerics, the extension
of all results to constant or time-deterministic interest rates being straightforward (but more
cumbersome notationally, especially regarding hedging).

2.2 Data

For numerical illustration throughout this paper, we consider three 5-year CDX.NA.IG in-
dexes and the corresponding tranches data in the period

∙ series 5: 20 September 2005 - 20 March 2006,

∙ series 9: 20 September 2007 - 20 March 2008,

∙ series 10: 25 March 2008 - 25 September 2008.
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Series 5 will be considered in this paper as a representative example of ‘normal’ or ‘steady’
sample, as opposed to the ‘systemic’ or ‘crisis’ period of series 9 and 10. From Figure 2, we
can see that spreads are low and little volatile in the case of the pre-crisis series 5, increasing
and volatile in the series 9, and high and volatile in the series 10.
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Figure 2: Index spread of 5-year CDX.NA.IG series 5 from 20 September 2005 to 20 March
2006, series 9 from 20 September 2007 to 20 March 2008 and series 10 from 21 March 2008
to 20 September 2008.

3 Gaussian Copula Model

The one factor Gaussian copula model introduced in Li [24] is the market quotation standard
for multi-name credit derivatives. Under this model, the prices of CDO tranches depend
on the current time t, a correlation parameter �t ∈ [0, 1], and a family Ft = (F i

t )1≤i≤n of
marginal time-to-default cumulative distribution functions over [t,+∞).

In the rest of the paper, we consider a homogeneous specification of the Gaussian
copula model in which the marginal time-to-default distribution functions are equal, i.e.,
F i
t = Ft for all i. Moreover, since we only consider the 5-year maturity, we assume that

the CDS term structures are constant. Under this assumption, the marginal time-to-default
function can be uniquely represented by the index spread St. The homogeneity assumption
is motivated by two reasons. First, we consider the hedging of CDO tranches by trading the
underlying CDS index, so marginal effects are not of primary importance (as opposed to the
case when single-name CDS are considered for hedging). Second, our aim is to compare this
model with the local intensity model in terms of hedging, where the latter is a top-down
model for which the dispersion of individual defaults is embedded in the dynamics of the
aggregate loss process. The homogeneity assumption on the Gaussian copula model allows
us to illustrate more comparable results to the top-down local intensity model.

3.1 Market Implied Correlation Parameters

As the Black-Scholes formula for the volatility markets, the Gaussian copula model is usually
used in reverse engineering for quoting CDO tranches in terms of their implied correlations.
More precisely, let Σt(a, b) be the market spread of a CDO tranche [a, b] at time t, and
Σgc(a, b; t, St, �t) be the model spread of the CDO tranche [a, b] computed from the Gaussian
copula model:

∙ The compound correlation of the tranche [a, b] is the value of the correlation �̃a,bt in the
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Gaussian copula model such that

Σgc(a, b; t, St, �̃
a,b
t ) = Σt(a, b) ; (1)

∙ the base correlation of level b is the value of the correlation �bt such that

Σgc(0, b; t, St, �
b
t) = Σt(0, b). (2)

Since CDO tranches are usually quoted in non-overlapping tranches (see Section 2), the
equity spreads at different attachment levels in (2) have to be bootstrapped from various
mezzanine and senior tranches. We refer readers to [27] for details about the base correlation
calibration method.

In this paper, we calibrate the Gaussian copula model based on the base correlation
method because of its stability in calibration and popularity among market participants1.
In terms of stability, spreads of equity tranches can be expressed as a decreasing function
of the correlation parameter in the one-factor Gaussian copula model (see [7] for a formal
proof). As a result, there is a unique base correlation for each attachment level, given that
it exists. On the other hand, this uniqueness property does not necessarily hold for the
mezzanine tranches if we use the compound correlation calibration.

Since each base correlation corresponds only to an equity tranche value, values of
mezzanine tranches have to be represented by two base correlations at their attachment and
detachment levels. In terms of the base correlation, the market price of a CDO tranche is thus
eventually represented as ugc(a, b; t, St, �

a
t , �

b
t). In case of an equity (resp. senior) tranche

with a = 0 (resp. b = 1), this reduces to ugc(0, b; t, St, 0, �
b
t) (resp. ugc(a, 1; t, St, �

a
t , 0)),

which one further simplifies to ugc(t, St, �t) when the context clearly specifies the equity or
senior tranche under consideration. As the index is not affected by the correlation level, the
index price is denoted by vgc(t, St).
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Figure 3: Base correlation at 3% strike of 5-year CDX.NA.IG series 5 from 20 September
2005 to 20 March 2006, series 9 from 20 September 2007 to 20 March 2008 and series 10
from 21 March 2008 to 20 September 2008.

Figure 3 shows the base correlation at 3% strike level during the three sample periods.
In the pre-crisis period associated with CDX series 5, the base correlation appears to be
rather low and globally stable whereas it clearly increases during crisis period of series 9 and

1The calibrated base correlations under the homogeneity assumption may differ from the market-implied
ones as the calibration of the Gaussian copula model is typically not made under the pool homogeneity
assumption. Therefore, the indicated correlation levels also embed the impact of the individual spread
changes or dispersion.
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remains at high and volatile levels during the more recent period of series 10. When time
series of index spreads (Figure 2) are compared with time series of base correlations (Figure
3), it is interesting to remark that, in each period, the trend is similar. On these data sets,
index spreads and base correlations seem to evolve in the same direction.

3.2 Delta Hedging of Spread Risk

Index delta hedging of spread risk for a tranche consists in entering a specific position in
the CDS index, in such a way that changes in market price of a tranche [a, b] due to moves
in the index spread, are compensated by changes in market price of the index. The (index)
spread delta for the tranche [a, b], which represents the hedging position in the CDS index,
is determined by computing index spreads sensitivities of both the tranche and the CDS
index values using the one-factor Gaussian copula model. The spread delta is thus defined
as

Δgc
t = Δgc(a, b; t, St, �

a
t , �

b
t) =

ugc(a, b; t, St + �S, �at , �
b
t)− ugc(a, b; t, St, �

a
t , �

b
t)

vgc(t, St + �S)− vgc(t, St)
(3)

where �S is typically equal to 1bp. Note that the market convention as in (3) is to keep
constant the base correlations when recalculating the tranche prices. This corresponds to
the so-called ‘sticky strike’ rule. The rationale behind this rule is related to the static nature
of the Gaussian copula model: the sensitivity of base correlation with respect to a change
in index spread cannot be predicted in this model, because this model does not capture any
dynamic relationship between index spreads and the base correlations.

1-Day 5-Day

Strike CDX5 CDX9 CDX10 CDX5 CDX9 CDX10

3% -0.03 0.30 0.55 -0.30 0.07 0.40
7% 0.03 0.50 0.60 -0.22 0.41 0.48
10% 0.05 0.55 0.61 -0.18 0.45 0.50
15% 0.07 0.62 0.63 -0.15 0.52 0.51
30% 0.10 0.65 0.61 -0.11 0.62 0.50

Table 1: Correlations between returns of the index spread and returns of the base correlation
at 3% strike level.

However, Table 1 shows that the level of correlation between changes in index spread
and changes in base correlation is significant during the sample periods. Observe that in
the case of the pre-crisis data of 2005 (series 5), the correlations between 1-day return of
the spread and base correlations are close to zero on the 1-day scale, and even negative on
the 5-days scale. On the other hand, during the systemic credit crisis of 2007-08 (series 9
and 10), there is a significant positive correlation between the two. When we increase the
observation period from one day to five days, the correlation decreases across all periods
and strikes, becoming ‘less positive’ or ‘more negative’ than on the 1-day scale.

Consequently, this empirical study suggests that, at least for series 9 and 10, delta
hedging of spread risk is not able to account for the change in correlation when only the
index spreads are bumped for the hedge ratio computation.
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3.3 Greeks in the Gaussian Copula Model

Recall that the value of a CDO tranche [a, b] computed in the Gaussian copula model can be
expressed as a function of the current time t, the index spread St and the base correlations
�at and �bt . Thanks to the Itô formula, tranche price increment can be decomposed as a sum
of terms that involve sensitivities (Greeks) with respect to the variables. In this section, we
empirically study the relative contribution of these ‘Greeks’ to tranche price increments.

Consider a buy-protection position on an equity tranche. Let �gc be the first order
partial derivative of the Gaussian copula pricing function ugc with respect to time t and
let �gcx = ∂xu

gc, gcx,y = ∂2
xyu

gc be the first and second order partial derivatives of ugc with
respect to the variables x and y. By applying the Itô formula, neglecting here jumps in the
variables for simplicity:

dugc(t, St, �t) = �gc(t, St, �t)dt+ �gcS (t, St, �t)dSt

+ �gc� (t, St, �t)d�t

+
1

2
gcS (t, St, �t)d⟨S⟩t +

1

2
gc� (t, St, �t)d⟨�⟩t

+ gcS,�(t, St, �t)d⟨S, �⟩t. (4)

By using this expression, we investigate the decomposition of value for the equity tranche
[0%, 3%] over a 6-month period corresponding to CDX series 9. In particular, we check
the changes in tranche prices by using a discrete-time version of (4) where the Greeks are
estimated by finite differencing with changes in time, index spread and base correlation
are taken to be 1 day, 1bp and 0.1% respectively, and the variations of the spread and
correlations are approximated by taking the differences in one and five days.

Figure 4 shows the decomposition of the changes in the [0%,3%] equity tranche value
of CDX series 9 due to first and second order changes in index spread and base correlation.
As visible in Figure 5, actual changes in the equity tranche and changes by summation of
all terms of the Itô formula are very similar. According to Figure 4, the most influential
terms are the first order sensitivities with respect to changes in the index spread and the
base correlation. Note that these two sensitivities are about of the same order of magnitude,
so that delta hedging of spread risk leaves a significant exposure to correlation risk. On the
other hand, if index spread and base correlation would correspond to market prices of some
tradable assets, it would be then possible to design an effective hedge using the one-factor
Gaussian copula model.

Note that the second order changes of equity tranche value with respect to changes in
the index spread, also contribute a substantial amount of volatility, even if it may be partly
due to index jumps, that effectively contribute to this term in our decomposition2.

While we observe significant contribution from the correlations change to the changes
in the CDO tranche value, delta hedging of spread risk is not sufficient to provide an effective
hedge. In order to overcome this problem, the question becomes whether we can benefit from
the use of a dynamic model that may capture the observed dynamic feature of correlation
risk, or at least, the component of this risk which is correlated to the index. Our analysis
will focus on the simplest Markovian model of portfolio credit risk, namely the dynamic
local intensity framework, which is presented in the next section.

2The second order changes with respect to spread appear to be consistently negative for a buy protection
position. This feature has been proved formally by [25] for an equity tranche.
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Figure 4: Changes of equity tranche [0%, 3%] value (100% notional) of CDX series 9 with
respect to first and second order changes in time, index spread and base correlation.
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and the estimation of changes in equity tranche values based on discrete-time approximation
of Itô formula (4) under the Gaussian copula model.
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4 Local Intensity Model

In the local intensity model, the cumulative number of defaults N = {Ns, s ≥ t} of a credit
portfolio of n names is a Markov point process (see, e.g., Laurent, Cousin and Fermanian
[23], Cont and Minca [6] or Cont, Deguest and Kan [4]). More specifically, we assume that
(Ns)s≥t, which represents the number of defaults in the portfolio beyond the current time t,
is a pure birth process with an intensity {�t(s,Ns), s ≥ t} given by a deterministic function
{�t(s, i)}s≥t, i=Nt,...,n satisfying �t(s, i) = 0 for i ≥ n. This last condition guarantees that the
process N is stopped at the level n, as there are n names in the pool. Note that Nt represents
the number of defaulted obligors in the underlying portfolio, which is not necessarily equal
to zero. In particular, after Fannie Mae and Freddie Mac defaults in 2008, Nt = 2 for CDX
series 10.

Conditionally on the information ℱs = ℱN
s available at time s, the probability of a

jump in the infinitesimal time interval (s, s+ ds) is given by �t(s,Ns)ds. The infinitesimal
generator, which is also known as the local intensity, is thus given by the (n+ 1)× (n + 1)
matrix

Λt(s) =

⎛
⎜⎜⎜⎜⎝

−�t(s,Nt) �t(s,Nt) 0 0 0
0 −�t(s,Nt + 1) �t(s,Nt + 1) 0 0

. . .
0 0 0 −�t(s, n− 1) �t(s, n − 1)
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

For notational simplicity, let us consider a stylized ‘European-type’ CDO tranche [a, b]
that provides the payoff �(NT ) at maturity T but with no premium or default payment
before maturity. Let ulo(a, b; s,Ns,Λt), or simply ulo(s,Ns,Λt) if the context is clear, be the
value of the CDO tranche [a, b] computed from the local intensity function Λt = {Λt(s), t ≤
s ≤ T}, given that there are Ns number of defaults by time s. The pricing function ulo is
characterized as the solution to the following system of backward Kolmogorov differential
equations: ulo(T, i,Λt) = �(i) for i = Nt, ..., n, and for t ≤ s ≤ T ,
{

∂su
lo(s, i,Λt)− �t(s, i)u

lo(s, i,Λt) + �t(s, i)u
lo(s, i+ 1,Λt) = 0 , i = Nt, . . . , n− 1 ,

∂su
lo(s, n,Λt) = 0 , i = n .

(5)
Moreover we have the following martingale representation, for s ∈ [t, T ]

ulo(s,Ns,Λt) = ulo(t,Nt,Λt) +

∫ s

t

(
ulo(�,N�− + 1,Λt)− ulo(�,N�−,Λt)

)
dM�

where M is the compensated jump martingale of N , i.e., dMs = dNs − �t(s,Ns−)ds. Using
the analogous martingale representation for the price process vlo(s,Ns,Λt) of the credit
index, it follows that in the local intensity model Λt, one can dynamically replicate the
tranche by the CDS index (and the riskless asset) over the time interval [t, T ], by trading
the index according to the jump-to-default ratio Δlo(a, b; s,Ns−,Λt), for s ∈ [t, T ], where for
i = Nt−, . . . , n,

Δlo (a, b; s, i,Λt) =
ulo(a, b; s, i + 1,Λt)− ulo(a, b; s, i,Λt)

vlo(s, i+ 1,Λt)− vlo(s, i,Λt)
. (6)

As an analog to the hedging position in stocks under the local volatility model, we also refer
this hedge ratio as the local delta and we call the implementation of this hedge ratio delta
hedging of default risk.
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In practice, the local intensity function Λt is calibrated to the available tranches and
index spreads. Unlike the base correlation calibration for the Gaussian copula model where
one correlation parameter is calibrated to each attachment level, the local intensity function
provides a global fit to all tranches. If the local intensity function is re-calibrated at each
time, the time-t local delta which is used for hedging is given by

Δlo
t = Δlo (a, b; t,Nt,Λt) =

ulo(a, b; t,Nt + 1,Λt)− ulo(a, b; t,Nt,Λt)

vlo(t,Nt + 1,Λt)− vlo(t,Nt,Λt)
. (7)

In all of our later numerical analysis, prices computed in the local intensity model take
into account the real cash-flows as opposed to the above stylized presentation. Moreover, in
order to be consistent with market conventions, all prices, and also later the hedge ratios,
are computed from 100% notional value. Therefore, both the tranche values and deltas
are ‘scaled’ by the tranche width. The price for any tranche or for the CDS index is thus
between 0 and 100% and the delta of a [a, b] tranche is between 0 and 100%

b−a
. For instance,

the delta of the [0%, 3%] equity tranche belongs to the interval [0, 33.33].

4.1 Model Calibration

Various methods have been proposed to recover the local intensity function (see for instance
Chapter 2 of [11] for a review of such approaches). However, Cont, Deguest and Kan [4]
show that even if the local intensity function is calibrated to the same set of market data,
model dependent quantities such as the local delta, can be significantly different across
the calibration methods. Therefore, we study the local intensity based on two calibration
approaches:

∙ Parametric: A time-homogeneous specification of the local intensity;

∙ Non-parametric: Entropy minimization calibration introduced by Cont and Minca [6].

Regarding the parametric specification, note that in Herbertsson [20] a piecewise con-
stant parametrization of i 7→ �(s, i) is used, whereas we use for our parametrization in this
work a piecewise linear form for i 7→ �(s, i), which we found to be more robust and to
provide a better fit at the time of daily recalibration of the model on our time series of
data3. More specifically, the time-homogeneous local intensity function is assumed to be
linear in the number of default variable where the grid points are equal to the attachment
levels divided by the loss given default, rounded to the closest integers.

One advantage of the time-homogeneous parametric model is that the shape of the
calibrated local intensity function can be easily interpreted in terms of default dependence.
On the other hand, the non-parametric approach, as shown by Cont et al. [4], usually
produces an irregular local intensity function which is difficult to interpret. However, Cont
et al. [4] shows that the non-parametric approach is more stable with respect to shifting in
the market spreads.

Table 2 shows the relative root mean squared errors of the calibrated spreads across
quotation dates of each series. The per tranche calibration of the Gaussian copula model
is of course nearly perfect by the base correlation approach. For the local intensity models
(global fit), the errors are about 2% for the tranches and about 5% for the index.

3We have also tried piecewise constant formulation and the hedge ratios do not appear to be significantly
different from the ones obtained with the piecewise linear formulation (at least not as much as from the
entropy minimization calibration).
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CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

Index 0.04 5.15 5.14 0.03 4.40 4.81 0.02 6.73 6.77
0%-3% 0.01 2.35 2.36 0.00 1.31 1.32 0.01 1.69 1.68
3%-7% 0.00 0.51 0.69 0.00 0.61 0.86 0.00 1.04 1.03
7%-10% 0.00 0.08 1.32 0.00 0.24 0.91 0.00 0.43 0.39
10%-15% 0.00 0.06 1.77 0.00 0.24 1.15 0.00 0.40 0.36
15%-30% 0.00 0.29 1.97 0.01 1.19 1.74 0.01 1.80 1.68

Table 2: Relative root mean squared errors (in percentage) of calibrated spreads. Gauss:
Gaussian copula model; Para: Parametric local intensity model; EM: Local intensity model
with entropy minimization calibration.

Table 3 shows the CDX series 9 spreads of 20 September 2007, as well as the spreads
calibrated to these data in the Gaussian copula model and in the two specifications of the
local intensity model. Similar to the findings by Cont et al [4], the calibrated spreads are
nearly identical for both specifications of the local intensity.

Tranche Market Gauss Para EM

Index 50.38 50.36 47.58 47.58
0%-3% 35.55 35.55 36.35 36.35
3%-7% 131.44 131.44 132.04 132.07
7%-10% 45.51 45.51 45.54 45.56
10%-15% 25.28 25.28 25.30 25.31
15%-30% 15.24 15.24 15.36 15.36

Table 3: Calibrated spreads. Data: 5-year CDX series 9 on 20 September 2007.

Figure 6 shows further the local intensity functions calibrated by the two approaches
on the CDX series 9 data of 20 September 2007, with different levels of ‘zoom’ on the left tail
of the distributions. On a global scale (lower right graph), the two calibrated local intensity
functions look completely different. The left tails of the distributions are closer (upper left
graph), but are still clearly distinct, and this is in fact most likely this divergence between
the left tails which is responsible for the difference between the related hedge ratios to be
commented upon below.

4.2 Impact of a Default on Index Spreads and Base Correlations

From the empirical study of Section 3.2, we know that, especially for CDX series 9 and 10,
index spreads and base correlations usually move in the same direction. We have insisted
on the fact that the Gaussian copula delta computed under the ‘sticky-strike’ rule does not
capture the dynamic feature of base correlations although, according to Section 3.3, the
correlation risk may strongly contribute to change in tranche market prices. Given these
observations, our aim is to explore whether the local intensity model is able to account for
a dynamic evolution of the correlation among defaults in the portfolio.

Recall that the dynamic aspects of the local intensity model are entirely captured by
the default filtration, that is, the information associated with timing of defaults in the pool.
Moreover, the local delta defined by expression (7) corresponds to sensitivity with respect
to default risk. It is the ratio of the tranche price sensitivity over the index price sensitivity
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Figure 6: Local intensity function at T = 1 year. Same data as Table 3.

with respect to the occurrence of a new default. So, in the same vein as Section 3.2 for
the Gaussian copula model, we aim here at comparing the correlation between variations in
index spreads and base correlation levels as a result of a new default in the local intensity
model, with the actual or realized correlation between variations of these two quantities.

In order to do so, we need to introduce a concept of correlation as implied by prices
computed in the local intensity model. Let us denote by Slo(t,Nt,Λt) the current CDS
index spread computed in the local intensity model calibrated at time t. We also denote by
�lo(b; t,Nt,Λt), or simply �lo(t,Nt,Λt) if the context is clear, the base correlation implied
from the equity tranche price with detachment level b computed in a local intensity model
pre-calibrated at time t on market spreads.

Figure 7 shows the time series of the differences between the index spread Slo(t,Nt,Λt)
(resp. market base correlation �lo(b; t,Nt,Λt) for b = 3%) and the values implied by the
local intensity model with one additional default Slo(t,Nt +1,Λt) (resp. �lo(b; t,Nt +1,Λt)
for b = 3%). Observe that index spreads implied by the local intensity model with one more
default are always higher than the market spreads,4 so the index spread is increasing in
the number of defaults (at least, for the first default) across all the data sets. Now, rather
consistently with Table 1 in Section 3.2, in the CDX5 sample period, the base correlation
implied by the local intensity model with one more default, and hence a greater index spread,
is very close to or lower than the market value. On the opposite, in the CDX9 and CDX10
sample periods, the base correlation implied by the local intensity model with one more
default is always greater than the market value.

In the case of series 9 and 10, index spreads and base correlations thus move in the
same direction when a default occurs in the local intensity model, whereas they may move
in opposite direction for CDX series 5. From this point of view, the dynamic nature of base
correlations and index spreads as generated in the local intensity model seems to be rather
consistent with what we observed in Table 1.

However, Table 4, which presents the correlations between index spread returns implied

4Recall again that Slo(t,Nt,Λt) ≃ St as a result of the calibration procedure.
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Figure 7: Left: Differences between the index spread Slo(t,Nt,Λt) and the values implied
by the local intensity model with one additional default Slo(t,Nt+1,Λt). Right: Differences
between market equity tranche base correlation �lo(t,Nt,Λt) and the base correlation implied
from equity tranche [0%, 3%] prices computed in the local intensity model with one additional
default. Model: Time-homogeneous local intensity model where the dependence of defaults
are piecewise linear with grid points close to the attachment points.

by the calibrated local model with one additional default, and base correlation returns
implied by the calibrated local model with one additional default, illustrates the results as
opposed to what we observe empirically in Table 1. The correlations of the index spread
return and base correlation returns implied by the local intensity model with one additional
default are all negative, including the crisis data of series 9 and 10. It might thus eventually
be so that, even if the local intensity model builds in some dynamics of the joint evolution
of base correlations and index spreads, these dynamics are in fact misspecified. The local
delta would then incorporate a ‘wrong correction’ with respect to the spread delta. This
kind of phenomenon is reminiscent of similar difficulties met with local volatility models on
certain derivatives markets, which led to the introduction of models with richer dynamics,
like the SABR model of Hagan et al. [19].

Strike CDX5 CDX9 CDX10

3% -0.57 -0.72 -0.76

7% -0.64 -0.47 -0.75

10% -0.62 -0.31 -0.62

15% -0.55 -0.12 -0.36

30% -0.37 0.06 0.07

Table 4: Correlations between index spread returns implied by the calibrated local model
with one additional default, and base correlation returns implied by the calibrated local
model with one additional default

4.3 Stability of Hedge Ratios

Figure 8 shows time series of local deltas for the equity tranche [0%, 3%] in each sample
period. Observe that the local deltas computed from entropy minimization, or ‘entropic local
deltas’ for short, is significantly smaller than the local deltas computed from the parametric
model, or ‘parametric local deltas’ in short-hand, throughout the whole time series, even
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though they are both local deltas in local intensity models calibrated to the same data
sets. When comparing to the spread deltas computed from the Gaussian copula model,
the parametric local deltas lies somewhere between the entropic local deltas and the spread
deltas.

Oct05 Dec05 Feb06
0

5

10

15

20

25

30
Tranche [0%,3%] deltas − CDX5

 

 

 
Gauss
Para
EM

Oct07 Dec07 Feb08
0

5

10

15

20
Tranche [0%,3%] deltas − CDX9

 

 

 
Gauss
Para
EM

Apr08 Jun08 Aug08
0

2

4

6

8

10
Tranche [0%,3%] deltas − CDX10

 

 

 
Gauss
Para
EM

Figure 8: Equity tranche deltas for CDX series 5, 9 and 10.

Table 5 shows the spread deltas and the local deltas, computed by models which are
calibrated on the same data as those used in Table 3 (CDX series 9 spreads of 20 September
2007). Note the gap between the parametric local delta and the entropic local delta, whereas
the related calibrated spreads are nearly identical. This is a striking example of model risk.

Tranche Gauss Para EM

0%-3% 15.29 11.05 2.64
3%-7% 5.03 4.59 2.70
7%-10% 1.94 2.26 2.29
10%-15% 1.10 1.47 1.99
15%-30% 0.60 1.01 1.74

Table 5: Hedge ratios. Same data as Table 3

As can be seen from Figure 8, the entropic local deltas are substantially more stable
than the parametric local deltas for CDX series 9 and 10. The stability of the entropic local
deltas is consistent with the observation by Cont et al. [4] that the local intensity function
calibrated by entropy minimization is significantly more stable to the changes in the market
data than the parametric local intensity function. Since the computation of the local delta
requires the full local intensity function, it is not surprising that the entropic local deltas are
less sensitive to the changes in the market data than parametric local deltas. This difference
is more significant in the volatile periods for CDX series 9 and 10.

However, the stability of entropic local deltas does not necessarily imply a better hedg-
ing strategy when implementing the local delta. Indeed, the entropic local deltas may fail
to reflect the market information while they are very much indifferent to the market spreads
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changes. We will see in Section 7 that the entropic local deltas in fact lead to poor hedging
performance.

5 Ordering Between the Deltas

In this section we study the ordering between the spread delta Δgc
t in (3) and the local delta

Δlo
t in (7), depending on the seniority of the tranche and the market regime.

5.1 Market Regimes

As we have seen in Figure 7, all local intensity models calibrated to market quotes exhibit
a surge of index spreads at the arrival of a default, the jump in index spreads being smaller
for series 5 compared with series 9 and 10. However, a new default tends to increase
(equity tranche) base correlation across all series 9 and 10, whereas it has a smaller or even
negative impact on correlation for pre-crisis series 5. This should also be connected5 with
our observation of Table 1 in Section 3.2 that the pre-crisis period is associated with rather
negative correlation levels between changes in index spreads and changes in base correlations,
although this is the opposite for the more recent crisis periods.

Accordingly, for the purpose of the theoretical study of Sections 5 and 6, we distinguish
two stylized market regimes: a systemic regime, in which, by definition, a new default in
a local intensity model calibrated to the market, tends to increase (equity tranche) base
correlation, and a steady regime, in which a new default in a local intensity model calibrated
to the market, has a smaller (or even negative) impact on correlation.

5.2 Equity Tranche in a Systemic Market

Let us first consider the case of a buy-protection equity tranche (a = 0) in a systemic market,
as of those calibrated on Series 9 and 10 (see Section 4.2 above).

We have seen in Figure 8 that the local intensity deltas are consistently smaller than
the Gaussian copula deltas across the two crisis Series 9 and 10, i.e.,

Δlo
t ≤ Δgc

t . (8)

We attempt here to give some theoretical arguments in favor of this empirical observation.
First note that from the definition of a systemic regime defined in Section 5.1 (similar to
those calibrated on Series 9 and 10, see right panel of Figure 7), one has

�lo(t,Nt,Λt) ≤ �lo(t,Nt + 1,Λt). (9)

Moreover it is well known (see, e.g., [7] for a formal proof) that the price of an equity tranche
computed in the one-factor Gaussian copula model is a decreasing function of the correlation
parameter �:

∂�u
gc(t, S, �) ≤ 0 .

So

ugc
(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt + 1,Λt)
)
≤ ugc

(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt,Λt)
)

.

5With the reservation made in the comments to Table 4 however.
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Now, one has by definition of the Gaussian copula implied correlation, for every t ∈ [0, T ] :

ulo(t,Nt + 1,Λt)− ulo(t,Nt,Λt)
= ugc

(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt + 1,Λt)
)
− ugc

(
t, Slo(t,Nt,Λt), �

lo(t,Nt,Λt)
)

= ugc
(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt + 1,Λt)
)
− ugc

(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt,Λt)
)

+
(
ugc

(
t, Slo(t,Nt + 1,Λt), �

lo(t,Nt,Λt)
)
− ugc

(
t, Slo(t,Nt,Λt), �

lo(t,Nt,Λt)
))

.

(10)

Therefore, by (10):

Δlo
t =

ulo(t,Nt + 1,Λt)− ulo(t,Nt,Λt)

vlo(t,Nt + 1,Λt)− vlo(t,Nt,Λt)

≤
ugc(t, Slo(t,Nt + 1,Λt), �

lo(t,Nt,Λt))− ugc(t, Slo(t,Nt,Λt), �
lo(t,Nt,Λt))

vlo(t,Nt + 1,Λt)− vlo(t,Nt,Λt)
(11)

=
ugc(t, Slo(t,Nt + 1,Λt), �

lo(t,Nt,Λt))− ugc(t, Slo(t,Nt,Λt), �
lo(t,Nt,Λt))

vgc(t, Slo(t,Nt + 1,Λt))− vgc(t, Slo(t,Nt,Λt))

=
ugc(t, Slo(t,Nt,Λt) + ", �lo(t,Nt,Λt))− ugc(t, Slo(t,Nt,Λt), �

lo(t,Nt,Λt))

vgc(t, Slo(t,Nt,Λt) + ")− vgc(t, Slo(t,Nt,Λt))

≈ Δgc
t ,

where " = Slo(t,Nt+1,Λt)−Slo(t,Nt,Λt), which yields (8). Note that denominator of (11)
does not depend on the implied correlation.

5.3 Senior Tranche in a Systemic Market

The previous analysis focused on an equity tranche in a systemic market. However, the
same analysis can be made for a senior tranche that protects against last losses, i.e., a CDO
tranche [a, b], with 0 < a < 100% = b. The Gaussian copula pricing function associated
with a senior tranche is increasing with respect to correlation, i.e., one has in this case that
∂�u

gc(t, S, �) ≥ 0 (see, e.g., [7] for a proof). As a result, in case of a senior tranche, the above
arguments yield the opposite ordering between Gaussian copula deltas and local deltas, i.e.,
Δlo

t ≥ Δgc
t .

5.4 Analysis in a Steady Market

In the situation of a steady (or pre-crisis) market driven by a local intensity model calibrated
on CDX series 5 quotes, the impact of a default may have a negative (or slightly positive)
effect on base correlation (see right panel Figure 7), contrary to the crisis period associated
with series 9 and 10. In view of Section 5.2, one may expect that, at least for some quotation
dates, the ordering between the two deltas changes during this pre-crisis period. However,
as can be seen on Figure 8, the Gaussian copula equity deltas are consistently greater than
the equity local deltas for the whole series 5. Therefore, the reverse implication associated
with (9) and (11), i.e., the fact that �lo(t,Nt,Λt) ≥ �lo(t,Nt+1,Λt) would imply Δlo

t ≥ Δgc
t ,

is not satisfied by empirical observation (see also Table 6 for a case study). Nevertheless,
the two deltas are quite close in this pre-crisis period, with a discrepancy which tends to
vanish at the end of series 5.

Example 5.1 Table 6 shows the changes in base correlation of the equity tranche and
compares the deltas under the Gaussian copula and the local intensity model.
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∙ On 17 March 2006 (end of series 5, closest example of a steady market in our data),
the base correlation predicted by the local intensity model with one additional default
decreases. In this case, the spread delta is almost the same as the local delta;

∙ On 16 September 2008 (next business day after Lehman Brothers defaulted, represen-
tative example of a crisis market; note however that Lehman Brothers was not part
of the pool underlying series 10), the base correlation predicted by the local intensity
model increases. In this case, the spread delta is significantly larger than the local
delta, as suggested by (8).

Date �lo(t,Nt,Λt) �lo(t,Nt + 1,Λt) Δgc Δlo

17-Mar-2006 28.55% 27.44% 20.89 20.86
16-Sep-2008 48.27% 51.08% 3.41 1.97

Table 6: Base correlation implied by market data �lo(t,Nt,Λt), base correlation implied by
one additional default in the local intensity model �lo(t,Nt + 1,Λt), spread delta Δgc and
local delta Δlo. Equity tranche [0%, 3%] of 5-year CDX series 5 on 17 March 2006 and series
10 on 16 September 2008.

6 Ordering Between the P&Ls

Delta hedging in discrete time the tranche with the index and the riskless asset over the
time interval [0, T ], consists in rebalancing in a self-financed way, at every point in time of a
subdivision 0 = t0 ≤ t1 ≤ . . . ≤ tp = T of [0, T ], a complementary position Δ in the index,
in order to minimize the overall exposure to ‘small’ moves in the index.

The tracking error, or profit-and-loss process e = (etk)0≤k≤p, is obtained by adding
up the following profit-and-loss increments, starting with e0 = 0, from k = 0 to p− 1:

�ke = �kΠ−Δtk �kP (12)

where �kΠ and �kP are the increments of the (buy-protection) tranche and index market
values between times tk and tk+1, and Δtk is the index delta (number of units of index
contract in the hedging portfolio over the time interval (tk, tk+1]).

Our main aim in this paper is to compare the profit-and-loss processes obtained by
using two strategies, with hedge ratios given by (i) the spread delta in (3) and (ii) the local
delta in (6).

Let �elo (resp. �egc) represent the P&L increment (12) while we implement the local
delta (resp. the spread delta). After having studied the ordering of the deltas in the
previous section, we study that of the resulting �e’s in the current one. Toward this end,
within each market regime: systemic or steady, for each hedging rebalancing period (one day
or five days), we shall also consider two stylized market scenarios: widening and tightening,
corresponding to values of the index spread increasing and decreasing, respectively.

In most of this section, we consider a theoretical market given in the form of a local
intensity model. Equivalently, we assume Λt = Λ0 for every t ∈ [0, T ]. In a local intensity
model, we know from Section 4 that the strategy implementing the local delta (7) in con-
tinuous time, provides a perfect replication of the tranche by the index. One thus has for
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t ∈ [0, T ], Π and P denoting the tranche and index price process in the local intensity model
with intensity Λ0,

dΠt = Δlo
t dPt . (13)

However, such a perfect hedge cannot be achieved in discrete time. We thus propose in
Subsect. 6.1 to 6.3 to compare the P&L increments associated with delta hedging in discrete
time of spread risk and default risk in this setup.

Extension of the analysis to a ‘real market’ is then discussed in Subsect. 6.4.

6.1 Equity Tranche in a Systemic Local Intensity Model

We first consider the case of an equity tranche (a = 0) in a systemic local intensity model.
One then has that

�elo is negative in tightening scenarios and positive in widening scenarios. (14)

Indeed, (13) yields,

�ke
lo = �kΠ−Δlo

tk
�kP =

∫ tk+1

tk

(Δlo
t −Δlo

tk
) dPt . (15)

Now, it is quite intuitive that the equity tranche delta Δlo(0, b; t, i,Λ0) is an increasing
function of time t (see Figure 9 for a typical example). As we get closer to maturity, the
time-value of both the tranche and the index vanishes. Therefore, the change in value at
the arrival of a default6 is only the consequence of a protection payment. This protection
payment is 1/b times larger for the tranche than for the index7. This explains why the deltas
tend to 1/0.03 ≃ 33.33 as time goes to maturity (recall that deltas are computed by unit of
nominal exposure).
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Figure 9: Equity tranche deltas Δlo(0, 3%; t, i,Λ0) computed in a local intensity model as a
function of time t and number of defaults i. The parametric local intensity function Λ0 is
calibrated on market spreads of 5-year CDX series 9 on 20 September 2007.

Therefore, on a small time interval (tk, tk+1],

6Assuming that the default fully affects the tranche.
7If the nominal is the same for the tranche and the index.
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∙ if no default occurs, the change in value of the index is only due to a decrease in time-
value, then �kP ≤ 0. This corresponds to a tightening scenario. Then, since from (15)
�elo ≃ (Δlo

tk+1
−Δlo

tk
) �kP , the P&L increment �elo would be negative in this period.

∙ if one default occurs, the decrease in time-value is dominated by a surge in index
spreads due to contagion effects, then �kP ≥ 0. This corresponds to a widening
scenario. Note that this feature has been checked empirically for all sample periods
(see left panel of Figure 7). Then, thanks to representation (15), the P&L increment
�elo would be positive in this period.

By definition (12), one has

�egc = �elo −
(
Δgc −Δlo

)
�P (16)

Thus, in view of the ordering (8) of the deltas, the following comparisons holds

{
�elo ≤ �egc for �P ≤ 0,

�elo ≥ �egc for �P ≥ 0.
(17)

Combining (14) and (17), we get the picture depicted in Table 7. It might thus be so that, in

Tightening Widening
�elo ≤ min (�egc, 0) max (�egc, 0) ≤ �elo

Table 7: Equity tranche in a systemic local intensity model.

some scenarios, the spread delta provides a better hedge than the local delta. Indeed, using
simulations of default times in a local intensity model calibrated to CDX series 9 spreads, we
observe in Figure 10 that an increase of the hedging horizon may effectively worsen hedging
performance compared to the Gaussian delta.

However, recall that we are in a local intensity model, in which the strategy Δlo, if
applied in continuous time, would provide a perfect replication of the tranche by the index.
This means that for hedge rebalancing frequencies large enough (like every week or more)
�elo is very close to 0, and Table 7 reduces to Table 8:

Tightening Widening

�elo ≃ 0 ≤ �egc �egc ≤ 0 ≃ �elo

Table 8: Case of a moderate to high rebalancing frequency in Table 7.

In Section 7, we shall confirm that the latter ordering of P&L really holds for CDX series
9 (with mainly spread widening periods) when realized cumulative P&Ls are backtested
using hedging experiments (see Figure 14).

6.2 Senior Tranche in a Systemic Local Intensity Model

It can be checked numerically and analyzed as in the case of an equity tranche (see Figure
9) that contrary to equity tranche deltas, senior tranche deltas Δlo(a, 1; t, i,Λ0) computed
in the local intensity model calibrated on series 9 and 10 are typically decreasing functions
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Figure 10: Standard deviation of equity tranche P&L increments �elo and �egc as a function
of the hedging horizon. Default times are simulated in a local intensity market calibrated
on market spreads typical of CDX series 9.
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Figure 11: Senior tranche deltas Δlo(15%, 30%; t, i,Λ0) computed as a function of time t and
number of defaults i. The parametric local intensity function Λ0 is calibrated on market
spreads of 5-year CDX series 9 on 20 September 2007.
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of time. As can be seen on Figure 11, this is also typically the case for a [15%, 30%] CDO
tranche.

Then, contrary to equity tranche, the P&L increment �elo of a super-senior tranche is
expected to be positive in tightening scenarios and negative in widening scenarios, in the
context of a systemic local intensity model.

Moreover, one has from Sect. 5.3 that Δlo
t ≥ Δgc

t for a senior tranche in a systemic
market. It thus turns out that cells in each of the Tables 7 and 8, can be simply exchanged
for the senior tranche, leading to Tables 9 and 10.

Tightening Widening

max (�egc, 0) ≤ �elo �elo ≤ min(�egc, 0)

Table 9: Senior tranche in a systemic local intensity model.

Tightening Widening

�egc ≤ 0 ≃ �elo �elo ≃ 0 ≤ �egc

Table 10: Case of a moderate to high rebalancing frequency in Table 9.

6.3 Analysis in a Steady Local Intensity Model

One can imagine a local intensity model where the ordering between the two deltas would be
inverted for both equity and senior tranches. Then, the results analogous to those of Tables
7 and 9 are displayed in Table 11. Note that the conclusion is in fact even clearer in that
case since the ordering of �e holds irrespectively of the frequency of the hedge rebalancing.

Tightening Widening

Equity tranche �egc ≤ �elo ≤ 0 0 ≤ �elo ≤ �egc

Senior tranche 0 ≤ �elo ≤ �egc �egc ≤ �elo ≤ 0

Table 11: Ordering of equity and senior tranches P&L in a steady local intensity model.

6.4 Analysis in a Real Market

Mimicking the volatility approach of Crépey [12], it can be checked that the conclusions
of Tables 8, 10 and 11 would still hold true in the real market and not only in a fixed
local intensity model, under the assumption of Table 12 regarding the dynamics of implied
correlations in the real market: Gaussian copula implied base correlations moving upwards
(resp. downwards) compared to those predicted by the local intensity model calibrated
at date tk, in widening scenarios in systemic markets or in tightening scenarios in steady
markets (resp. in tightening scenarios in systemic markets or in widening scenarios in steady
markets).

In a market satisfying this theoretical assumption about the dynamics of implied corre-
lations of CDO tranches, the local delta would then provide a better hedge than the spread
delta. But this theoretical assumption might of course not be satisfied in practice. As we
explained in the last paragraph of Section 4.2, even though the local intensity model is a
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Regime / Scenario Tightening Widening

Systemic �tk+1
≤ �lo(tk+1, Ntk+1

,Λtk) �tk+1
≥ �lo(tk+1, Ntk+1

,Λtk)

Steady �tk+1
≥ �lo(tk+1, Ntk+1

,Λtk) �tk+1
≤ �lo(tk+1, Ntk+1

,Λtk)

Table 12: Theoretical assumption about the dynamics of implied correlations in a real
market, under which the local delta would yield a better hedge than the spread delta.

consistent dynamic model of portfolio credit risk providing a perfect fit to the market in
static terms (at any fixed time tk), it might well be misspecified in dynamical terms. As a
matter of fact, the market data analysis of the following section suggests that this is indeed
the case on our datasets.

7 Backtesting Experiments

Let us now examine the actual performance of implementing the spread delta and the local
deltas by backtesting with historical data. We use the following two metrics to compare the
hedging strategies:

Relative hedging error =
∣∣∣

Average P&L increment of the hedged position

Average P&L increment of the unhedged position

∣∣∣,

Residual volatility =
P&L increment volatility of the hedged position

P&L increment volatility of the unhedged position
.

We consider two cases where the hedging portfolio is rebalanced every day and every five
days. The profit-and-loss is evaluated in the same frequency as rebalancing. Tables 13-16
and Figures 12-13 illustrate the hedging performance for 1-day and 5-day rebalancing. We
find that in most cases the change in rebalancing frequency does not significantly perturb
the comparison with respect to hedging performance.

Interestingly, hedging based on the entropic local deltas, which gives admittedly stable
but also very low equity tranche hedge ratios in 2007-08, performs worse than the implemen-
tation of spread delta and parametric local delta. Regarding CDX series 5, the Gaussian
copula delta outperforms the local deltas for nearly all tranches and for both 1-day and
5-day rebalancing. For CDX series 9 and 10, there is no clear evidence to distinguish the
performance based on the Gaussian copula model and the parametric local intensity model.
For most tranches, the Gaussian copula delta provides a reduction in volatility for about
50% which appear to be larger than those observed by Cont and Kan [5]. This may be
caused by the differences in the Gaussian copula model implementation in which we assume
a homogeneous model with base correlation calibration while Cont and Kan [5] assume a
inhomogeneous model with compound correlation calibration. This observation is consis-
tent with the result obtained by Ammann and Brommundt [1] who also find that the base
correlation method is better for hedging than the compound correlation method.

In Figure 14, we plot the path of cumulative P&L associated with hedged and unhedged
positions in tranche [0%,3%] and [15%,30%] based on daily rebalancing. One can see that,
for the spread widening period of CDX series 9, the P&L orderings predicted in right panel
of Table 7 (equity tranche) and Table 9 (senior tranche) behave according to the ordering
of cumulative P&L trajectories.

As a final remark, Table 17 illustrates that defaults among names of the index do
not necessarily positively impact intensities, since they may have been anticipated by the
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Relative hedging error
CDX5 CDX9 CDX10

Tranche Li Para EM Li Para EM Li Para EM

0%-3% 4 5 73 80 10 72 33 55 90
3%-7% 1 3 35 0.4 19 59 48 49 75
7%-10% 10 10 43 15 13 37 49 25 44
10%-15% 7 27 131 27 18 14 139 181 208
15%-30% 0.54 61 324 3 32 89 172 269 396

Residual volatility
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 45 47 79 59 59 87 105 91 93
3%-7% 70 72 68 58 47 64 85 74 78
7%-10% 90 101 120 53 50 46 83 79 70
10%-15% 90 107 188 61 63 60 91 93 86
15%-30% 93 110 256 37 49 77 84 99 127

Table 13: Relative hedging error and residual volatility (both in percentage) for 1-day
rebalancing. Gauss: Gaussian copula model; Para: Parametric local intensity model; EM:
Local intensity model with entropy minimization calibration.

Relative hedging error
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 6 10 77 59 2 73 24 48 88
3%-7% 16 16 51 2 18 58 48 43 72
7%-10% 19 1 15 11 12 36 50 15 41
10%-15% 22 8 75 13 5 5 141 198 209
15%-30% 21 30 207 1 35 86 127 227 382

Residual volatility
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 42 46 83 50 56 86 71 72 89
3%-7% 75 75 66 73 65 71 43 40 64
7%-10% 99 118 135 57 56 54 40 38 44
10%-15% 82 110 202 94 98 95 42 44 40
15%-30% 77 108 298 46 69 108 31 33 54

Table 14: Relative hedging error and residual volatility (both in percentage) for 5-day
rebalancing. Gauss: Gaussian copula model; Para: Parametric local intensity model; EM:
Local intensity model with entropy minimization calibration.
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Figure 12: Daily changes of tranche [0%,3%] value against daily changes of hedging portfolio
value (100% notional values).
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Figure 13: Daily changes of tranche [15%,30%] value against daily changes of hedging port-
folio value (100% notional values).
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Figure 14: Path of cumulative P&L of hedged and unhedged positions in tranche [0%,3%]
and [15%,30%] based on daily rebalancing (100% notional values).



27

Slope estimate: 1-Day
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 0.94 1.02 3.44 0.81 1.34 5.01 0.45 0.75 2.44
3%-7% 0.76 0.73 1.15 0.72 0.95 1.88 0.60 0.81 1.53
7%-10% 0.61 0.49 0.39 0.74 0.78 1.14 0.60 0.64 0.99
10%-15% 0.61 0.45 0.25 0.76 0.72 0.78 0.54 0.53 0.58
15%-30% 0.63 0.40 0.15 0.95 0.75 0.58 0.63 0.50 0.39

Slope estimate: 5-Day
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 1.10 1.29 4.63 0.93 1.41 5.56 0.82 1.34 4.54
3%-7% 0.69 0.69 1.16 0.69 0.87 1.74 0.86 1.13 2.27
7%-10% 0.50 0.39 0.34 0.79 0.81 1.14 0.84 0.87 1.38
10%-15% 0.63 0.46 0.27 0.55 0.51 0.54 0.83 0.79 0.87
15%-30% 0.76 0.46 0.19 0.79 0.62 0.48 1.10 0.86 0.68

Table 15: Slope estimates of the OLS regression yi = � + �xi + "i where yi are the 1-
day/5-day changes in tranche values and xi is the 1-day/5-day changes in hedging portfolio
value. Estimates in italic font (‘good hedges’) represent the failure to reject the hypothesis
H0 : � = 1 at a 95% confidence level.

market. This observation had already been made in Cont and Kan [5], who also noted that
spreads may jump at times others than constituent defaults. This is for instance the case
the day following Lehman’s default on September 15 2008, whereas Lehman was not part of
the CDX series.

8 Conclusions

Since we observe significant correlations between the index spreads and the base correla-
tions, the commonly used delta hedging of spread risk by using the Gaussian copula model
is insufficient to provide an effective hedge. Therefore, we attempt to use the dynamic local
intensity model to capture the observed joint dynamic of the index spread and base corre-
lations. However, our empirical study shows that implementation of the local delta under
the dynamic local intensity model does not necessarily outperform delta hedging of spread
risk by using the static Gaussian copula model. This observation shows the insufficiency of
the local intensity model which can be explained as follows.

Given the calibrated local intensity function, the implementation of the local delta
assumes that the only source of risk is the occurrence of underlying defaults. In this case,
the model implies a deterministic movements in the index and CDO tranche values between
defaults, which is unrealistic. Moreover, the contagious nature of the default dependence
in the local intensity model does not seem to be that well reflected by the data (see end of
section 7).

By using the local intensity model as a starting point, we propose two future research
directions which can potentially solve the above problems. First, the local intensity model
in fact accommodates the change in the index and CDO tranche spreads not only by the
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R2: 1-Day
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 0.79 0.77 0.74 0.68 0.69 0.66 0.20 0.19 0.19
3%-7% 0.56 0.56 0.54 0.78 0.78 0.75 0.50 0.47 0.43
7%-10% 0.30 0.30 0.31 0.81 0.81 0.79 0.55 0.53 0.51
10%-15% 0.31 0.32 0.31 0.70 0.70 0.69 0.53 0.52 0.52
15%-30% 0.18 0.19 0.17 0.86 0.85 0.84 0.45 0.44 0.44

R2: 5-Day
CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 0.83 0.83 0.80 0.75 0.74 0.77 0.52 0.51 0.52
3%-7% 0.54 0.55 0.57 0.58 0.58 0.60 0.83 0.85 0.84
7%-10% 0.29 0.29 0.30 0.72 0.72 0.71 0.86 0.87 0.87
10%-15% 0.49 0.51 0.51 0.32 0.32 0.33 0.86 0.86 0.86
15%-30% 0.45 0.45 0.45 0.84 0.85 0.87 0.91 0.91 0.91

Table 16: R2 of the OLS regression yi = �+ �xi + "i where yi are the 1-day/5-day changes
in tranche values and xi is the 1-day/5-day changes in hedging portfolio value.

Index 0%-3% 3%-7% 7%-10% 10%-15% 15%-30% 30%-100%

-1.10 0.16 0.05 0.04 0.44 0.02 -0.06

Table 17: Daily spread returns on the next business day after Fannie Mae/Freddie Mac
defaults on 8 September 2008, normalized by unconditional sample standard deviation of
CDX.IG.NA series 10.

number of defaults, but also by re-calibrating the local intensity function. Therefore, the
arguably more appropriate strategy for hedging CDO tranches is to consider the sensitivity
with respect to the changes in the local intensity function instead of the occurrence of
additional defaults. However, this approach may face substantial model risk as we observe
that different parametrization scheme of the local intensity function can lead to significantly
different hedging results. Second, we can introduce additional risk factors in the credit risk
model to explain the spread volatility between successive defaults. This approach requires
a more extensive study of the joint dynamics of the index spread and of CDO tranche
base correlations so that the additional risk factors can capture the appropriate dependence
between the two.

Incidentally the present work also puts into evidence an important difficulty with dy-
namic credit risk modeling, namely model risk. That critical issue is somewhat expected,
in regard to the scarceness of market data that can be used for the model calibration. Yet
we saw in Section 4.3 two specifications of local intensity models giving exactly the same
calibrated spreads, but significantly different local deltas. If this can happen with local
intensity models which are, in a sense, the simplest dynamic models of credit risk, a lesson
of the present paper is that in case more complex dynamic models would be considered, one
should always be extremely careful about the issue of model risk.

In final word of this paper, we would like to mention a recent attempt to explain a
certain robustness of the Gaussian copula model. Following a ‘reverse-engineering’ approach,
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Fermanian and Vigneron thus consider in [16] the question of determining dynamic models
of credit risk in which the Gaussian copula spread delta would happen to be the ‘right’
hedge ratio when no defaults occur. Their answer is that such models can be found in
the form a certain class of conditional density (as opposed to intensity) models as developed
independently at an abstract level by El Karoui et al. [14]. However, the recent crisis in 2008
shows that defaults can happen frequently in a short period of time. Therefore, adequacy
of those hedging strategies, which are proven to be valid only in the absence of defaults, has
to be further examined by testing on empirical data with credit events.
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