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Abstract : The present paper provides a multi-period contagion model in the credit risk field.
Our model is an extension of Davis and Lo’s infectious default model. We consider an economy of n

firms which may default directly or may be infected by other defaulting firms (a domino effect being
also possible). The spontaneous default without external influence and the infections are described by
not necessarily independent Bernoulli-type random variables. Moreover, several contaminations could
be required to infect another firm. In this paper we compute the probability distribution function of
the total number of defaults in a dependency context. We also give a simple recursive algorithm to
compute this distribution in an exchangeability context. Numerical applications illustrate the impact
of exchangeability among direct defaults and among contaminations, on different indicators calculated
from the law of the total number of defaults. We then calibrate the model on iTraxx data before and
during the crisis. The dynamic feature together with the contagion effect have a significant impact on
the model performance, especially during the recent distressed period.

Keywords : credit risk, contagion model, dependent defaults, default distribution, exchangeabil-
ity, CDO tranches

1 Introduction

The recent financial crisis marked the need for paying more attention to the systemic risk which can
partially be the result of dependence on many factors to a global economic environment. A tractable
and common way of modeling dependence among default events is to rely on the conditional indepen-
dence assumption. Conditionally on the evolution of some business cycle or macroeconomic related
factors, defaults are assumed to be independent. However, as shown by some empirical studies such as
Das, Duffie, Kapadia and Saita (2007)1 or Azizpour and Giesecke (2008), the latter assumption seems
to be rejected when tested on historical default data. An additional source of dependence, namely
the chain contagion effect, is observed and requires the construction of contagion models which would
be able to explain the "domino effects": a defaulting firm causes the default of another firm which
infects another one etc. Additional empirical evidences and economic analyses of the default conta-
gion effect can be found in for example Boissay (2006), Jorion and Zhang (2007) or Jorion and Zhang
(2009). To capture these effects in a realistic way, multi-period contagion models have to be considered.

In this paper we present an extension of Davis and Lo’s model, presented in 2001 in their paper
"Infectious Defaults" by the authors. They propose a new way of modeling the dependency between

∗This work has been funded by ANR Research Project ANR-08-BLAN-0314-01. The authors would like to thank the
two anonymous referees for useful comments and suggestions. We are grateful to Jean-Paul Laurent for the many helpful
discussions on the subject.
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1The conclusions of this paper have been disputed by Lando and Nielsen (2010) in which the conditional independence
assumption has not been totally rejected when tested on the same default database. These discrepancies are explained
by an alternative specification of individual default intensities.
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defaults through "infection". The original idea applied to "CBO" (Collateralized Bond Obligation) is
that any bond may default either directly or may be infected by any defaulting bond. Even though
in their paper, the authors model contagion effects in a bond portfolio, their study may be easily
applied to any elements subject to a contagion risk (for example firms, persons, buildings, etc.). In
our paper, the application will focus on credit risk portfolio modeling. In the original model, the direct
defaults are described by Bernoulli-independent and identically distributed random variables denoted
Xi and the infections are also independent and identically distributed random variables denoted Y ij ,
all Bernoulli distributed (i ∈ N, j ∈ N).

The present paper provides a model more general than Davis and Lo’s. We propose a multi-period
model and we further relax the assumption of independence and identical distribution of the direct
defaults and infections. This fact will allow the insertion of possible additional dependencies and to
take into account the assets diversity in the portfolio. It will be also possible, for example, to consider
different direct default probabilities or default dependencies related to the presence of a common
economic factor.

Moreover, compared to Davis and Lo’s model in which only directly defaulting bonds can infect
others, our model allows taking into account the domino effect which can exist between the bonds, firms
etc. Thus in the model presented here, the firms can default because of a chain reaction, phenomena
which is often a reason for financial crises.

Finally, the infection way will be generalized here in order to consider the situations where several
infections are necessary to generate a new default : it is possible for example to consider the case where
only the default of several firms of a sector (and not only one default) can "destabilize" other firms.
These situations can thus limit the contagion phenomena, but also can (together with the contagion
probabilities) allow the introduction of possible critical mass of defaults predisposed to make the crisis
more sudden (for example if a large number of infections is necessary to generate other defaults and
if the infection probabilities are large).

The model can be used for example for epidemic studies, accidents in chain, or to introduce in an
original manner a dependence structure which could translate the impact of these contaminations.

Contagion models were introduced to the credit risk field by Davis and Lo (2001) and Jarrow
and Yu (2001). Since 2001, the financial contagion has become a problem which drew the attention
of many authors. Yu (2007) proposed an extension of Jarrow and Yu’s model. Davis and Lo’s in-
fectious model was also studied by many authors who proposed different models having as starting
point Davis and Lo’s model (see for example Egloff, Leippold and Vanini (2007), Rösch, Winterfeldt
(2008), Sakata, Hisakado and Mori (2007)). All along years, the contagion phenomena was modeled
using Bernoulli random variables (Davis and Lo (2001)), copula functions (Schönbucher and Schubert
(2001)), interacting particle systems (Giesecke and Weber (2004)), incomplete information models
(Frey and Runggaldier (2010)) or Markov chains (see for example Schönbucher (2006), Graziano and
Rogers (2009) or Kraft and Steffensen (2007)). As far as the risk management of synthetic CDO
tranches is concerned, Markov chain contagion models have also been investigated by several papers
such as Van der Voort (2006), Herbertsson and Rootzén (2006), Herbertsson (2007), Frey and Back-
haus (2010), Frey and Backhaus (2008), De Koch, Kraft and Steffensen (2007), Epple, Morgan and
Schloegl (2007), Lopatin and Misirpashaev (2007), Arnsdorf and Halperin (2008), Cont and Minca
(2008), Cont, Deguest and Kan (2010) among others. The hedging issue for CDO tranches is also
addressed by Laurent, Cousin and Fermanian (2010) and Cousin, Jeanblanc and Laurent (2010) in
the class of Markovian contagion models. As a first step among possible applications of the Davis
and Lo’s multi-period model, we illustrate the model tractability in terms of the pricing of synthetic
CDO tranches. Since the computation of CDO tranche spreads involves the computation of expected
tranche losses at several time horizons, such a study could not have been done using the original static
version of the model. We then discuss the model performance in terms of fitting liquid CDO tranche
spreads.
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In the paper Infectious Defaults, Mark Davis and Violet Lo present a model where the bonds may
default either directly or may be infected by any defaulting bond (see Davis and Lo, 2001). The
authors consider n bonds, n ∈ N∗. Let Ω be the set of possible indices of these bonds, Ω = {1, .., n}.
For a bond i, i ∈ Ω, the random variable Xi is equal to 1 if the bond defaults directly, 0 otherwise.
Even if Xi = 0, bond i can be defaulted by infection (contagion). A default infection takes place if a
Bernoulli random variable C i = 1. Thus the bond i is defaulted (directly or by infection) if Zi = 1,
with

Zi = Xi + (1−Xi)C i.

In Davis and Lo’s paper, the infection is modeled in the following way :

C
i = 1−

∏

j∈Ω,j 6=i

(

1−XjY ji
)

,

where Y ji, i, j ∈ Ω are Bernoulli random variables. Consequently, at the end of the period, a bond
i is infected if at least one XjY ji = 1, j ∈ Ω, j 6= i, i.e., at least another bond j defaults directly
(Xj = 1) and infects the first bond (Y ji = 1).

In the following, Ck
n will denote the binomial coefficient (0 6 k 6 n) : Ck

n = n!
k!(n−k)! .

Davis and Lo stated and proved the following theorem :

Theorem 1.1 (Davis and Lo’s result)

P





∑

i∈Ω

Zi = k



 = Ck
nα

pq
nk,

where α
pq
nk = pk(1− p)n−k(1− q)k(n−k) +

k−1
∑

i=1

Ci
kpi(1− p)n−i(1− (1− q)i)k−i(1− q)i(n−k).

In this paper, we propose to relax the following assumptions of the original model :

• A1. The random variables
{

Xi, i ∈ Ω
}

are independent and identically distributed and ∀ i ∈ Ω,
P

[

Xi = 1
]

= p, p ∈]0, 1[,

• A2. The random variables
{

Y ij, (i, j) ∈ Ω2
}

are independent and identically distributed and
∀ i, j ∈ Ω, j 6= i, P

[

Y ij = 1
]

= q, q ∈]0, 1[,

• A3. The infection C i occurs if at least one XjY ji = 1, j ∈ Ω, j 6= i.

• A4. An infected bond cannot infect another bond (one period model).

The outline of the present paper is as follows : we present the model and we fix the assumptions
under which we will state our theorems (Section 2). We present some life insurance tools used for the
characterization of the defaults’ number law (Section 3.1). In the following Section 3.2 we give the
defaults’ number law in a one period model. Our result allows finding, under the random variables
independence assumption, Davis and Lo’s result. In Section 3.3, we generalize the model of the
previous section and we present a multi-period model. Finally we give some numerical applications
(see Section 4) including an illustration of parameters effects on the loss distribution and a discussion
on the ability of the model to fit iTraxx CDO tranche quotes.
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2 The Model

We consider an economy of n firms (n ∈ N
∗). Let Ω be the set of possible indices of these firms:

Ω = {1, ..., n}. We observe the firms along a given time interval divided into T periods. In the
following, period t will refer to time interval (t− 1, t], t ∈ {1, ..., T}. When the firm i (i ∈ Ω) defaults
directly during period t the random variable Xi

t is equal to 1, otherwise Xi
t = 0. Even if Xi

t = 0,
the firm i can be defaulted during the period t : it may be infected by another defaulting firm. We
use a binary random variable C i

t to denote this infection. This variable is equal to 1 when the firm
i does not default directly but is infected by other firms during the period t, C i

t = 0 otherwise. Let
{Zi

t , i ∈ Ω} be a sequence of discrete random variables with possible values {0, 1}. For any i ∈ Ω,
Zi

t = 1 if the firm i is defaulted (directly or by infection) at the end of period t, Zi
t = 0 otherwise. In

our model, the random variables {Zi
t , t = 1, ..., T} are obtained by the following recursive relation :

Zi
t = Zi

t−1 + (1− Zi
t−1)[Xi

t + (1−Xi
t)C

i
t ], 2 ≤ t ≤ T, i ∈ Ω,

Zi
1 = Xi

1 + (1−Xi
1)C i

1 .

Hence Zi
t = 1 if the firm i has been declared in default at the end of period t− 1 (Zi

t−1 = 1) or if
it defaults directly (Xi

t = 1) or by contagion (C i
t = 1) during the period t.

We introduce the following notations :

Notation 2.1 For every t ∈ {1, . . . T}, we denote by :

• Θt the set of the firms declared in default up to time t : Θt =
{

i ∈ Ω, Zi
t = 1

}

,

• Γt the set of the firms which did not default in the previous t periods : Γt =
{

i ∈ Ω, Zi
t = 0

}

=
Ω−Θt,

• ND
t the number of spontaneous defaults without external influence occurred during period t :

ND
t =

∑

i∈Γt−1
Xi

t ,

• Nt the cumulated number of defaults occurred up to time t : Nt =
∑

i∈Ω Zi
t .

For every t ∈ {1, . . . T}, the random variable Y
ji

t , (j, i) ∈ Ω2, with possible values {0, 1} represents
the indicator that one contamination link from an infectious firm j to a firm i is activated. In order
to allow various kind of contagion mechanisms, we have chosen that C i

t depends on the number of
activated infection links

∑

j∈Ft
Y

ji
t , so that

C
i
t = f





∑

j∈Ft

Y
ji

t



 , i ∈ Ω .

where f : {0, .., n} → {0, 1} and Ft represents the set of the infectious defaulting firms susceptible to
infect firm i. As an example, setting f(x) = 1x>1 implies that any activated infection links causes an
indirect default. In our model, we can imagine the case where firm i defaults only if it is infected by a
given number of firms, for example f(i) = 1i>2 (i.e., two or more infections are necessary to generate
a new default).

Concerning infectious entities, the set Ft can be for example Θt−1, the set of entities already
defaulted at time t− 1 or the set of names that default directly during period t. In most applications,
results will only depend on card(Ft) so that it is useful to set card(Ft) = g(Nt−1, ND

t ), where g : N2 →
N. Depending on the specification of function g, different sources of contagion may be considered :

• Inter-periodic contagion : g(Nt−1, ND
t ) = Nt−1. Only defaulted names at the end of period

t− 1 may infect non-defaulted entities in period t.

• Intra-periodic contagion : g(Nt−1, ND
t ) = ND

t . Only spontaneous defaults in period t may
trigger defaults by contagion during this period.
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• Contagion from external sources : g(Nt−1, ND
t ) = n0. An arbitrary number n0 of names outside

the portfolio is likely to contaminate names inside the portfolio.

• Combination of the three latter contamination modes. For instance, if g(Nt−1, ND
t ) = n0 +ND

t ,
both external sources and spontaneous defaults in period t can affect other entities by a contagion
effect.

For example, in the original model card(F1) = ND
1 (thus only the firms which default directly may

infect others) and f(i) = 1i>1, i.e., one or more contaminations cause an indirect default.
The aim of this paper is to study the law of Nt under the following assumptions :

Assumption 1 (Temporal independence of direct defaults)
The random vectors ~Xt = (X1

t , ..., Xn
t ), t ∈ {1, . . . , T}, are mutually independent, but a dependency

exists between the components of each vector.

Assumption 2 (Temporal independence of exchangeable infections)
The random vectors ~Yt = (Y 11

t , Y 12
t , ..., Y nn

t ), t ∈ {1, . . . , T}, are mutually independent and for any t,

the random variables
{

Y
ji

t , (j, i) ∈ Ω2
}

are exchangeable, independent of
{

Xi
t , t = 1, . . . , T, i ∈ Ω

}

.

Under these assumptions, we suppose that all joint distributions of (X1
t , . . . , Xn

t ), t ∈ {1, . . . , T}

and of (Y
σ(1)

t , . . . , Y
σ(n2)

t ) are known, where Y
σ()

t is a permutation of the set Y
ij

t , (i, j) ∈ Ω2.
We will sometimes use the following assumption which is a particular case of Assumption 1 :

Assumption 3 (Temporal independence of exchangeable direct defaults)
The random vectors ~Xt = (X1

t , ..., Xn
t ), t ∈ {1, . . . , T}, are mutually independent, but the components

of each vector are exchangeable random variables.

In the particular case of infinite exchangeability assumption, thanks to De Finetti’s Theorem, this
assumption is perfectly adapted to the situation where the direct defaults are dependent because of a
"hidden" common factor (for example the state of the economy).

Finally, we will sometimes consider the particular case of independent and identically distributed
(i.i.d.) direct defaults and i.i.d. contaminations :

Assumption 4 (i.i.d. direct defaults and i.i.d. contaminations)
The random variables

{

Xi
t , i ∈ Ω, t ∈ {1, . . . , T}

}

are independent, all Bernoulli distributed with pa-

rameter p and
{

Y
ij

t , (i, j) ∈ Ω2, t ∈ {1, . . . , T}
}

are also independent random variables, all Bernoulli

distributed with parameter q.

Compared to Davis and Lo’s infectious model, we propose a multi-period model where
{

Xi
t , i ∈ Ω

}

and
{

Y
ij

t , (i, j) ∈ Ω2
}

are no longer independent and identically distributed random variables. More-

over, we do not consider just the particular case where f(i) = 1i>1 and the firms which can infect are
not necessary those which default directly during the same period. Thus, we take into account the
"domino effect", i.e., the firm i defaults, it infects the firm j which infects the firm k etc.

To generalize the mode of infection, one can for example consider, f(i) = 1i>2 instead of f(i) =1i>1. In other words, two contagions are required to cause an indirect default. This feature of our
model allows to weaken the effect of contagion. Such a possibility can be useful for large portfolios.
Indeed, it is important to generalize the mode of infection. Let us imagine that the number of firms
increases. Then, if all the parameters of the model remain identical, too many infections could occur.
Other recent generalizations were proposed and they introduce different solutions to generalize the
mode of infection in order to better represent the credit risk markets reality (see for example Sakata,
Hisakado and Mori, 2007). Furthermore, a generalization may allow to better model the critical
thresholds up to which the infections start to have a real effect. Different modes of contagion will be
compared in numerical applications (see Subsection 4.2).
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3 Results

The aim of this section is to present the main results of the paper together with some tools used to
prove them.

3.1 Life Insurance Tools

In this section we present some useful tools to characterize the defaults number distribution.
We introduce the coefficients of order k for the set

{

Xi
t , i ∈ Γ

}

where Γ ⊂ Ω, card(Γ) ≥ k, k ∈ N :

Definition 3.1 Let Γ ⊂ Ω. For all t ∈ {1, . . . , T}, the coefficient of order k (k ≤ card(Γ)) for the set
{

Xi
t , i ∈ Γ

}

, denoted µk, t(Γ), is defined as

µk, t(Γ) =
1

Ck
card(Γ)

∑

j1<j2<..<jk

j1,...,jk∈Γ

P
[

X
j1

t = 1 ∩ ... ∩X
jk

t = 1
]

, 1 ≤ k ≤ card(Γ),

µ0, t(Γ) = 1 (including if Γ = ∅).

The
∑

j1<j2<..<jk

j1,...,jk∈Γ

symbol means to sum all Ck
card(Γ) possible choices of k different elements taken among

the elements of the set Γ.

Remark 3.1 If the random variables
{

Xi
t , i ∈ Ω

}

are exchangeable, then for all Γ ⊂ Ω we have

µk, t(Γ) = µk, t = P
[

X1
t = 1 ∩ ... ∩Xk

t = 1
]

, 1 ≤ k ≤ card(Γ).

In the particular case where
{

Xi
t , i ∈ Ω

}

are independent random variables, all Bernoulli distributed
with parameter p, then µk, t = pk.

A classical problem in the actuarial field is to compute the number of survivors after a given period,
among a group of different persons with independent and identically distributed survival rates. We
will see that these tools can considerably simplify the studied credit risk models.

Lemma 3.1 (Waring formula) Let X1
t , ..., Xn

t be n dependent Bernoulli random variables and let
Γ be a subset of {1, . . . , n} such that card(Γ) = m ≤ n. Then

P





∑

i∈Γ

Xi
t = k



 = 1k≤mCk
m

m−k
∑

j=0

Cj
m−k(−1)jµj+k, t(Γ).

This result was proved by Feller (1968) (chapter IV.3, page 106). An extension of this formula is
Schuette-Nesbitt Formula often used in actuarial science (see Gerber (1995), chapter 8.6, page 89).

Remark 3.2 Let X1
t , ..., Xn

t be n exchangeable Bernoulli random variables and let MX =
{

i : Xi
t = 1

}

.
Then for any Ek ⊂ {1, . . . , n} such that card(Ek) = k we have the following equalities :

P

[

n
∑

i=1

Xi
t = k

]

= Ck
nP

[

X1
t = · · · = Xk

t = 1, Xk+1
t = · · · = Xn

t = 0
]

= Ck
nP [MX = Ek].

Note that, due to exchangeability property, the quantity P [MX = Ek] only depends on card(Ek).

Under Assumption 2, since the variables
{

Y
ij

t , (i, j) ∈ Ω2
}

are exchangeable, then conditionally

to
{

Nt−1, ND
t

}

, the variables
{

C i
t , i ∈ Ω

}

are also exchangeable. We introduce the coefficient of order

k for these two sets of random variables.
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Definition 3.2 Under Assumption 2, for all Γ ⊂ Ω2 and for all t ∈ {1, . . . T}, the coefficient of order

k (k ≤ card(Γ)) for the set
{

Y
ij

t , (i, j) ∈ Γ
}

, denoted λk, t, is defined as

λk, t =P
[

Y
σ(1)

t = 1 ∩ ... ∩ Y
σ(k)

t = 1
]

, k ≥ 1,

λ0, t =1.

In the same way we define

ξk,t(g(u, l)) =P
[

C
1
t = 1 ∩ ... ∩ C

k
t = 1 Nt−1 = u, ND

t = l
]

, k ≥ 1,

ξ0,t(g(u, l)) =1 (even in the case where g(u, l) = 0).

Remind that g is a function N
2 → N such that g(Nt−1, ND

t ) represents the number of infectious entities,
i.e., names that are likely to infect other names.

Every variable C i
t is a function of

{

Y
ji

t , j ∈ Ft

}

which are exchangeable random variables. The

law of (C 1
t , . . . , C n

t ) depends only on card(Ft) and on the law of (Y
σ(1)

t , . . . , Y
σ(card(Ft))

t ). We can thus
establish a relationship between the coefficients λk, t and ξk,t(z), z ≤ n.

Proposition 3.2 (Joint law of (C 1
t . . . C k

t ))
Under Assumption 2, the joint law of (C 1

t . . . C k
t ) is given by

ξk,t(z) = P



f(
∑

j∈Ft

Y
j1

t ) = 1 ∩ ... ∩ f(
∑

j∈Ft

Y
jk

t ) = 1 card(Ft) = z



, 0 ≤ k ≤ n, 0 ≤ z ≤ n− k.

1. In the particular case where f(i) = 1i>1, we have

ξk,t(z) =
k

∑

i=0

Ci
k

zi
∑

α=0

Cα
zi(−1)i+αλα, t.

2. For any function f : {0, . . . , n} → {0, 1}, we have

ξk,t(z) =
zk
∑

γ=0

ηk,z(γ)
zk−γ
∑

j=0

Cj
zk−γ(−1)jλj+γ, t,

where ηk,z(γ) =
∑

γ1∈{0,...,z}
γ1≤γ

f(γ1)Cγ1

z ηk−1,z(γ − γ1), η1,z(x) = 1x≤zf(x)Cx
z and η0,z(x) = 1x=0.

This proposition is proved in Appendix.

Remark 3.3 If
{

Y
ij

t , (i, j) ∈ Ω2, t ∈ {1, . . . , T}
}

are independent random variables, all Bernoulli

distributed with parameter q, then λk, t = qk and

• in the particular case where f(i) = 1i>1, ξk,t(z) = (1− (1− q)z)k,

• for any function f : {0, . . . , n} → {0, 1}, ξk,t(z) =
zk
∑

γ=0

ηk,z(γ)qγ(1− q)zk−γ.
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3.2 One Period Model

The aim of this section is to characterize the defaults’ number distribution in the case where T = 1.
This will clarify the link between our model and the Davis and Lo’s one, and will allow to consider
the heterogeneous case, where considered r.v. are no longer i.i.d. For the sake of clarity, all subscripts
1 are omitted, so that N = N1, Xi = Xi

1, Zi = Zi
1...

It is a one period model which generalizes the Davis and Lo’s results when the direct defaults
and the infections are not necessary independent. In the particular case where T = 1, the random
variables

{

Zi, i ∈ Ω
}

are obtained as in the Davis and Lo’s model :

Zi = Xi + (1−Xi)C i, i ∈ Ω,

where C i = f(
∑

j∈Ft

Y ji). Since for T = 1, NT −1 = 0 (no previously defaulted entities at time 0), we

will write in this paragraph card(Ft) = g̃(ND), where g̃(x) = g(0, x). Let us recall that in the original
model, the authors consider only the particular case where f(i) = 1i≥1.

Under Assumption 1, the random variables
{

Xi, i ∈ Ω
}

are no longer independent. We suppose

that all the joint laws of (X1, . . . , Xn) and (Y σ(1), . . . , Y σ(n2)) are known.
One of the main results of this paper is the following theorem which gives the defaults’ number

law.

Theorem 3.3 (Defaults’ number law when the defaults are not i.i.d. - One period model)

Under Assumptions 1 and 2, if T = 1, then the defaults’ number law is given by :

P [N = r] = Cr
n

r
∑

k=0

Ck
r

n−r
∑

α=0

Cα
n−r(−1)αξα+r−k,1(g̃(k))

n−k
∑

j=0

Cj
n−k(−1)jµj+k(Ω).

Proof: Using the law of alternatives, we get

P [N = r] =
r

∑

k=0

P
[

N = r ND = k
]

P
[

ND = k
]

.

On the one hand, by Lemma 3.1, P
[

ND = k
]

= Ck
n

n−k
∑

j=0

Cj
n−k(−1)jµj+k(Ω).

On the other hand

P
[

N = r ND = k
]

= P

[

n
∑

i=1

Xi + (1−Xi)C i = r ND = k

]

= P

[

∑

i∈A

C
i = r − k ND = k

]

where A =
{

i ∈ Ω : Xi = 0
}

.

Since card(A) = n − k, Lemma 3.1 gives P
[

N = r ND = k
]

= Cr−k
n−k

∑n−r
α=0 Cα

n−r(−1)αξα+r−k,1(g̃(k)).

The equality Ck
nCr−k

n−k = Cr
nCk

r concludes the proof. 2

We easily deduce the law of N when
{

Xi, i ∈ Ω
}

is a set of exchangeable variables.

Corollary 3.4 (Defaults’ number law when the defaults are exchangeable - One period model)

Under Assumptions 2 and 3, assume that the variables
{

Xi, i ∈ Ω
}

are exchangeable. Then the
defaults’ number law is given by :

P [N = r] = Cr
n

r
∑

k=0

Ck
r

n−r
∑

α=0

Cα
n−r(−1)αξα+r−k,1(g̃(k))

n−k
∑

j=0

Cj
n−k(−1)jµj+k,

where the coefficients µj are introduced in Remark 3.1.
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As a consequence of Theorem 3.3, Remarks 3.1 and 3.3, is the following result which gives the
defaults’ number law in the particular case where

{

Xi, i ∈ Ω
}

are independent random variables, all
Bernoulli distributed with parameter p and

{

Y ij , (i, j) ∈ Ω2
}

are also independent random variables,
all Bernoulli distributed with parameter q.

Corollary 3.5 (Defaults’ number law when the defaults are independent - One period model)

Under Assumption 4, assume that
{

Xi, i ∈ Ω
}

are independent random variables, all Bernoulli dis-
tributed with parameter p and

{

Y ij, (i, j) ∈ Ω2
}

are also independent random variables, all Bernoulli
distributed with parameter q. Then the defaults’ number law is given by

P [N = r] = Cr
n

r
∑

k=0

Ck
r pk(1− p)n−k

n−r
∑

α=0

Cα
n−r(−1)αξα+r−k(g̃(k)),

where ξu(z) =
zu
∑

γ=0

ηu,z(γ)qγ(1− q)zu−γ .

Under the assumptions of Corollary 3.5, we also assume that one or more infection cause a new
default (i.e., f(i) = 1i>1). Then, using Remark 3.3 and taking g̃ the identity function we find the
Davis and Lo’s result.

3.3 Multi-period Model

Generalizing the model presented in the previous section, we consider now that the time interval is
divided into several periods. In this model the default indicator is described by the relation :

Zi
t = Zi

t−1 + (1− Zi
t−1)[Xi

t + (1−Xi
t)C

i
t ], 2 ≤ t ≤ T, i ∈ Ω, (1)

Zi
1 = Xi

1 + (1−Xi
1)C i

1 . (2)

We are interested in computing the law of the defaults’ number at the end of every period t,
t ∈ {1, . . . , T}, T > 1. Another main result of this paper is the following theorem :

Theorem 3.6 (Defaults’ number law when the defaults are not i.i.d. - Multi-period model)

Under Assumptions 1 and 2, the defaults’ number law is given by :

P [Nt = r] =
∑

θt⊂Ω
card(θt)=r

P [Θt = θt],

where Θt is the set of firms declared in default up to t (see Notations 2.1) and where

P [Θt = θt] =
r

∑

u=0

∑

θt−1⊂θt

card(θt−1)=u

P [Θt = θt Θt−1 = θt−1]P [Θt−1 = θt−1],

P [Θt = θt Θt−1 = θt−1] =
r−u
∑

m=0

∑

Mt⊂θt−θt−1

card(Mt)=m

ρ(Mt, Ω− θt−1 −Mt)
n−r
∑

j=0

Cj
n−r(−1)jξj+r−u−m,t(u, m),

ρ(A, B) = P
[

∀ i ∈ A Xi
t = 1 et ∀ i ∈ B Xi

t = 0
]

∀ A, B ⊂ Γt−1,

with card(θt) = r and card(θt−1) = u, u ≤ r.
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The first term P [Θ1 = θ1] may be easily computed using the recursive formula for P [Θ1 = θ1 Θ0 = ∅].
Proof: We split

P [Nt = r] =
∑

θt⊂Ω
card(θt)=r

P [Θt = θt].

By the law of alternatives

P [Θt = θt] =
r

∑

u=0

∑

θt−1⊂θt

card(θt−1)=u

P [Θt = θt Θt−1 = θt−1]P [Θt−1 = θt−1].

It thus remains to compute the term P [Θt = θt Θt−1 = θt−1] when θt−1 ⊂ θt ⊂ Ω, card(θt) = r and
card(θt−1) = u, u ≤ r.

P [Θt = θt Θt−1 = θt−1] = P
[

∀ i ∈ θt − θt−1, Xi
t + (1−Xi

t)C
i
t = 1 et ∀ i ∈ Ω− θt, Xi

t = C
i
t = 0 Θt−1 = θt−1

]

.

Using Remark 3.2 and then Lemma 3.1, we obtain that P [Θt = θt Θt−1 = θt−1] is equal to

r−u
∑

m=0

∑

Mt⊂θt−θt−1

card(Mt)=m

ρ(Mt, Ω− θt−1 −Mt)
P

[

∑

i∈Ω−θt−1−Mt
C i

t = r − u−m Nt−1 = u, ND
t = m

]

Cr−u−m
n−u−m

=
r−u
∑

m=0

∑

Mt⊂θt−θt−1

ρ(Mt, Ω− θt−1 −Mt)
n−r
∑

j=0

Cj
n−r(−1)jξj+r−u−m,t(g(u, m)).

2

If the direct defaults are not i.i.d., the law of Nt is given by a recursive relation (see Theorem
3.6). However, this relation can induce an important load of calculation in numerical applications.
That is why in the numerical applications we will consider the case where the random variables
{

Xi
t , i ∈ Ω, t ∈ {1, . . . , T}

}

satisfy the Assumption 3 and are exchangeable.
The following result is a particular case of Theorem 3.6.

Theorem 3.7 (Defaults’ number law when the defaults are exchangeable - Multi-period model)

Under Assumptions 2 and 3, the defaults’ number law is given by

P [Nt = r] =
r

∑

k=0

P [Nt−1 = k]Cr−k
n−k

r−k
∑

γ=0

Cγ
r−k

n−k−γ
∑

α=0

Cα
n−k−γµγ+α, t

n−r
∑

j=0

Cj
n−r(−1)j+αξj+r−k−γ,t(g(k, γ)).

The proof of this theorem rests on the following lemma shown in Appendix :

Lemma 3.8 Under Assumptions 2 and 3, for any θt and θt−1 such that θt−1 ⊂ θt ⊂ Ω, card(θt) = r,
card(θt−1) = k, k ≤ r, the following relation is true :

P [Nt = r Nt−1 = k] = Cr−k
n−kP [Θt = θt Θt−1 = θt−1].

Proof of Theorem 3.7 Using the law of alternatives and then Lemma 3.8, we obtain :

P [Nt = r] =
r

∑

k=0

P [Nt = r Nt−1 = k]P [Nt−1 = k]

=
r

∑

k=0

P [Nt−1 = k]Cr−k
n−kP [Θt = θt Θt−1 = θt−1],

for any θt and θt−1 such that θt−1 ⊂ θt ⊂ Ω, card(θt) = r, card(θt−1) = k, k ≤ r.
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By Theorem 3.6,

P [Θt = θt Θt−1 = θt−1] =
r−k
∑

γ=0

∑

Mt⊂θt−θt−1

card(Mt)=γ

ρ(Mt, Ω − θt−1 −Mt)
n−r
∑

j=0

Cj
n−r(−1)jξj+r−k−γ,t(g(k, γ)).

However, under Assumptions 2 and 3, ρ(Mt, Ω−θt−1−Mt) =
∑n−k−γ

α=0 Cα
n−k−γ(−1)αµγ+α, t. We remark

that
∑

Mt⊂θt−θt−1

card(Mt)=γ

1 = Cγ
r−k which concludes the proof. 2

We easily deduce the law of Nt when all the variables are mutually independent.

Corollary 3.9 (Defaults’ number law when the defaults are independent - Multi-period model)

Under Assumption 4, assume that both
{

Xi
t

}

and
{

Y
ij

t

}

are i.i.d. Bernoulli random variables of

respective parameters p and q. The defaults’ number law is given by

P [Nt = r] =
r

∑

k=0

P [Nt−1 = k]Cr−k
n−k

r−k
∑

γ=0

Cγ
r−kpγ(1− p)n−k−γ

n−r
∑

j=0

Cj
n−r(−1)j+αξj+r−k−γ,t(g(k, γ)),

where ξu,t(z) =
zu
∑

j=0

ηu,z(j)qj(1− q)zu−j.

Moreover, if f(i) = 1i>1, then

P [Nt = r] =
r

∑

k=0

P [Nt−1 = k]Cr−k
n−k

r−k
∑

γ=0

Cγ
r−kpγ(1− p)n−k−γ(1− (1− q)g(k,γ))r−k−γ(1− q)g(k,γ)(n−r).

Using the last equation of Corollary 3.9 for t = 1, g(k, γ) = γ, and N0 = 0 almost surely, we find
the Davis and Lo’s result.

4 Numerical applications

In this section, we provide some numerical applications of the previous extension of Davis and Lo’s
model. We first investigate the effect of exchangeability, among direct defaults and among infections,
on the total defaults’ number evolution. This kind of impact is also dealt with by Denuit, Dhaene and
Ribas (2001) and Denuit, Lefèvre and Utev (2002) in a life insurance framework, and it appears that
some quantitative measures could be notably affected by dependencies among the considered random
variables. Here, we will be concerned about the impact of such dependencies on the first moments
of total defaults’ number Nt and on the survival function of Nt at some points. We then study the
ability of the model to price synthetic CDO tranches. Interestingly, the first application proposed in the
original paper by Davis and Lo focuses on the rating of Collateralized Bond Obligations. However,
to the best of our knowledge, no calibration procedure of the Davis and Lo’s contagion model has
been tested so far on liquid tranche quotes. For the sake of parsimony, we consider a version of the
model where only four parameters are needed. In this framework, direct defaults are considered to be
Bernoulli mixtures and contagion events are assumed to be independent. Using this specification, we
compare the calibration performance of the model on iTraxx data before and during the crisis.

4.1 General settings

4.1.1 Algorithm in the exchangeable case

Let us consider a framework where both direct defaults and infections are described by the following

two sets of exchangeable random variables
{

Xi
t , i ∈ Ω

}

and
{

Y
ij

t , (i, j) ∈ Ω2
}

. So that Assumptions 2
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and 3 hold. Furthermore, suppose that the random vector laws do not change over time. As a
consequence, in order to lighten further notations, we omit the t subscript in coefficients ξk,t(z), µk, t

and λk, t, which become ξk(z), µk and λk. The presented algorithms could be easily adapted in the
case where those quantities vary over time.

From Theorem 3.7, we have seen that the law characterization of total defaults’ number was
requiring the computation of the set of coefficients {ξk(z), k ∈ {0, . . . , n} , z ∈ {0, . . . , n− k}}. In the
general case where f is not necessarily the indicator function f(x) = 1x>1, given initialization values
that are provided in section 3.1, and given the Proposition 3.2, this set of coefficients can be computed
by the following algorithm:

Proposition 4.1 (Algorithm for {ξk(z), k, z ∈ N}) The coefficients {ξk(z), k, z ∈ N, k + z 6 n} can
be computed by:

• Initialization: for z varying from 0 to n, η0,z(0) = 1, ξ0(z) = 1.

• For k varying from 1 to n,

– For z varying from 0 to zmax,

∗ ξk(z)←− 0,

∗ For γ varying from 0 to kz, imin ←− max(0, γ − z), imax ←− min(γ, (k − 1)z), and

ηk,z(γ) ←− 1imin6imax

imax
∑

i=imin

f(γ − i)Cγ−i
z ηk−1,z(i) ,

ξk(z) ←− ξk(z) + ηk,z(γ)
zk−γ
∑

j=0

Cj
zk−γ(−1)jλj+γ .

Here zmax denotes the maximum number of infectious entities, given that k entities are already de-
faulted. This quantity depends on the chosen contagion mechanism, for example g(k, γ) = γ implies
zmax = n− k, whereas g(k, γ) = n0 + k implies zmax = n0 + k.

The law of the total defaults’ number, with exchangeable direct defaults and exchangeable infec-
tions, in the multi-period model, results directly from Theorem 3.7, and is given by the following
algorithm:

Proposition 4.2 (Algorithm providing the law of Nt given the coefficients ξk(z)) Once the co-
efficients {ξk(z), k = 0, . . . , n z = 0, . . . , zmax} calculated, the law of Nt is given by:

• Initialization: for r varying from 0 to n, P [N0 = r] = 1r=0.

• For t varying from 1 to T ,

– For r varying from 0 to n,

P [Nt = r] =
r

∑

k=0

P [Nt−1 = k]Cr−k
n−k

r−k
∑

γ=0

Cγ
r−k

n−k−γ
∑

α=0

Cα
n−k−γµγ+α

n−r
∑

j=0

Cj
n−r(−1)j+αξj+r−k−γ(g(k, γ)).

4.1.2 Beta-mixture model

We have chosen a framework enclosing the one by Davis and Lo, where contagions in a given pe-
riod are issued from the direct defaults during this period, so that the function g : Ω × Ω → N

is given by g(k, γ) = γ. Both direct defaults and infections are represented by sets of exchange-
able random variables. Therefore it becomes necessary to specify the sets

{

λj , j ∈
{

0, . . . , n2
}}

and {µj, j ∈ {0, . . . , n}}, which characterize these direct defaults and infections. We assume that
X1, . . . , Xn are part of an infinite sequence of exchangeable Bernoulli random variables. Then, by De
Finetti’s Theorem (see De Finetti (1931)), there exists a random variable ΘX , with values in [0, 1]
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and a cumulative distribution function FΘX
, such that P

[

X1 = 1, . . . , Xk = 1
]

=
∫ 1

0 θkdFΘX
(θ). The

direct defaults X1, . . . , Xn behaves as if the Bernoulli parameter p was becoming a hidden common

random variable ΘX . As a consequence, we can write µj = E
[

Θj
X

]

. We will take E [ΘX ] = p in order

to use the same notations as the ones used by Davis and Lo. We will suppose that the parameter

σ2
X = V [ΘX ] is given. In the same way, we will suppose that variables

{

Y
ij

t , (i, j) ∈ Ω2
}

are Bernoulli

random variables, with common hidden parameter ΘY . We will write q = E [ΘY ] and σ2
Y = V [ΘY ]

and we suppose that these parameters are known. We will use for both ΘX and ΘY some laws of a
same family, distributed on [0, 1], where moments are analytically given. For j ∈ N, coefficients µj

and λj correspond therefore to:

µj = m(j, p, σX) , (3)

λj = m(j, q, σY ) , (4)

where the function m(j, r, σ) gives the moment of order j of a random variable Θ from the considered
family of laws, with mean r and standard deviation σ.
We have chosen to use Beta distributions for ΘX and ΘY , which are parameterized by their mean
and standard deviation (it could have been possible to choose other laws, like for example the Ku-
maraswamy’s law).

Moments m(j, r, σ) are easy to compute, but we need to consider two separate cases:

• When σ2 = 0, the hidden random variable Θ (which may represent ΘX or ΘY ) is a Dirac mass,
and we find the i.i.d. case for which

m(j, r, 0) = rj . (5)

• When σ2 > 0, for a Beta distribution with mean r = E [Θ] and variance σ2 = V [Θ], the
parameters αr,σ and βr,σ of the distribution can be easily deduced from r and σ2, and we then
get all moments of order j, j ∈ N (Γ is here the Euler Gamma function):

αr,σ = r

(

r(1− r)

σ2
− 1

)

, (6)

βr,σ = (1− r)

(

r(1− r)

σ2
− 1

)

, (7)

m(j, r, σ) =
Γ(αr,σ + j)

Γ(αr,σ)

Γ(αr,σ + βr,σ)

Γ(αr,σ + βr,σ + j)
. (8)

4.2 Effect of model parameters on the dynamics of loss distributions

All numerical values that we used for the parameters in this section remain to be specified. We grouped
them into the following Definition 4.1.

Definition 4.1 We define 4 reference models. These models have some shared characteristics: they
all consider 10 firms (n = 10), on a time interval divided into 10 periods (T = 10), with a direct
default probability p = 0.1 and an infection probability q = 0.2. The four models are distinguished on
the nature of direct defaults or infections, i.i.d. or not (depending on the two parameters σX and σY )
and on the infections number that is required to cause a default, depending on the function f . The
specificities of the four models are presented hereafter:

• model 1: σX = 0, σY = 0, f(x) = 1x>1 (i.i.d. case, one required contamination).

• model 2: σX = 0, σY = 0, f(x) = 1x>2 (i.i.d. case, two required contaminations).

• model 3: σX = 0.2, σY = 0.2, f(x) = 1x>1 (exchangeable case, one required contamination).
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• model 4: σX = 0.2, σY = 0.2, f(x) = 1x>2 (exchangeable case, two required contaminations).

Starting from the same model assumptions, we have checked that, the coefficients ξk(z), k ∈
{0, . . . , n}, z ∈ {0, . . . , n− k} computed either from formula 1 or formula 2 of Proposition 3.2 give
the same loss distribution P [Nt = k], k ∈ Ω when f(x) = 1x>1. In this last case, if furthermore
σX = σY = 0 and t = 1, we have checked that we get by these two formulas the same values for
P [Nt = k], k ∈ Ω as the one computed with Davis and Lo’s result.

Figure 1: Evolution of E [Nt] (left) and V [Nt] (right) as a function of t, for all the models described in
Definition 4.1. The curves plotted with dotted lines correspond to the case where direct defaults are i.i.d.

The evolutions of expectation and variance of Nt as a function of t, for all of the four models that
are described in Definition 2, are illustrated in Figures 1. We observe that the mean of the number of
defaults distribution is an increasing function of time. This is obviously consistent with the situation
where more defaults are expected in a larger period of time. In the exchangeable case (models 3 and
4), direct defaults as well as infections arise from probabilities that depend on hidden factors. If the
distribution of Nt is intuitively more dispersed, the impact of such a dispersion on the mathematical
expectation is not trivial. For the mean of Nt, we can observe on Figure 1 (left side) that the expec-
tation of Nt is only slightly modified when choosing exchangeable random variables, but this change
is very small in the case where two contagions are required to cause a default, i.e., when f(x) = 1x>2

(models 2 and 4). This suggests that when the contagion effect is weakened as this is the case here,
the mean of the loss distribution is mainly explained by the mean of the direct defaults, which are
the same in models 2 and 4. When considering the variance of Nt plotted in Figure 1 (right side), we
observe more evident results. The variance of the loss distribution is a hump-shaped function of time.
It is quite intuitive that the dispersion level increases as time goes by since the loss process can reach
a larger part of its support with higher probabilities. However, when the expected number of defaults
attains a critical threshold, the number of expected surviving names then decreases, leading at some
point in time to a decrease in the dispersion level of the loss distribution. Let us remark that this
occurs earlier for models 1 and 3 for which the expected number of defaults is greater. Moreover, the
presence of a variation in the hidden random variables ΘX and ΘY naturally implies a larger increase
of the variance of Nt.

Figure 2 shows the evolution of P [Nt > k], for respective default number k = 6 (left side) and
k = 10 (right side), among the ten considered firms (n = 10). With the chosen parameters, we observe
that the impact of exchangeability is not systematically the same. The growth of the volatility of Nt

does not always lead to the increase of P [Nt > k], especially when this last probability is larger in the
independence case. When we consider less frequent events, as illustrated on the right side of Figure 2
where the probability that all firms default is plotted, we find, on the contrary, that the impact of
exchangeability is far more explicit. This seems logical, since the increase of the dispersion level of
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Figure 2: Evolution of P [Nt > 6] and P [Nt = 10] as a function of t, for all the models described in Definition 4.1.
The curves plotted with dotted lines correspond to the case where direct defaults are i.i.d.

Nt, due to hidden parameters ΘX and ΘY , tends to emphasize the tail of the distribution. This is
clearly a required model behavior especially when one has in mind some applications to the pricing
of synthetic CDO tranches. Indeed, one can think of the base correlation breakdown in March 2008,
when no implied correlation can be found for CDX super-senior tranches.

4.3 Calibration on liquid CDO tranche quotes

This section examines the fit of the model to tranche spreads of the 5-years iTraxx Europe main index
at two fixed points in time, namely 1st March 2007 and 31 January 2008. These two dates have been
chosen to facilitate comparison of model calibration before and during the credit crisis. Let us recall
that synthetic CDOs are structured products based on an underlying portfolio of reference entities
subject to credit risk. It allows investors to sell protection on specific risky portions or tranches of
the underlying credit portfolio depending on their desired risk-profile. We concentrate our numerical
applications on the most liquid segment of the market, namely CDO tranches written on standard
CDS indexes such as the iTraxx Europe main index. As illustrated in Figure 3, the iTraxx Europe
main index contains 125 investment grade CDS, written on large European corporations. Market-
makers of this index have also agreed to quote standard tranches on these portfolios from equity or
first loss tranches to the most senior tranches. Each tranche is defined by its attachment point which
is the level of subordination and its detachment point which is the maximum loss of the underlying
portfolio that would result in a full loss of tranche notional. The first-loss 0-3% equity tranche is
exposed to the first several defaults in the underlying portfolio. This tranche is the riskiest as there is
no benefit of subordination but it also offers high returns if no defaults occur. The junior mezzanine
3-6% and the senior mezzanine 6-9% tranches are less immediately exposed to the portfolio defaults
but the premium received by the protection seller is smaller than for the equity tranche. The 9-12%
tranche is the senior tranche, while the 12-20% tranche is the low-risk super senior piece.

Since individual credit exposures are all the same among names in a standard CDS index, the
key quantity involved in the pricing of standard tranches is the cumulative loss per unit of nominal
exposure defined by

Lt =
n

∑

i=1

(1−Ri)Z
i
t ,

where Ri denotes the recovery rate associated with name i. We recall that Zi
t referred to as the

time-t default indicator of name i, the latter quantity being defined by Equations (1) and (2) as in the
previously presented multi-period extension of the Davis and Lo’s model. The cash-flows associated
with a synthetic CDO tranche with attachment point a and detachment point b (a and b in percentage)
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Figure 3: Standardized CDO tranches on iTraxx Europe Main.

are driven by losses that affect the tranche, i.e.,

L
(a,b)
t = (Lt − a)+ − (Lt − b)+ .

We refer the reader to Cousin and Laurent (2008) for a detailed description of cash-flows associated
with synthetic CDO tranches.

The model that we consider for the calibration of CDO tranche quotes belongs to the class of
models presented in section 4.1.2. More specifically, we assume that, for any t ≥ 0, direct defaults
Xi

t , i = 1, . . . , n are Bernoulli mixtures where the common hidden parameter is a Beta-distributed
random variable with mean p and variance σ2

X . In order to avoid numerical difficulties when n is

large, we consider that, for any t ≥ 0, contagion events Y
i,j

t , 1 ≤ i, j ≤ n are independent Bernoulli
random variables with the same mean q (σY = 0). We have chosen that contagions in a given period
are possibly triggered from direct defaults during this period (intra-contagion mode) and also by one
additional external entity that does not belong to the credit portfolio. More formerly, the function
g : Ω × Ω → N defining the identity of infectious entities is given by g(k, γ) = n0 + γ where n0 = 1.
We consider here the case where only one contagion is required to cause a default. Let us recall that
the computation of CDO tranche spreads only involves expectation of tranche losses at several time
horizons. In the case where recovery rates are the same across names and equal to a constant R, it
is straightforward to remark that the current cumulative loss is merely proportional to the current
number of defaults. The distributions of default number Nt, 0 ≤ t ≤ T , can then be used properly
to compute CDO tranche spreads. Using the latter restrictions, the discrete-time contagion model is
stationary and entirely described by the vector of parameters α = (p, σX , q, R). Also note that we
have computed CDO tranche spreads from distributions of the portfolio loss at every quarter between
t = 0 and t = 5 years. As a result, parameters p and σX correspond to (resp.) the expectation and
standard deviation of one direct default probability in a quarter period. Parameter q is the probability
that one infectious entity contaminates another safe one during a quarter period.

Let us denote by s̃0, s̃1, s̃2, s̃4, s̃5, s̃6 the market spreads associated with (respectively) the CDS
index, [0%-3%], [3%-6%], [6%-9%], [9%-12%] and [12%-20%] standard iTraxx tranches and by s0(α),
s1(α), s2(α), s4(α), s5(α), s6(α), the corresponding spreads generated by the contagion model using
the vector of parameters α. The calibration process aims at finding out the optimal parameter set
α∗ = (p∗, σ∗

X , q∗, R∗) which minimizes the following least-square objective function

RMSE(α) =

√

√

√

√

1

6

6
∑

i=1

(

s̃i − si(α)

s̃i

)2

.

In all calibrations the interest rate is set to 3% and the payment frequency is quarterly. We provide
in Table 1 and Table 2 model spreads and optimal parameters resulting from the calibration processes
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performed on 31st January 2008 and 1st March 2007 iTraxx quotes.

As can be seen from Table 1, the joint calibration of all tranches and the index is acceptable for 2008
crisis data. Note that our model is able to reproduce market spread of super-senior tranches contrary
to some standard factor models during the same period. For 2007 data, the fit is correct excepted for
the 3%-6% mezzanine tranche. As for the optimal parameters, we observe that the quarterly mean
and dispersion level of direct default events (parameters p∗ and σ∗

X) and the contagion probability q∗

are higher in 2008 calibration compared with 2007 calibration. This can be explained by the drastic
shift in credit spreads between these two periods. Let us stress that even if the optimal parameters p∗

and q∗ are relatively small, they may induce a significant expected number of defaults due to the large
number of entities in the portfolio. The contagion parameter q is decisive to fit market data: setting
q = 0 gives very poor calibration results. However, we can note that the optimal recovery rate in 2008
is higher than the optimal recovery rate in 2007. This counterintuitive result can be explained by
the fact that parameters q and R affect senior tranches in opposite directions. The higher contagion
probability may explain the lower recovery rate in 2008 compared to 2007.

0%-3% 3%-6% 6%-9% 9%-12% 12%-20% index RMSE

Market spreads 31 Jan 2008 31 317 212 140 74 77 -
Model spreads 32 328 204 142 77 64 7.5

Market spreads 1st Mar 2007 10 46 13 6 2 23 -
Model spreads 10 37 14 6 2 21 9.2

Table 1: iTraxx Europe market and model spreads (in bp) and the corresponding root mean square
errors. The [0%-3%] spread is quoted in %. All maturities are for five years.

p∗ σ∗
X q∗ R∗

31 Jan 2008 0.0012 0.0151 0.0007 0.1964
1st Mar 2007 0.0001 0.0026 0.0005 0.1346

Table 2: Optimal parameters α∗ = (p∗, σ∗
X , q∗, R∗) in a quarter period
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5 Conclusion

In this paper, we examine a multi-period extension of the original Davis and Lo’s contagion model.
The model allows for both spontaneous or direct defaults and defaults resulting from a chain reaction
where defaulted names at the beginning of a given period can infect other firms by contagion at the
end of this period. Other contamination modes such as intra-periodic or external contagion effect can
also be considered. Moreover, the number of infectious entities required to trigger a contagion effect
can be specified as a model input. Finally, random variables governing direct defaults and contamina-
tions may depend on some common macroeconomic factors. In a rather general setting, we provide a
recursive algorithm for the computation of the number of defaults distribution at several time horizons.

In numerical applications, we restrain ourselves to the case where, between each time interval, both
direct defaults and contamination events are described by mixtures of Bernoulli variables mixed with
a Beta-distributed random factor. We first illustrate the effect of model parameters on the dynamics
of loss distributions. In particular, we investigate the factors dispersion impact and the contagion
effect on the variance and the last quantiles of the loss distribution.We then consider the fit of model
parameters on iTraxx data before and during the credit crisis for a model with intra-periodic contagion
and one additional external infectious entity. This allows to exploit the dynamic feature of the model
and illustrate its tractability when the number of reference entities is large (and equal to 125). In
both data sets, the calibrations render acceptable fit. Moreover, the contagion parameter is necessary
to fit market data. We also remark that the implied contagion probability is more significant for the
2008 distressed period.

Eventually, this study paves the way to additional applications such as the management of coun-
terparty risk arising in CDS or CDO tranches transactions.

6 Appendix

In this part, we give the proofs of Proposition 3.2 and Lemma 3.8
Proof of Proposition 3.2

1. In the particular case of infinite exchangeability assumption, the first part of Proposition 3.2
is a consequence of De Finetti’s Theorem (see De Finetti (1931)). Indeed, since the variables
{

Y
ij

t , (i, j) ∈ Ω2
}

are exchangeables, there exists a random variable ΘY ∈ [0, 1], such that,

conditionally to ΘY , random variables
{

Y
ij

t , (i, j) ∈ Ω2
}

are i.i.d., Bernoulli distributed with

parameter ΘY . As a consequence

ξk,t(z) =E











P











∑

j∈Ft

card(Ft)=z

Y
ji

t > 1|ΘY











k









= E
[

(1− (1−ΘY )z)k
]

=
k

∑

i=0

Ci
k(−1)iE

[

(1−ΘY )iz
]

.

Noting that E
[

(1−ΘY )iz
]

= E











∑

j∈A
card(A)=zi

Y
j1

t = 0











, we conclude using Lemma 3.1.

In the case of finite exchangeability assumption, De Finetti’s Theorem may not be applied.
That’s why it is necessary to use another reasoning :
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Let m ≥ 1. Let us define for k ∈ {1, . . . , m− 1}:

ξ
(k)
m,t(z) = P





∑

j∈Ft

Y
j1

t ≥ 1 ∩ ...
∑

j∈Ft

Y
j,m−k

t ≥ 1 ∩
∑

j∈Ft

Y
j,m−k+1

t = 0 ∩ · · ·
∑

j∈Ft

Y
j,m

t = 0 card(Ft) = z



 ,

ξ
(m)
m,t (z) = P





∑

j∈Ft

Y
j1

t = ... =
∑

j∈Ft

Y
j,m

t = 0 card(Ft) = z



.

Since the variables
{

Y
ij

t , (i, j) ∈ Ω2
}

are exchangeables, we see that for k ∈ {1, . . . , m},

ξ
(k)
m,t + ξ

(k−1)
m,t = ξ

(k−1)
m−1,t .

It follows that for all k (1 ≤ k ≤ j) :

ξ
(k−1)
j,t = ξ

(k−1)
k−1,t −

j
∑

m=k

ξ
(k)
m,t .

By induction on k = 1, . . . , m, we get:

ξk,t(z) =1− C1
kξ

(1)
1,t (z) + C2

kξ
(2)
2,t (z) + ... + (−1)kCk

kξ
(k)
k,t (z).

Since the variables
{

Y
ij

t , (i, j) ∈ Ω2
}

are exchangeables, then for all r (1 ≤ r ≤ k) , we conclude

using Lemma 3.1 :

ξ
(r)
r,t = P





rz
∑

j=1

Y
σ(j)

t = 0



 =
zj

∑

α=0

Cα
zj(−1)αλα, t .

2. Let f−1
z = {i ∈ Ω : i ≤ z, f(i) = 1}. Then

ξk,t(z) =
∑

γ1,...,γk∈f−1
z

P





∑

j∈Ft

Y
j1

t = γ1 ∩ ... ∩
∑

j∈Ft

Y
jk

t = γk card(Ft) = z



.

Furthermore random variables
{

Y
ji

t , (j, i) ∈ Ω2
}

are exchangeable. So, using Remark 3.2

ξk,t(z) =
∑

γ1,...,γk∈f−1
z

Cγ1

z . . . Cγk

z

Cγ1+···+γk

kz

P





kz
∑

j=1

Y
σ(j)

t = γ1 + · · ·+ γk





=
kz
∑

γ=0

∑

γ1+···+γk=γ
γ1,...,γk∈{0,...,z}

f(γ1) . . . f(γk)
Cγ1

z . . . Cγk

z

Cγ
kz

P





kz
∑

j=1

Y
σ(j)

t = γ



.

>From Lemma 3.1

P





kz
∑

j=1

Y
σ(j)

t = γ



 = Cγ
kz

kz−γ
∑

j=0

Cj
kz−γ(−1)jλj+k,t.

As a consequence

ξk,t(z) =
zk
∑

γ=0

ηk,z(γ)
zk−γ
∑

j=0

Cj
zk−γ(−1)jλj+γ,t,

where ηk,z(γ) =
∑

γ1+···+γk=γ
γ1,...,γk∈{0,...,z}

f(γ1) . . . f(γk)Cγ1

z . . . Cγk

z .

A simple calculation leads us to the following reccurence relationship :

ηk,z(γ) =
∑

γ1∈{0,...,z}
γ1≤γ

f(γ1)Cγ1

z ηk−1,z(γ − γ1).

2
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Proof of Lemma 3.8 >From the definition of conditional probability

P [Nt = r Nt−1 = k] =
P [Nt = r, Nt−1 = k]

P [Nt−1 = k]
.

Under Assumptions 2 and 3, the random variables
{

Zi
t , i ∈ Ω, t ∈ {1, . . . , T}

}

are exchangeable.
On the one hand, using two times Remark 3.2, we establish that P [Nt = r, Nt−1 = k] is equal to

Ck
nP

[

Nt = r, Z1
t−1 = · · · = Zk

t−1 = 1, Zk+1
t−1 = · · · = Zn

t−1 = 0
]

=Ck
nP

[

Nt = r, Z1
t = · · · = Zk

t = Z1
t−1 = · · · = Zk

t−1 = 1, Zk+1
t−1 = · · · = Zn

t−1 = 0
]

=Ck
nCr−k

n−kP
[

Z1
t = · · · = Zr

t = Z1
t−1 = · · · = Zk

t−1 = 1, Zr+1
t = · · · = Zn

t = Zk+1
t−1 = · · · = Zn

t−1 = 0
]

=Ck
nCr−k

n−kP [Θt = θt, Θt−1 = θt−1].

On the other hand, using the same remark, P [Nt−1 = k] = Ck
nP [Θt−1 = θt−1], which concludes the

proof. 2
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