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Abstract We introduce a model for the yield curve, whose static discount
factors rely on the closed-form formulas for zero-coupons available in exogen-
ous (also known as no arbitrage) short rate models. After their calibration,
the spot rates can be extrapolated to unobserved maturities by converging
to a fixed ultimate forward rate. Such an extrapolation of the yield curve is
useful for discounting long-term liabilities cash-flows. If one is interested in no
arbitrage pricing, then she can use simulations under the risk neutral prob-
ability of the corresponding exogenous short rates model. Otherwise, yield
curve forecasts can be obtained under the historical probability, by applying
a Functional Principal Components Analysis to the model’s parameters.

Keywords Discount curve - Insurance - Extrapolation - Forecasting

1 Context

The new Solvency II directive defines the calculation of European insurers’
technical provisions as the sum of two components, the Best Estimate Liabil-
ities (BEL) and the Risk Margin (RM). The Best Estimate Liabilities (BEL)
are defined as the average discounted value of the insurers future cash-flows,
weighted by their probability of occurrence. The Risk Margin is a supplemental
amount required for covering the non-hedgeable risks, by involving a capital
lockup.

In order to discount the cash-flows relevant in the calculation of the BEL
and Risk Margin, an appropriate term structure of discount factors is needed.
From the no arbitrage pricing theory developed by [13], and currently widely
used in insurance market consistent pricing of liabilities, the zero rates related
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to the stochastic discount factors have to be risk-free. That is, free from any
counterparty credit risk.

There is no easy answer to the question of defining such a risk-free rate for
insurance liabilities. It could be related the insurers own assets return, where
the liabilities are perfectly backed by the assets. But in a market consistent
approach as required in Solvency II, since not every liability is perfectly backed
by the assets, a more fundamental risk-free rate also needs to be derived.
Deriving such a common risk-free rate from market-quoted instruments is also
aimed at increasing transparency and comparability of balance sheets across
European countries.

For years, in banking, the construction of a term structure of risk-free
discount factors was based on the assumption that banks are not subject to
counterparty credit risk when lending to each other, and liquidity was not an
issue. In this context, interbank rates (loosely called LIBOR hereafter) were
seen as the best proxies for risk-free rates.

From the 2007-2008 financial crisis onwards, the spreads between swaps
rates with different tenors started to widen, partly due to the increased reti-
cence of banks to lend to each other. Today, LIBOR is no longer considered
as a proxy for risk-free rates, and market operators have increasingly started
to use Overnight Interest Swaps (OIS) discounting (see [16] for example).

Comparatively in the European Insurance market, throughout the quantit-
ative impact studies (the QIS) leading to Solvency II, the questions of risk-free
term structure construction for valuation have been tackled for years by the
CEIOPS and later by the EIOPA (see [6] for example). The difficulty in defin-
ing a fundamental risk-free rate for the insurance market, mainly arises from
the fact that a pure market risk-free rate could introduce a lot of unwanted
market volatility into the insurers balance sheet. Hence, this discount curve
has been adjusted with different spreads through the QIS, and until its most
recent specification, making it somewhat, less consistent with the market.

As of June 2015 (see [11]), the term structure of discount factors for in-
surers liabilities cash-flows is indeed derived from LIBOR EUR swap (IRS
hereafter) rates, as the market for vanilla swaps is considered as Deep, Liquid,
and Transparent (the DLT assumption). A credit risk adjustment (CRA) is
prescribed by the directive, consisting in a parallel shift applied to LIBOR
swap rates. The parallel shift shall not be lower than -35bps or greater than
-10 bps. Furthermore, a matching adjustment and a volatility adjustment are
other optional parallel shifts which could be applied to the constructed curve.

The volatility adjustment is designed to be used in case of a crisis, causing
the widening of sovereign or corporate bonds spreads. On the other hand,
the matching adjustment is used in cases where the liabilities are predictable,
that is, almost perfectly backed. In this paper, we focus on discount curve
construction. The matching premium and the volatility adjustment are not
further discussed.
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Beyond the data and curve adjustments concerns, and considering curve
construction methods, [1] distinguish between two types of methods: best fit
methods, and ezact fit methods. Best fit methods, such as [20] and [25] are
widely used by central banks. Exact fit methods such as cubic splines methods
on the other hand, generally have at least as much parameters as input market
products, and provide an exact fit to market data.

While the latter type of methods would be adapted for no arbitrage pricing
and trading, the former type are useful for forecasting the yield curve in real
world probability (see [10] for example). They fit the curve parsimoniously
with a few parameters; in an attempt to mimic the factors explaining the
variance of the yield curve changes (see [19] for details). There is another
class of models, which combine the idea of using a factors structure, which the
absence of dynamic arbitrages in the curve diffusion, see [7] for example.

The extrapolation of the constructed curve is also an important subject
matter for insurers and pension funds. Indeed, some of their liabilities cash-
flows may have very long maturities, spanning beyond the longest liquid ma-
turities available for market-quoted instruments. The question is, how would
spot rates for such long maturities be determined?

Currently in Solvency II, the construction and extrapolation of the swap
curve is made by using the Smith-Wilson method described in
[24] and in the technical specifications [11]. The Smith-Wilson method con-
structs the swap curve by exactly fitting the market IRS rates adjusted from a
CRA. After a chosen maturity - the last liquid point (LLP), currently 20 years
-, the forward rate is forced by regulatory rules, to converge at an exogenously
specified speed to a fixed long term level called the Ultimate Forward Rate
(UFR). The UFR is currently derived as the sum of expected Euro inflation
and expected real rates. It is currently equal to 4.2%.

For discount curve construction and extrapolation, we propose a method
which relies on closed-form formulas for discount factors available in exogen-
ous (or no arbitrage) short rates model. It could be both an ezact fit and best
fit method, depending on the data at hand, and on how the curve is calibrated
to these data. In this framework, the time-varying function ensuring an ex-
act fit to market implied discount factors in exogenous short rates models is
considered to be a piecewise constant function, whose steps become model’s
parameters. The interpolation of the curve at dates comprised between quoted
maturities directly comes from the properties of the model. Pseudo-discount
curves can also be constructed in a dual curve environment, by using our
method, along with the recipes described for example in [26] and [1].

After the static discount curve calibration to market data, the curve can
be extrapolated to unobserved maturities by converging to an ultimate for-
ward rate. Extrapolation is done by using the same model that the one used
for interpolation. On this particular point, our model is hence closer to the
[24] model than to models which use different methods for interpolation and
extrapolation (such as cubic splines for interpolation, and a modified version
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of [20] for extrapolation). We describe ways to either derive an UFR from the
data, or to constraint the model to converge to a given UFR.

When it comes to forecasting and/or simulation, if one is interested in no
arbitrage pricing, then she can use simulations under a risk neutral probability
of the corresponding, consistent (in the sense of [4]) exogenous short rates
model. Otherwise, forecasts of the yield curve under the historical probability
can be obtained by making use of a functional principal components analysis.

In the next section, we describe the model proposed for discount curve
construction and extrapolation, and explain how it could be calibrated to
market data. Then, we explain how to obtain forecast of the discount curve,
by using the model’s parameters. To finish, some numerical examples based
on [12], [2], [3], [1] are presented.

2 Curve construction and extrapolation

The model proposed for discount curve construction and extrapolation relies
on exogenous short rates models, also known as no-arbitrage short rates mod-
els. These models incorporate a time-varying function, constructed in such
a way that, the model’s implied discount factors match exactly the market
implied discount factors.

In general, the market implied discount factors are derived by using a
static (ezxact fit) curve calibration method, such as cubic splines or [24]. In our
framework, if one is interested in no arbitrage pricing, the curve calibration
method is consistent with the corresponding diffusion model, in the sense of

[4].
As an illustration, the exogenous short rates model that we consider here

under a risk-neutral probability measure Q is an Hull-White extended Vasicek
([14] and [15)):

where (Wy)i>0 is a standard brownian motion under a risk-neutral probab-
ility Q. But the methodology can be directly extended to any other exogenous
short rates model with closed form formulas for discount factors, including
multi-factor gaussian short rate models’.

a controls the speed of mean reversion of the short rates, and o is their
volatility. ¢ — b(t) is a time-varying deterministic function, used for fitting
exactly the current market discount factors PM(0,t), and controlling the con-
vergence of long-term rates. Typically in order to obtain an ezact fit in the
Hull-White extended Vasicek model from equation (1), we have to choose:

_ L

0.2
b(t) a?(o,t) — fM(O’t) + %E (1 _ e—2at) (2)

I Even though in this case, there would be more free parameters
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where ¢ — f(0,t) are the market implied instantaneous forward rates.

In the absence of arbitrage opportunities, the value at time ¢y of a discount
factor with maturity ¢ is given by

Plto,t) = Eq {exp (- /t t Xudu) |]—'t0] 3)

where F is the natural filtration of the short-rate process X.

For the model in equation (1), and by using (3), closed-form formulas are
available for discount factors (and implicitly for discount rates and instantan-
eous forward rates). Indeed, assuming that X;, = Xy, we can write:

P(to. 1) = exp (—Xo¢<t—to>—a / b(u)as(t—u)du—cw(t—to)) (4)

where ¢ and 1 are defined as

L —emasy, (5)

) A (";q?(s ~) . (6)

We derive PM(0,t) from market inputs, based on (4), (5), (6). By doing
so, we avoid the use of cubic splines methods to obtain PM(0,t), and create a
consistent discount curve construction, in the sense of [4].

< ©-
= X
@ »
BN
I I

Deriving P*(0,¢) in this framework assumes the time-varying function ¢ +
b(t) to be a piece-wise constant function, whose steps are derived from vanilla
(IRS) or overnight swaps (OIS) cash-flows. A similar idea was applied by [23]
for example, to the model from [9]. We let T7,...,T,, be the maturities of
market quoted IRS, with Credit Risk Adjustment (CRA), or OIS. Considering
that the function ¢ — b(t) is piecewise-constant, with:

b(t)=1b;, for T,_1 <t<Tj, i=1,...,n (7)
b(t) = bpy1, fort > 1T, (8)

and Ty = tg = 0, we are able to derive closed-form formulas for the discount
factors, taking into account the discrete b;’s, swap maturities, and using (4):

0'2 U2
PY(0,0) = eap (= Xub(0) = T (0 + 50 (= 0(0) = T.0%0)) (9
where:
Lna(t) = D bx (§(t = Tem1 A1) = &(t = Tx A1) (10)

k=1
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for any ¢t < T,,, and for t > T),:

La(t) =) bk (60t = Tha A t) = E(E = T A1) + buga€(t — T AL)  (11)
k=1
and

E(s)=s—¢(s),s>0 (12)

Proof: Using the fact that in this framework ¢ — b(t) is piecewise constant,
the integral f:ﬁ b(u)p(t — u)du in equation (4) can be written as

n+l L TpAt n+1 Ti At
Z/ b(uw)p(t — u)du = bk/ ot —u)du O
k=1

k=1 Ti_1/At Ti_1/At

One could notice that in this framework, the interpolation of the curve
at intermediary dates between quoted swaps maturities is not necessary, and
directly comes from the properties of the model (giving P (to,t) for all ¢ in
equations (9) and (11)). Plus, as suggested by (2) and considering that the
forward curve is generally assumed to be well-behaved, we do not generally
expect the b;’s to be highly volatile.

In the next section, we explain how to calibrate the model’s parameters in
different situations, for the construction of OIS and IRS (with CRA) discount
curves. Pseudo-discount curves could also be constructed in a dual curve en-
vironment, by using this method along with the recipes described for example
in [26] and [1]. Dual curve construction is not described in this paper; the
interested reader can refer to [26] and [1] for further details.

2.1 Calibration of the liquid part

Considering that there are IV quoted swaps used for constructing the discount
curve as of today, and at most M coupon payment dates for all the swaps,
we let V' be the vector of current values for the market swaps with length
equal to N. C'is the N x M matrix containing in each row, the swaps’ coupon
payments. And P the vector of discount factors that we are trying to derive,
having a length equal to M.

Three methods might be envisaged for calibrating the model, depending
on the data at hand:

— A method to be used if an exact fit is required, and can be found. That
is, if we require V = CP

— A method to be used if an exact fit cannot necessarily be found, but
approximated
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— A method to be used when the dataset is noisy, and a smooth curve
is required

These 3 methods are described hereafter, and numerical examples can be found
in section 4.

— If an exact fit is required, then it is possible to guess reasonable values
for a and o (say, a between 0.05 and 1, and o between 1% and 5%), and
use an iterative curve calibration (also known as bootstrapping, but different
from statistical bootstrap resampling) to solve V = CP.

This type of method was used for any vanilla swap before the 2007 crisis,
no matter its tenor. It is currently relevant only for extracting discount
factors from OIS which are considered to be perfectly collateralized, or for
Solvency II. Single curve construction in Solvency II, is currently applied
to IRS, along with a parallel CRA, comprised between 10bps and 35bps.

In order to describe the curve’s calibration procedure, we will use a formu-
lation similar to the one in [3]. We let 71 < ... < T}, be the maturity dates
of OIS or IRS minus CRA, with the same currency on both legs. The swap
paiment dates are

tj :] X T

where © € {1 month,3 month,6 month,1 year} is the swap’s tenor, and
je{l,...,n/x}.

The single curve construction, in the specific Hull & White-consistent case
treated in this paper, is made as follows:

1. Guess a and o: any reasonable values for a and ¢ will produce an exact
fit for discount factors and discount rates

2. Loop on i: At each step T; corresponding to the i*" input swap maturity,
suppose that the discount factors and b;s are known for any ¢; < T;

3. Make a guess for b;

4. Use formula (9), to derive the discount factors at intermediate swap
paiment dates: T;_; < t; < T;. No interpolation is required.

5. Calculate Vj, the value of the it" swap. While V; # 0 return to point
2. Typically, the points 3 to 5 are solved iteratively with a root search
algorithm.

Another way for picking a and o might be to calibrate the short rates
model to a set of market prices of caps and swaptions.

— If no solution is available for equation V = CP by iterative curve
calibration, then similarly to [2], it is possible to search for P minimizing:

1

o (V- CP) W (V - CP) (13)
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W, a diagonal matrix of weights is used. These weights are based on inverse
duration, such as proposed by [5]; with elements:

1/d,

N
Ej:l 1/ d;
Weights such as w;’s are commonly used to give more importance to the

short end of the curve, which is hence fitted more accurately. But other
weighting schemes might be envisaged.

(14)

w; =

— If the swaps data are noisy, or if one is interested in fitting
smoothly noisy bonds data a third method could be envisaged. It
consists in penalizing the possibly large changes in forward rates’ (ap-
proximate) second derivatives and/or in b;s. The objective function to be
minimized is:

N N
(V= CP)" W2(V = CP)+A Y (i —fiia)*+ 22 Y (bi=bim1)* (15)

i=1 i=1

1
2N

where f; is the approximate second derivative (using finite differences) of
the discrete forward rates at time T;. Typically, \; and A2 can be found
by cross-validation. An example can be found in section 4.

2.2 Curve extrapolation

Using the Hull and White extended Vasicek model, it is possible to derive the
instantaneous forward rates from the discount factors formula. We can write:

t 2
AQQ%QQZ%KWM/BMH%wM—%&@ (16)
0

f(Ov t) =
Hence, in our framework, using the fact that ¢ — b(t) is piecewise constant,
we can also write:

n 2
FM0,8) = Xoe " +a Y bi[p(t — Ti—1 At) — ¢t — T; A t)]+abn+1¢>(t—Tn/\t)—%(;52(75)
i=1
(17)
This formula directly provides an input for the simulation of Hull & White
short rates, with parameters a, o and by, . . ., b, previously calibrated to market
data.

Hence, letting ¢t grow to oo, we have:

o2

2a2
And if we assume that the UFR is exogenously chosen, and denote it by
foo, we are able to derive the parameter b, as:

FM(0,00) = bng1 — (18)
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0.2

— R 1
bn-‘rl fOO + 2(12 ( 9)

This enables to re-write equation (11), when extrapolation is required, as:

0.2

2a2

In+1(t) = Zbk (g(t —Tr_1 /\t) — §(t — T A t)) + (foo + > S(t —T, /\t)
k=1

(20)

If a fixed ultimate forward rate (UFR) is defined exogenously, one
can increase or decrease the parameter a, to achieve a convergence of f(0,)
to fo at a pre-specified maturity. A period of convergence 7., after the Last
Liquid Point (LLP) is defined. Starting from a low value such as a = 0.1, a is
increased until:

M0, LLP 4 7o) = foo

or
|fM(0, LLP 4 7o) — foo| < tol

for a given o, and a given numerical tolerance tol.

Otherwise, an ultimate forward rate (UFR) can be derived from
market data. A static discount curve is fitted to a fraction of the quoted
swaps available, called the training set. After the construction of the curve on
this fraction of the data, we evaluate how well, when extrapolated to a given
exogenous UFR, it would price the remaining swaps in a test set.

The LLP provided by the prudential authority (currently, a maturity 20
years), could be used to define the frontier between the training and test set.
Otherwise, one can define a percentage of the swaps data to be used as a
training dataset, for example 80% or 90% of the available swaps.

Both of these methods for curve extrapolation are applied in the numerical
examples, in section 4.

3 Short term forecasting with Functional PCA

The idea that a few principal components explain a major part of the changes
in bonds returns originates from [19]. This idea is now well accepted and
applied to yield curve forecasting; the interested reader could refer to [10] or
[7] for example.

We use a similar rationale, but apply it somewhat differently. The changes
in the swap curve over time, are explained by the changes observed in the
calibrated parameters b;s over time. Considering the fact that our model for
fitting each cross section of yields is already overparametrized (as it uses at
least as much parameters as swap rates available in the input dataset), the
use of models such as an unrestricted Vector Autoregressive (VAR) to predict
the b;s could lead to poor forecasts, with high variance.
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Functional Principal Components Analysis in the spirit of [22] and [21], and
more precisely Functional Principal Components Regression, was hence seen
as one of the most immediate candidate to achieve a reduction of the problem’s
dimension. This method is already used for example by [18] for forecasting log
mortality rates.

We consider functional data of the form:

b7 (t) (21)

These are the parameters obtained by fitting each cross section of swap
rates; observed at increasing times t € {¢1,...,tn}, for increasing maturities
x € {z1,...,2p}. The calibration method is the one described in section 2.1,
with a and o kept fixed over time.

Finding the Functional Principal Components

Using the approach described in [21], we let B be the matrix containing at
line ¢ and column j:

B =637 (t:) (22)

With ¢ = 1,...,N and j = 1,...,n, n > p. For each cross section of
b;s observed at time t;, a cubic spline interpolation has been applied to = —
b%-7(t;), so that the b;s values are now equally spaced on a larger grid spanning
[1, xp]. Letting w be the fixed interpolation step applied to « — b7 (¢;) on
[x1, zp], and:

1
V=—BB 23
N (23

We are looking for the vectors €7, the (approximate) functional principal

components, verifying:

WVELT = e (24)

This is equivalent to searching the eigenvalues and eigenvectors of V, so
that:

Vu=M\u (25)

and p = wA. This problem is typically solved by finding the Singular Value
Decomposition (SVD) of B, and taking the normalized right singular vectors
as functional principal components.

Short term forecasting using Principal Components regression

Having obtained the functional principal components, a least squares re-
gression of the cross sections of b;s is carried out. The b;s are expressed as a
linear combination of the previously constructed functional principal compon-
ents, plus an error term:

K
Ve {tr,... tn}, BE7(t) = Bro+ D Braéi” (z) + er(x) (26)
k=1
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K is the number of functional principal components. These functional prin-
cipal components are not highly correlated by construction, so that we can use
univariate time series forecasts for each of the K + 1 time series, and h-step
ahead forecasts of the b;s as:

K
b9 (t+ h) = Branjro + D Berneaéy” (@) (27)
k=1

Once the forecasts b%7 (t + h) are obtained, they can be plugged into for-
mulae 9 and 11 to deduce h-step ahead forecasts for the discount factors and
discount rates.

For choosing good values for a, 0 and K, we typically used a cross-validation
on grids of values for these 3 parameters, and rolling origin estimation/forecasting,
as described in section 4.

4 Numerical examples

In order to illustrate how the methods described in the previous sections work,
we use IRS and OIS data from [2], [3], [1], an example of bonds data from [12];
a curve where all cubic splines produce negative forward rates. For forecasting
the curves, we use market EUR 6M IRS data, (from which we give detailed
summaries) with a CRA adjustment equal to 10bps.

For the data from [3], we assume that the swaps cash-flows paiments occur
on an annual basis as for OIS. From [1], we consider mid quotes from Eonia
OIS and 6-month Euribor IRS as of December 11, 2012. These data sets are
all reproduced in the appendices.

In section 4.1.1, four calibration methods are tested to illustrate section
2.1. The method proposed in this paper 2 is denoted by CMN. It is compared
to two iterative curve calibration methods, with linear (LIN) and natural cubic
splines (SPL) interpolation on missing dates, and the [24] method (SW). Sec-
tion 4.1.2 also illustrates 2.1. We use a dataset from [2]; a direct bootstrapping
without regularization produces wiggly spot and forward rates. The effects of
the regularization of approximate second derivative for forward rates and cal-
ibrated b;’s is illustrated. Such a regularization could also be applied to noisy
bonds data.

In section 4.1.3, the interpolation method is tested on a curve where all
cubic methods produce negative forward rates, from [12]. Section 4.2 illustrates
the possible extrapolation methods described in section 2.2. And 4.3 illustrates
the curves’ forecasting methode introduced in section 3.

2 actually applied to Hull & White model, but which can be applied to other short rates

models
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The discount factors usually display no particular subtleties, so they are
deliberately omitted. We present discount rates and discrete forwards instead,
and the discrete forwards are taken to be 3-month forward rates.

4.1 Curve calibration
4.1.1 On swaps data from [3]

Below are the discount rates and discrete forwards obtained for the 4 methods
described in the previous section; two bootstrapping methods, with linear (LIN)
and natural cubic splines (SPL) interpolation on missing dates, the [24] method
(SW), and the method described in 2.1, denoted as CMN.

Bootstrap CMN
(LIN) with a=0.26, sigma=0.16

0.07
L
007
L

006
L
\
\
1
’
s
006
L

0.05
L

discourt and forward rates
0.05
L
discount and forward rates.

0.04
L
004
L

5 10 15 20 2 5 10 15 20 P

maturity maturity

Figure 1 Bootstrapping with linear interpol-Figure 2 CMN applied to Hull and White
ation Zero coupons

Smith-Wilson Natural cubic spline
(W)

007
L
007
1

0.06
L
0.06
L

0.05
L

discount and forward rates
0.05
L
discount and forward rates

004
L
004
L

maturity maturity

Figure 3 Smith-Wilson method Figure 4 Natural cubic spline
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Table 1 Parameters obtained for CMN and Smith-Wilson

Maturity  b; &

1 0.0661  -16.680
2 0.1894  23.556
3 0.2523  -0.8413
5 0.2523 -8.9116
7 0.2523  3.3552
10 0.2806  7.9600
12 0.2523  -14.098
15 0.2089  3.9119
20 0.2553  3.4828
25 0.2616  -1.9497

The discount rates are presented as a dashed line, and the forward rates
as a plain colored line.

As demonstrated on figures 1, 2, 3 and 4, the discount rates produced
by the 4 methods are quite similar. The discrete forward rates better exhibit
the differences between them. Curve construction with linear interpolation
between quoted swaps maturities (on figure 1), produces a saw-tooth like for-
ward curve, which might not be desirable, and natural cubic spline produces
the most regular discrete forwards.

For the method described in this paper (denoted as CMN on figure 2), the
discrete forwards reflect the fact that the discount factors’ construction relies
on a piece-wise constant function, with slight changes in first derivatives at
quoted swap maturities. This effect remains very reasonable however, as the
discrete forward curve is highly similar to those produced by the other models,
and doesn’t exhibit large changes at quoted swap maturities.

For a=0.2557, 0=0.1636, the parameters b;s from table 1 are obtained.
They are presented along with the parameters &;s obtained by the [24] method,
with a = 0.1 (actually given as default parameter by Solvency II’s technical
specifications, and using the notations from QIS5 technical specifications).

4.1.2 On noisy swaps data from [2]

This section illustrates what may happen if the method from section 2.1 is
applied directly to noisy data, without regularization of the parameters. We
use data from [2].

Figure 5 on the left describes the discount and forward rates obtained
without regularization, with randomly picked ¢ = 0.3655 and o = 0.0037.
On the right, figure 6 describes the discount and forward rates obtained by
minimizing the objective function in equation (15), and using the parameters
A =1le—08 and Ay = le — 05, a = 9.8891 and o = 0.3957.

In order to pick A; and A2, we make a grid search on couples (A, \a). For
each (A1, A2), a minimization based on derivatives is applied, with multiple
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Andersen (2005)
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Figure 5 Curve calibration without regular-Figure
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Andersen (2008) regularized

time to maturity

6 Curve calibration with regulariza-

Table 2 Parameters obtained for unregularized and regularized CMN

Maturity  unregularized b;

regularized b;

0.5 0.0253
1 0.1100
1.5 -0.0078
2 0.0929
2.5 -0.0005
3 -0.1360
4 0.2901
5 0.1975
7 0.1654
10 -0.0056
12 0.1315
15 0.1392
20 0.0688
30 0.039

0.0281
0.0363
0.0383
0.0383
0.0380
0.0352
0.0358
0.0478
0.0497
0.0515
0.0533
0.0554
0.0553
0.0491

restarts of the minimization algorithm. Multiple restarts avoid getting trapped

into local minima.

Table 2 contains both the unregularized and regularized b;s. The unregu-
larized ones naturally exhibit a higher variance, because an exact fit to each
swap rate in the noisy dataset is required. The regularized b;s exhibit a lower
variance, at the expense of a higher bias in the fitting of [2] data.

4.1.8 On a curve where all cubic methods produce negative forward rates,

with data from [12]

The dataset from this section is used in [12], and is described as a curve
where all cubic methods produce negative forward rates. It is reproduced in the

appendices.
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Figure 7 illustrates the discount rates (dashed line), and discrete forward
rates (plain coloured line) obtained with a linear interpolation of the bond
yields. The discrete forward remain positive on all maturities, but again exhibit
a sawtooth profile. As expected, the natural cubic spline on figure 8 produces
negative discrete forward rates on this dataset.

Bootstrap Natural cubic spline
(LIN) (SPL)

0.08 0.10
L L
0.10

0.06
L
.

-
discount and forward rates
005

discount and forward rates.

0.04
L
/
/
’

000

0.02
L

time to maturity time to maturity

Figure 7 Linear interpolation on a curveFigure 8 Natural cubic spline interpolation
where all cubic methods produce negative for-on a curve where all cubic methods produce
ward rates negative forward rates

sign of discrete forwards for CMN
with a =0.71, sigma = 0.00625 (negative: red; positive: green)

008 010

006
sigma

discount and forward rates
0.04

0.02

0.00

time to maturity a

Figure 9 CMN interpolation on a curveFigure 10 Sign of discrete forwards for CMN

where all cubic methods produce negative for-as function of a and o, on a curve where all
ward rates cubic methods produce negative forward rates
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Table 3 Parameters obtained CMN with a = 0.71 and ¢ = 0.0062 on [12] data

Maturity  b;

0.1 0.0718
1 0.0351
4 0.0018
9 0.1162
20 0.0011
30 0.0114

Figures 9 and 10 present the results obtained with an interpolation based
on formulas (9) and (11). As seen on figure 10, a low value of @ might produce
negative forward rates on maturities comprised between 15 and 20. But a high
value always produces positive forward rates.

This is explained by what we saw in section 2.2: in the Hull and White
extend Vasicek case, a controls the speed of convergence of forward rates to
the UFR. The higher the a, the faster the convergence of forward rates to the
UFR on long-term maturities.

The parameters obtained by CMN interpolation (for producing figure 9),
with @ = 0.71 and o = 0.0062 are presented in table 3.

4.2 Curve extrapolation on data from [1]

In this section, we use the extrapolation methods described in 2.2, on OIS and
IRS (with CRA adjustment equal to 10bps) data from [1].

4.2.1 With Solvency II technical specifications, on IRS + CRA

Extrapolation to a fixed UFR equal to 4.2% is tested, using CMN and the
Smith-Wilson method. For both methods, the Last Liquid Point (LLP) is
equal to 20 years, and convergence to the UFR is forced to 40 years after the
LLP.

For the CMN method, the parameters are a = 0.174 and ¢ = 0.0026, and
for the Smith-Wilson method, a = 0.125. The resulting discount and forward
curves are presented in figures 11 and 12, and the parameters b;s and &;s in
table 4.

The discount and forward curves produced by both methods are similar, as
seen on figures 11 and 12. The convergence of the Smith-Wilson method to the
UFR seems to be slighty faster. This is caused by the fact that for CMN, we
use instantaneous forward rates to assess the convergence to the UFR, whereas
for the Smith-Wilson method, we use discrete forwards.
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Extrapolation to UFR = 0.042 Extrapolation to UFR = 0.042
with CMN with SW

0.04

0.04

003
003

0.02
forward rates

discount and forward rates
002

0.01
001

time to maturity time to maturity

Figure 11 Extrapolation to UFR = 4.2%Figure 12 Extrapolation to UFR = 4.2%
with CMN with Smith-Wilson

4.2.2 With OIS data, and a data driven UFR

For this example, we use OIS data from [1] presented in the appendices.

A training set containing 14 swap rates (90% of the dataset) with increasing
maturities starting at 1 and ending at 20 is made up. This training set is used
to construct the discount curve, which is then extrapolated to 30-year maturity
and beyond, using different values for the UFR.

The 2 remaining swaps, with maturities equal to 25 and 30, are placed into
the test set.

Qut-of-sample RMSE Discount curve extrapolated
- on swaps' values to a data driven UFR
-
g
e | 2
2 s
8 2
g ° 2
= . °
T 8
2 s ®
£ £ E
)
2 g 3
3 2 =
R
° s
o N
3 | B
3
g | g
T T T T T s 4 T T T T
001 002 003 004 005 0 20 40 &0 80
UFR time to maturity

Figure 13 Out-of-sample RMSE on swapFigure 14 Extrapolation of OIS curve to a
values, as a function of UFR data driven UF R = 0.0226

Figure 13 presents the out-of-sample RMSE obtained on swaps values from
the test set, as a function of UFR. This error decreases until UF R = 0.0226
(notice that this value would depend on the step chosen on the grid of UFRs),
and then, starts to increase again. Figure 14 displays the discount curve con-
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Table 4 Parameters for CMN (b;) and Smith-Wilson (&;) extrapolation

Maturity  b; &

1 0.0019  -2.5888
2 0.0112  0.7585

3 0.0266  0.1415

4 0.0352  1.3153

5 0.0438  0.4726

6 0.0378  -0.8809
7 0.0399  1.2010

8 0.0387  -0.8965
9 0.0338  -0.3536
10 0.0376  0.7268

11 0.0363  -0.1582
12 0.0353  1.2852

13 0.0312  -1.9866
14 0.0239 0.4161

15 0.0285  0.7056

16 0.0211 -0.7112
17 0.0208 -1.7105
18 0.0182  1.9922

19 0.0248 -1.5542
20 0.0172  0.5125

21 0.0272  1.0148

22 0.0189  -2.1158
23 0.0025  3.4051

24 0.0021 -3.7822
25 0.0020 2.7013

26 0.0239  -2.8668
27 0.0195 2.2513

28 0.0274  -0.8877
29 0.0202  -7.1463
30 0.0326  8.5322

structed on the training set, extrapolated to a 80-year maturity with an UFR,
equal to 0.0226 (the one minimizing the out-of-sample RMSE on the chosen
grid of UFRs) is presented.

4.3 12-months ahead forecast on historical IRS + CRA

In this section, we apply ideas from section 3 to real world IRS data observed
monthly from december 2013 to april 2016, adjusted from a CRA equal to
10bps.

Figure 15 and table 5 are to be read together. They contain the informa-
tions on the spot rates derived from the IRS data adjusted from a CRA, using
CMN with guessed values of a = 0.3655 and o = 0.0037 (other values than
a = 0.3655 and o = 0.0037 would produce the same results as the fitting is
exact for many different values of these parameters).
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Table 5 Descriptive statistics for the spot rates observed from december 2013 to april 2016

Maturity  Min. 1st Qrt  Median Mean 3rd Qrt  Max.

1 -0.0026  -0.0008  0.0000 0.0003  0.0019 0.0031
3 -0.0023  0.0002 0.0009 0.0013  0.0028 0.0065
5 -0.0008  0.0017 0.0030 0.0037  0.0056 0.0117
10 0.0046 0.0059 0.0090 0.0101  0.0132 0.0211
15 0.0063 0.0097 0.0127 0.0141  0.0179 0.0258
20 0.0069 0.0113 0.0144 0.0157  0.0199 0.0272
30 0.0071 0.0118 0.0155 0.0164  0.0208 0.0270

The static curves are generally upward sloping, and as time passes, lower
and lower spot rates are encountered. In addition, negative rates are observed

in table 5; which is coherent with the current context.

soye110ds

Menthly spot rates
from december 2013 to april 2016

Figure 15 Spot rates observed from december 2013 to april 2016

4.3.1 Benchmarking the model

Benchmarks are subjective. The one presented in this section does not aim at
showing that one method is always superior to the other. It aims at showing
that the method presented in this paper produces forecasts which are (more
than) reasonable, and actually close to other well-known methods forecasts
(on this given dataset).

Forecasts from the model presented in section 3 are hence compared to
those of two other models constructed in the spirit of by the [10]. The cross
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Table 6 Average out-of-sample error on real world IRS data + CRA

Method Parameters Avg. OOS error
CMN - auto.arima K =5,a=1,0=0.1555 0.0031
CMN - ets K=5a=1,0=0.2 0.0037
NS - auto.arima A = 1.8889 0.0031
NS - ets A = 1.8889 0.0035
NSS - auto.arima A1 =21, Ap =21 0.0027
NSS - ets AM=T7, =3 0.0035

sections of yields described by figure 15 and table 5 are fitted by the [20] model
(NS), and its extension by [25] (NSS). The formulas for the spot rates from
these models are respectively:

_ =T/ _—T/A
RM(t,T) = i1+ Bi2 {1;/)\} + B3 [1;/)\ - GT//\} (28)

and

1—e T/M + 1—e /M

T/\ DTN

1—e T/
T/ Ao

RM(t,T) = By + B2 { - eT/Al] (29)

+ Bra [ —e T/ AQ] (30)

Forecasts RM (t + h,T) are obtained by fitting univariate time series to
the parameters 8 ;,i = 1,...,4 with automatic ARIMA (auto.arima) and
exponential smoothing (ets) models from [17]. This automatic selection is
done only for the sake of the benchmarking exercise, and in order to conduct
the experience in fairly similar conditions for all the methods. In practice, a
visual inspection and an actual study of the univariate time series
would of course be required.

For all the methods the 6 methods, CMN, NS, NSS with auto.arima and
ets, we obtain 12-months ahead forecasts, from rolling estimation windows
of a fixed 6 months length, starting in december 2013. That is, the models
are trained on 6 months data, and predictions are made on 12 months data;
successively. The average out-of-sample RMSE are then calculated for each
method, on the whole surface of observed and forecasted yields.

The best parameters for CMN are obtained by cross-validation, with K €
{2,3,4,5,6}, 5 values of a comprised between 0.9 and 1, and 10 values of o
comprised between 0 and 0.2. For NS and NSS, A\; and Ao are chosen by cross-
validation, using the rolling estimation/forecasting we have just described.



Title Suppressed Due to Excessive Length 21

Table 7 Importance of Principal components

Indicator PC1 PC2 PC3

Standard deviation 0.1286 0.2461 0.2246
Proportion of variance (in %)  99.2415  0.5489 0.1315
Cumulative Proportion (in %)  99.2415  99.7904  99.9220

4.83.2 Bootstrap simulation of 12-months ahead spot rates

In this section, we use the last 12 months of the dataset to construct the
functional principal components. Using 12 months as the length of the fixed
window for estimation, we get an average out-of-sample RMSE of 0.0026 (on
a smaller number of testing samples than the 6 months estimation window, of
course).

An AR(1) is fitted to the observed univariate time series (B;;)¢, ¢ =
0,...,K, with a = 1, 0 = 0.0089, and K = 3 chosen by cross-validation.
The 3 functional principal components are presented on figure 16, and some
of their characteristics are summarized in table 7. We notice that the first
functional principal component explains already 99.2415% of the changes in
b;s, and the first 3 functional principal components selected by cross-validation
explain 99.9220%.

— PC1
— PC2
— PC3

06

04

0.2

principal companents values
0.0

-0.2

-0.4

o 5 10 15 20 25 30

time to maturity {in years)

Figure 16 Principal components of the b;s from april 2015 to april 2016

Figure 17 presents the autocorrelation functions of the residuals of AR(1)
fitted to (B), ¢ = 0,...,3 from april 2015 to april 2016. The residuals from
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Table 8 Descriptive statistics for fitted parameters b;s from april 2015 to april 2016

Maturity  Min. 1st Qrt  Median Mean 3rd Qrt  Max.

1 -0.0026  -0.0021 -0.0010 -0.0013 -0.0004 -0.0003
3 0.0000 0.0026 0.0040 0.0035 0.0048 0.0058
5 0.0025 0.0076 0.0030 0.0092 0.0108 0.0143
10 0.0115 0.0174 0.0090 0.0188 0.0208 0.0230
15 0.0122 0.0168 0.0127 0.0192 0.0220 0.0228
20 0.0117 0.0148 0.0144 0.0171 0.0195 0.0211
30 0.0080 0.0116 0.0155 0.0134 0.0150 0.0178

AR(1) fitted to (B¢i)e, i = 1,...,3 could be considered as stationary, but those
from the AR(1) fitted to (B;,0): seems to be closer to an AR(4).

We denote these residuals by (e;)¢, ¢ = 0,...,3. In order to obtain simu-
lations for the (B;:)¢, ¢ = 0,...,3, it is possible to use a gaussian hypothesis
on the residuals.

We choose to create 1000 bootstrap resamples with replacement of the
(€1i)t, @ = 0,...,3 3, denoted as (€1)t, @ =0,...,3, and create new pseudo
values for (8;;), 1 =0,...,3:

Bii=Brit+e;,i=0,...,3

Having done this, AR(1) forecasts B:Jrhl” can be obtained, in order to
construct:

K
by 7 (t+h) = Biineo + Z Brinenée (@) (31)
k=1

The ?)g’”’*(t + h) can then be plugged into formulae 9 and 11 to deduce
simulations of h-step ahead forecasts for the discount factors and discount
rates.

The 1000 simulations of 12-months ahead discount rates are presented in
figures 18 and 19.

3 even if for €t,0, considering figure 17, this makes a strong stationarity assumption on

the residuals
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Figure 17 Autocorrelation functions for the residuals of univariate time series(AR(1)) on

Bo, B1, B2, Bs

12-months ahead
discount rates forecasts. min., max., and quantiles
- around the median curve
&

discount rates (in %)
discount rates.(in %)

time to maturity (years)

time to maturity (years)
Figure 18 Curves simulated with principal

components from april 2015 to april 2016, and
bootstrap ressampling of the residuals

Figure 19 Min., Max., and quartiles around
the median curve for the simulations

5 Conclusion

In this paper, we introduced a method for swap discount curve construction
and extrapolation. This method relies on the closed form formulas for discount
factors available in exogenous short rate models. We presented different ways
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to calibrate and extrapolate the model on different data sets from the existing
literature. Moreover, we showed that the model’s parameters contain a certain
predictive power, enabling to obtain reasonable swap curves’ forecasts, with
predictive distribution.
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6 Appendix

6.1 Data from [3]

Maturity | Swap Par Rate
1 4.20%
2 4.30%
3 4.70%
5 5.40%
7 5.70%
10 6.00%
12 6.10%
15 5.90%
20 5.60%
25 5.55%

6.2 Data from [2]

Maturity | Swap Par Rate
0.5 2.75%
1 3.10%
1.5 3.30%
2 3.43%
2.5 3.53%
3 3.30%
4 3.78%
5 3.95%
7 4.25%
10 4.50%
12 4.65%
15 4.78%
20 4.88%
30 4.85%

6.3 Data from [12]

Maturity | Continuous yield
0.1 8.10%
1 7.00%
4 4.40%
9 7.00%
20 4.00%
30 3.00%
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6.4 Data from [1]

Maturity | EUR6M IRS | Eonia OIS
1 0.286% 0.000%
2 0.324% 0.036%
3 0.424% 0.127%
4 0.576% 0.274%
5 0.762% 0.456%
6 0.954% 0.647%
7 1.135% 0.827%
8 1.303% 0.996%
9 1.452% 1.147%
10 1.584% 1.280%
11 1.703% 1.404%
12 1.809% 1.516%
13 1.901% -
14 1.976% -
15 2.037% 1.764%
16 2.086% -
17 2.123% -
18 2.150% -
19 2.171% -
20 2.187% 1.939%
21 2.200% -
22 2.211% -
23 2.220% -
24 2.228% -
25 2.234% 2.003%
26 2.239% -
27 2.243% -
28 2.247% -
29 2.251% -
30 2.256% 2.038%
35 2.295% -
40 2.348% -
50 2.421% -
60 2.463% -
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