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Abstract
The recent liquidity crisis on the credit derivative market has raised the need

for consistent mark-to-model valuation method for some exotic products such as
leverage super-senior tranches. Roughly speaking, a Leverage Super-Senior (LSS)
tranche is a path-dependent option on the market-value of a traditional super-senior
tranche. This option is exercised at the first moment when a particular threshold is
hit by a pre-specified trigger proxy. There are three types of proxies commonly
used in LSS structures: the pool default losses, the weighted average of CDS
spreads and the market-value of the super-senior tranche. We show that the model
proposed in Laurent et al. (2007) can be easily adapted to assess the risk of LSS
structures and their fair value. In the latter paper, the dynamics of the loss process
can be described through a recombining binomial tree and transition probabilities
can be calibrated on liquid tranche quotes. In this note, we detail the computation
of LSS present values along the nodes of the tree, given that standard option trig-
gers – loss-only trigger, spread trigger or market value trigger – are all stopping
times with respect the the loss filtration.
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1 From Markovian contagion models to binomial trees
In the framework of Laurent et al. (2007), the aggregate loss process is assumed to be
a continuous-time Markov chain. It is well known that the loss distribution and the
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risk-neutral prices of loss derivative products satisfies the Kolmogorov (resp.) forward
and backward equations. When the latter differential equations are discretized, it is
straightforward to observe that the price dynamics can be represented along the nodes
of a binomial tree. In this section, we explain how to build up this tree.

All random variables introduced so far are defined on the same probability space
(Ω,G ,Q), where Q is a risk-neutral probability measure. The (fractional) loss at time t
is given by Lt = (1−R)Nt

n where R is the recovery rate1 and n is the number of names
in the credit portfolio. In the homogeneous version of the contagion model investigated
by Laurent et al. (2007), the number of defaults process N turns to be a continuous-time
Markov chain with generator matrix Λ defined by:

Λ =


−λ0 λ0 0 0

0 −λ1 λ1 0
. . . . . .

0 −λn−1 λn−1
0 0 0 0 0

 . (1)

The fact that default intensities λk, k = 0, . . . ,n−1 are assumed to be constant over time
is not a limit of our purpose. In the tree approach described below, this assumption can
be relaxed without any problem. We denote by Q(t, t ′) the transition matrix of N be-
tween time t and t ′, t < t ′, i.e., Qk,k′(t, t ′) = Q(Nt ′ = k′ |Nt = k), for all k,k′ ∈{0, . . . ,n}.

In what follows, we consider a tranche with attachment point a and detachment
point b, 0 ≤ a ≤ b ≤ 1. We denote by O(Nt) the outstanding nominal on a tranche. It
is equal to b−a if Lt < a, to b−Lt if a≤ Lt < b and to 0 if Lt ≥ b. For simplicity we
assume that the continuously compounded default free interest rate rt is deterministic

and we denote B(t, t ′) = exp

(
−

t ′∫
t

rsds

)
the time-t discount factor up to time t ′ (t ≤ t ′).

Let us recall that, for a European type payoff the price vector fulfils V (t, .) =
B(t, t ′)Q(t, t ′)V (t ′,) for 0 ≤ t ≤ t ′ ≤ T . When the generator matrix Λ does not de-
pend on time, the transition matrix can be expressed as Q(t, t ′) = exp(Λ(t ′− t)).

For practical implementation, we will be given a set of node dates t0 = 0, . . . , ti, . . .,
tns = T . For simplicity, we will further consider a constant time step ∆ = t1− t0 =
· · · = ti− ti−1 = · · · ; this assumption can easily be relaxed. The most simple discrete
time approximation one can think of is Q(ti, ti+1)' Id +Λ(ti)×(ti+1− ti), which leads
to Q

(
Nti+1 = k +1 |Nti = k

)
' λk∆ and Q

(
Nti+1 = k |Nti = k

)
' 1−λk∆. For large λk,

the transition probabilities can become negative. Thus, we will rather use the following
approximations: {

Q
(
Nti+1 = k +1 |Nti = k

)
' 1− e−λk∆,

Q
(
Nti+1 = k |Nti = k

)
' e−λk∆.

(2)

Given the latter approximations and as illustrated in Figure 1, the dynamics of the num-
ber of defaults process can be described through a recombining tree.

1The recovery rate is assumed to be the same for all names

2



N0 = 0 N1 = 0

N1 = 1

N2 = 0

N2 = 1

N2 = 2

N3 = 0

N3 = 1

N3 = 2

N3 = 3

e−λ0∆

1− e−λ0∆

e−λ0∆

1− e−λ0∆

e−λ1∆

1− e−λ1∆

e−λ0∆

1− e−λ0∆

e−λ1∆

1− e−λ1∆

e−λ2∆

1− e−λ2∆

Figure 1: Number of defaults tree

One could clearly think of using continuous Markov chain techniques to compute
present values of derivative products at hand, but the tree implementation is quite in-
tuitive from a financial point of view and encompass the pricing of some exotic loss
derivatives such as LSS structures. The tree approach corresponds to the implied bino-
mial tree of Derman and Kani (1994). Convergence of the discrete time Markov chain
to its continuous limit is a rather standard issue and will not be detailed here.

2 Present values of CDO tranches in the tree nodes
For the sake of notational simplicity, we denote by B(i) = B(ti, ti+1) the value of the
discount factor between ti and ti+1. We also denote by D(i,k) the value at time ti when
Nti = k of the default payment leg of the CDO tranche2. The default payment at time
ti+1 is equal to O(Nti)−O

(
Nti+1

)
. Thus, D(i,k) is given by the following recurrence

equation3:

D(i,k) = B(i) ·
((

1− e−λk∆

)
[D(i+1,k +1)+O(k)−O(k +1)]

+ e−λk∆D(i+1,k)
)

.
(3)

2We consider the value of the default leg immediately after ti. Thus, we do not consider a possible
default payment at ti in the calculation of D(i,k).

3This relation holds for i = 0, . . . ,ns−1, k = 0, . . . ,min(i,n−1) and with D(ns,k) = 0 when k = 0, . . . ,n
and D(i,n) = 0 when i = n, . . . ,ns−1.
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Let us now deal with a (unitary) premium leg. We denote the regular premium pay-
ment dates by T1, . . . ,Tp and for simplicity we assume that:

{
T1, . . . ,Tp

}
⊂ {t0, . . . , tns}.

Let us consider some date ti+1 and set l such that Tl < ti+1 ≤ Tl+1. Whatever ti+1, there
is an accrued premium payment of

(
O(Nti)−O

(
Nti+1

))
× (ti+1−Tl). If ti+1 = Tl+1,

i.e., ti+1 is a regular premium payment date, there is an extra premium cash-flow at
time ti+1 of O(N(Tl+1))× (Tl+1−Tl). Thus, if ti+1 is a regular premium payment date,
the total premium payment is equal to O(Nti)×(Tl+1−Tl). Let us denote by P(i,k) the
value at time ti when Nti = k of the unitary premium leg4. If ti+1 ∈

{
T1, . . . ,Tp

}
, P(i,k)

is provided by:

P(i,k) = B(i) ·
(

O(k)(Tl+1−Tl)

+
(

1− e−λk∆

)
P(i+1,k +1)+ e−λk∆P(i+1,k)

)
.

(4)

If ti+1 /∈
{

T1, . . . ,Tp
}

, then5:

P(i,k) = B(i) ·
((

1− e−λk∆

)
[P(i+1,k +1)+(O(k)−O(k +1))(ti+1−Tl)]

+ e−λk∆P(i+1,k)
)

.
(5)

The running spread associated with CDO tranche [a,b] is defined by

κ(i,k) =
D(i,k)
P(i,k)

. (6)

Moreover, the value of the CDO tranche (buy protection case) at time ti when Nti = k
is given by6

V (i,k) = D(i,k)−κ ·P(i,k). (7)

where κ is the contractual spread7.

3 Present values of LSS structures in the tree nodes
Leveraged super-senior structures have an exotic option payout, and are considered to
be challenging instruments to value. For a non-formal description of LSS structures
mechanism, the reader is referred to Kakodkar et al. (2006), Osako et al. (2005), Kalra
et al. (2006) or BIS (2008) for example. As for the pricing of LSS, it has been investi-
gated in different contexts by a number of authors including Sidenius et al. (2005), Hull
and White (2006), Brigo et al. (2007), Arnsdorf and Halperin (2007), Walker (2007),
Gregory (2008).

4As for the default leg, we consider the value of the premium leg immediately after ti. Thus, we do not
take into account a possible premium payment at ti in the calculation of P(i,k) either.

5Relations 4 and 5 hold for i = 0, . . . ,ns− 1, k = 0, . . . ,min(i,n− 1) and with P(ns,k) = 0 when k =
0, . . . ,n and P(i,n) = 0 when i = n, . . . ,ns−1.

6The equity tranche needs to be dealt with slightly differently since its spread is set to κ = 500bp.
However, the value of the CDO equity tranche is still given by D(i,k)−κ ·P(i,k).

7The contractual spread is such that the initial market value of the tranche is equal to zero (V (0,0) = 0).
It must be equal to κ = D(0,0)

P(0,0) .
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3.1 Cash-flows of LSS structures
Senior tranches have a low risk of being hit by defaults, and hence pay a relatively low
spread to an investor (usually considered to be protection seller). Because an investor
in such a tranche will effectively be expected to post a collateral equal to the tranche
notional, the return on the invested capital will also be relatively low.

In a leveraged super-senior contract, the investor is liable for a smaller posted col-
lateral, equal to a certain fraction α < 1 of the tranche notional. From this perspective,
the seller of protection receives the benefit of the cash-flows allocated to the full super
senior tranche. The spread leverage is thus equal to 1

α
compared with the spread paid

on the total notional of the tranche.

Because the protection buyer is not protected anymore against default losses that
exceed the fraction α of the tranche notional, a specified trigger is introduced. The
first time τ that the total basket exceed a pre-specified trigger level, the LSS contract
is unwound and settled on a mark-to-market basis, i.e., the investor pays the protection
buyer an amount, for an initial tranche notional of unity, equal to:

min
(
α,Va,b(τ)

)
, (8)

where Va,b(τ) is the mark-to-market value of the fully collateralized CDO (un-leveraged
tranche) at time τ when the trigger is reached. The unwind trigger is based on pool de-
fault losses in the simplest cases, or may be based on average spreads on the reference
pool CDS or other proxies such as market value of the un-leveraged senior tranche it-
self.

In some structures, unwind will be automatic, whereas in others the investor will
have the choice to de-leverage via posting more collateral at pre-specified levels. Gre-
gory (2008) argues that when the investor has the choice, it is often optimal for him
to unwind the contract and invest in a new LSS structure. In what follows, we assume
that investors have the latter behavior at the time when the trigger is hit.

We now describe the computation of LSS present values in the binomial tree de-
pending on what kind of trigger has been chosen.

3.2 Loss-only triggers
Let us consider a LSS structure with leverage 1

α
referencing a super-senior tranche with

attachment point a, detachment point b and maturity T . We denote by K(t) the pre-
specified loss-trigger8. The loss trigger K(t) is chosen in such a way that the tranche
cannot experience losses before the trigger is breached, i.e., maxt≤T (K(t)) < a. We
also denote by

τ = inf{t ≥ 0 | Lt ≥ K(t)} (9)

the first time at which the loss process exceeds the trigger level9. At time τ , the contract
is terminated and the protection buyer will receive the value of the un-leverage super

8Note that the loss trigger K may be time-dependent. When this is the case, K is usually chosen as a
non-decreasing function of time.

9Let us remark that τ is a stopping time in the filtration of the loss process.
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senior tranche capped at the posted collateral α(b−a). The time-t value of the trigger
option given Nt = k is thus equal to:

Ca,b,α(t,k) = E
[
1{τ<T}B(t,τ)min

(
Va,b(t,k),α(b−a)

)
| Nt = k

]
, t ≥ 0, k = 0, . . . ,n

(10)
where Va,b(t,k) is the time-t value of the traditional CDO tranche [a,b] given Nt = k.
This latter quantity can be computed for every state of the Markov chain N and at every
time t using the tree approach described in Section 2.

We now present how to compute Ca,b,α(t,k) along the nodes of the binomial tree.
Let us define the set Iτ of all nodes (i,k) in tree corresponding to the first times the loss
process reaches the trigger level, i.e.,

Iτ =
{

(i,k) | (1−R)(k−1)
n

< K(ti)≤
(1−R)k

n

}
. (11)

In Figure 2, the set Iτ can be represented as the nodes in the tree at the intersection
with the trigger curve (in dotted line).
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Figure 2: Loss-trigger in the binomial tree

For the sake of notational simplicity, let us denote by C(i,k) =Ca,b,α(ti,k) the value
of the trigger option at time ti, given Nti = k. For all ti, i = 0, . . . ,ns, we denote by kτ(i)
the number of defaults for which the trigger option is exercised at time ti10. The value
of the trigger option at time ti when Nti = kτ(i) is such that:

C(i,kτ(i)) = min{V (i,kτ(i)),α(b−a)} , i = 0, . . . ,ns, (12)

where V (i,kτ(i)) = Va,b(ti,kτ(i)) can be computed using recurrence equation 7. At
nodes (i,k) for which k < kτ(i), C(i,k) satisfies the following recurrence equation 11:

C(i,k) = B(i) ·
((

1− e−λk∆

)
C(i+1,k +1)+ e−λk∆C(i+1,k)

)
. (13)

As for the premium leg, the seller of protection (the investor) receives the benefit of
the cash-flows allocated to the full super senior tranche. The only difference compared
with the cash-flows generated by a traditional CDO tranche is the fact that the premium
payments are obviously stopped after the trigger is being hit because the contract is

10kτ (i) is such that (i,kτ (i)) ∈ Iτ

11This relation holds for i = 0, . . . ,ns− 1, k = 0, . . . ,min(i,kτ (i)− 1) and with C(ns,k) = 0 when k =
0, . . . ,n.
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closed after this date. We thus have to adapt recursion formulas 4 and 5 in the following
way. Let us denote by Jτ the set of nodes for which the trigger has not been hit yet:

Jτ =
{

(i,k) | (1−R)k
n

< K(ti)
}

. (14)

Let us denote by P(i,k) the value at time ti when Nti = k of the unitary premium leg
associated with the LSS. If ti+1 ∈

{
T1, . . . ,Tp

}
, P(i,k) is provided by:

P(i,k) = B(i) ·
((

1− e−λk∆

)
1(i+1,k+1)∈Jτ

[O(k)(Tl+1−Tl)+P(i+1,k +1)]

+ e−λk∆1(i+1,k)∈Jτ
[O(k)(Tl+1−Tl)+P(i+1,k)]

)
.

(15)

If ti+1 /∈
{

T1, . . . ,Tp
}

, then12:

P(i,k) = B(i) ·
((

1− e−λk∆

)
1(i+1,k+1)∈Jτ

[P(i+1,k +1)+(O(k)−O(k +1))(ti+1−Tl)]

+ e−λk∆1(i+1,k)∈Jτ
P(i+1,k)

)
.

(16)

Eventually, market value Vα(i,k) at time ti given Nti = k of a buy protection position
on this loss-trigger LSS structure, can be expressed as follows:

Vα(i,k) = C(i,k)−κ ·P(i,k), (17)

where κ is the contractual spread of the super-senior tranche [a,b], C(i,k) is defined by
recurrence equation 13 and P(i,k) is defined by recurrence equations 15 and 16.

3.3 Spread and Market-value triggers
In the case of triggers that are not purely loss-based (spread and market value), we
must make a more general analysis to account for the fact that tranche losses may
occur before the trigger is hit. This protection leg has the same cash-flows than the
default leg on the standard CDO tranche [a,a + α(b− a)] conditional on the trigger
event having not previously occurred. As a result the value of the LSS protection is
the sum of the following two components, the first corresponding to scenarios before
the trigger is hit when the tranche is consumed and the second to the trigger option as
before:

Dα(t,k)+Cα(t,k), (18)

The price Dα(t,k) at time t of the protection on the CDO tranche [a,a + α(b− a)],
when Nt = k is given by:

Dα(t,k) = E
[∫ T

t
1s<τ B(t,s)dL(a,a+α(b−a))

s | Nt = k
]

(19)

where L(x,y)
t = (Lt−x)+−(Lt−y)+ is the time-t loss on CDO tranche [x,y] with respect

to the total loss Lt . If we denote by D(i,k) the value at time ti when Nti = k of the LSS

12Relations 15 and 16 hold for i = 0, . . . ,ns − 1, k = 0, . . . ,min(i,n− 1) and with P(ns,k) = 0 when
k = 0, . . . ,n and P(i,n) = 0 when i = n, . . . ,ns−1.
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default payment leg, D(i,k) = Dα(ti,k) is given by the following recurrence equation13:

D(i,k) = B(i) ·
((

1− e−λk∆

)
1(i+1,k+1)∈Jτ

[D(i+1,k +1)+O(k)−O(k +1)]

+ e−λk∆1(i+1,k)∈Jτ
D(i+1,k)

)
.

(20)

where Jτ is the set of nodes for which the trigger has not been hit yet. As this set de-
pends on the type of trigger, it will be defined later on.

Eventually, market value Vα(i,k) at time ti given Nti = k of a buy protection position
on this loss-trigger LSS structure, can be expressed as follows:

Vα(i,k) = D(i,k)+C(i,k)−κ ·P(i,k), (21)

where κ is the contractual spread of the super-senior tranche [a,b], D(i,k) is defined
by recurrence equation 20, C(i,k) is defined by recurrence equation 13 and P(i,k) is
defined by recurrence equations 15 and 16. Of course, the set of nodes Iτ and Jτ in the
latter expressions must be adapted according to the type of trigger under scrutiny.

We now define the sets of nodes Iτ and Jτ used in the computation of Vα in equation
21. These are different according to the type of trigger which is considered: either
spread based triggers or market-value based triggers.

3.3.1 Spread triggers

As for a trigger driven by weighted average spreads, we consider that the credit default
swap index spread is a good proxy. If κt denote the value at time t of the CDS index
spread, the unwind date is thus defined by:

τ = inf{t ≥ 0 | κt ≥ K(t,Lt)} (22)

Note that the threshold level may depend both on time and on the current loss state.

The set Iτ of all nodes (i,k) corresponding to the first times the CDS index spread
reaches the trigger level is given by:

Iτ = {(i,k) | κ(i,k) < K(ti,k); κ(i,k +1)≥ K(ti,k +1)} , (23)

where κ(i,k) is the spread of the CDS index at time ti when Nti = k. The latter quantity
can be computed14 using equation 6 with a = 0% and b = 100%.

The set Jτ including the nodes for which the trigger has not been hit yet is defined
by:

Jτ = {(i,k) | κ(i,k) < K(ti,k)} . (24)

13This relation holds for i = 0, . . . ,ns−1, k = 0, . . . ,min(i,n−1) and with D(ns,k) = 0 when k = 0, . . . ,n
and D(i,n) = 0 when i = n, . . . ,ns−1.

14 According to standard market rules, the premium leg of the credit default swap index needs a slight
adaptation since the premium payments are based only upon the number of non-defaulted names and do not
take into account recovery rates. As a consequence, the outstanding nominal to be used in the recursion
equations 4 and 5 providing P(i,k) is such that O(k) = 1− k

n .
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3.3.2 Market-value triggers

The last trigger mechanism is based on the mark-to-market of the super-senior tranche.
If the value of the tranche falls below a certain threshold, the tranche is unwound at the
prevailing market conditions. The unwind date is thus defined by:

τ = inf{t ≥ 0 |Va,b(t)≥ K(t,Lt)}. (25)

where Va,b(t) is the mark-to-market value of the super-senior tranche at time t. Note
that the threshold level may depend both on time and on the current loss state.

The set Iτ of all nodes (i,k) corresponding to the first times the tranche market
value reaches the trigger level is given by:

Iτ = {(i,k) |V (i,k) < K(ti,k); V (i,k)≥ K(ti,k +1)} , (26)

where V (i,k) = Va,b(ti,k) is market value of the super-senior tranche at time t when
Nti = k. The latter quantity can be computed using recurrence equation 7.

The set Jτ including the nodes for which the trigger has not been hit yet is defined
by:

Jτ = {(i,k) |V (i,k) < K(ti,k)} . (27)
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