Model Risk Embedded in Yield-Curve Construction Methods

Areski Cousin ISFA, Université Lyon 1

Joint work with Ibrahima Niang

Bachelier Congress 2014

Brussels, June 5, 2014

- What is understood as a yield-curve in this presentation?
- Term-structure construction consists in finding a function

 $T \rightarrow P(t_0, T)$

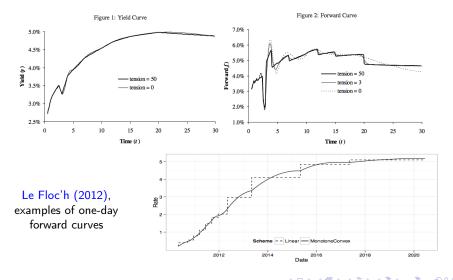
given a small number of market quotes S_1, \ldots, S_n

- Market information only reliable for a small set of liquid products with standard characteristics/maturities
- We have to rely on interpolation/calibration schemes to construct the curve for missing maturities

イボト イラト イラト

Introduction

Andersen (2007), curves based on tension splines



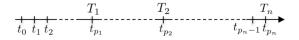
Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 3/35

What is a good yield curve construction method? (Hagan and West (2006))

- Ability to fit market quotes
- Arbitrage freeness
- Smoothness
- Locality of the interpolation method
- Stability of forward rate
- Consistency of hedging strategies : Locality of deltas ? Sum of sequential deltas close enough to the corresponding parallel delta ? (Le Floc'h (2012))

At time t_0 , the term-structure $T \rightarrow P(t_0, T)$ is built from market quotes of standard products

- *n* : number of products
- $\mathbf{S} = (S_1, \ldots, S_n)$: set of market quotes at t_0
- $\mathbf{T} = (T_1, \ldots, T_n)$: corresponding set of increasing maturities



• $\mathbf{t} = (t_1, \cdots, t_m)$: payment time grid

• The two time grids **T** and **t** coincide at indices p_i such that $t_{p_i} = T_i$

Market-fit condition

Let $\mathbf{P} = (P(t_0, t_1), \dots, P(t_0, t_m))'$ be the vector formed by the values of the curve at payment dates t_1, \dots, t_m

Assumption : Linear representation of present values

Presents values of products used in the curve construction have a linear representation with respect to ${\bf P}$

For $i = 1, \ldots, n$

$$\sum_{k=1}^{p_i} A_{ik} P(t_0, t_k) = B_i$$

where

- $\mathbf{A} = (A_{ij})$ is a $n \times m$ matrix with positive coefficients
- $\mathbf{B} = (B_i)$ is a $n \times 1$ matrix with positive coefficients
- A and B only depend on current market quotes S, on standard maturities T, on payment dates t and on products characteristics.

Market-fit condition

The market-fit condition can be restated as a rectangular system of linear equations

$$\mathbf{A} \cdot \mathbf{P} = \mathbf{B}$$

where

- $\mathbf{P} = (P(t_0, t_1), \dots, P(t_0, t_m))'$
- A is a $n \times m$ matrix with positive coefficients
- **B** is a $n \times 1$ matrix with positive coefficients
- A and B only depend on current market quotes S, on standard maturities T, on payment dates t and on products characteristics.

Example 1 : Corporate or sovereign debt yield curve

- S_i : market price (in percentage of nominal) at time t₀ of a bond with maturity T_i
- c_i : fixed coupon rate
- $t_1 < \ldots < t_{p_i} = T_i$: coupon payment dates, δ_k : year fraction of period (t_{k-1}, t_k)

$$c_i \sum_{k=1}^{P_i} \delta_k P^B(t_0, t_k) + P^B(t_0, T_i) = S_i$$

where $P^{B}(t_{0}, t_{k})$ represents the price of a (fictitious default-free) ZC bond with maturity t_{k}

Example 2 : Discounting curve based on OIS

- S_i : par rate at time t_0 of an overnight indexed swap with maturity T_i
- $t_1 < \cdots < t_{p_i} = T_i$: fixed-leg payment dates (annual time grid)
- δ_k : year fraction of period (t_{k-1}, t_k)

$$S_i \sum_{k=1}^{p_i-1} \delta_k P^D(t_0, t_k) + (S_i \delta_{p_i} + 1) P^D(t_0, T_i) = 1, \quad i = 1, ..., n$$

where $P^{D}(t_{0}, t_{k})$ is the discount factor associated with maturity date t_{k}

Market-fit condition

Example 3 : credit curve based on CDS

- S_i : fair spread at time t_0 of a credit default swap with maturity T_i
- $t_1 < \cdots < t_p = T_i$: premium payment dates, δ_k : year fraction of period (t_{k-1}, t_k)
- R : expected recovery rate of the reference entity

$$S_{i}\sum_{k=1}^{P_{i}}\delta_{k}P^{D}(t_{0},t_{k})Q(t_{0},t_{k}) = -(1-R)\int_{t_{0}}^{T_{i}}P^{D}(t_{0},u)dQ(t_{0},u)$$

where $u \to Q(t_0, u)$ is the \mathcal{F}_{t_0} -conditional (risk-neutral) survival distribution of the reference entity.

We implicitly assume here that recovery, default and interest rates are stochastically independent.

Example 3 : credit curve based on CDS (cont.)

Using an integration by parts, the survival function $u \to Q(t_0, u)$ satisfies a linear relation :

$$S_{i} \sum_{k=1}^{p_{i}} \delta_{k} P^{D}(t_{0}, t_{k}) Q(t_{0}, t_{k}) + (1 - R) P^{D}(t_{0}, T_{i}) Q(t_{0}, T_{i})$$
$$+ (1 - R) \int_{t_{0}}^{T_{i}} f^{D}(t_{0}, u) P^{D}(t_{0}, u) Q(t_{0}, u) du = 1 - R$$

where $f^{D}(t_{0}, u)$ is the instantaneous forward (discount) rate associated with maturity date u.

We studied two types of curves :

- Interest-rate curves : $P = P^B$ (price of zero-coupon bond), $P = P^D$ (discount factors)
- Credit curves : P = Q (risk-neutral survival probability)

Arbitrage-free condition

A curve $T \to P(t_0, T)$ is said to be arbitrage-free if the two following conditions hold

•
$$P(t_0, t_0) = 1$$

• $T \rightarrow P(t_0, T)$ is a non-increasing function

Market fit condition :

$$\sum_{k=1}^{P_1} A_{ik} P(t_0, t_k) + \dots + \sum_{k=p_{i-1}+1}^{p_i} A_{ik} P(t_0, t_k) = B_i$$

Arbitrage-free inequalities :

$$\left\{egin{array}{ll} P(t_0,T_1)\leqslant P(t_0,t_k)\leqslant 1 & ext{for } 1\leqslant k\leqslant p_1\ dots\ P(t_0,T_i)\leqslant P(t_0,t_k)\leqslant P(t_0,T_{i-1}) & ext{for } p_{i-1}+1\leqslant k\leqslant p_i-1 \end{array}
ight.$$

Proposition (arbitrage-free bounds)

For i = 1, ..., n,

$$P_{\min}(t_0, T_i) \leqslant P(t_0, T_i) \leqslant P_{\max}(t_0, T_i)$$

where

$$P_{\min}(t_0, T_i) = \frac{1}{A_{ip_i}} \left(B_i - \sum_{j=1}^{i-1} H_{ij} P(t_0, T_{j-1}) - (H_{ii} - A_{ip_i}) P(t_0, T_{i-1}) \right)$$
$$P_{\max}(t_0, T_i) = \frac{1}{H_{ii}} \left(B_i - \sum_{j=1}^{i-1} H_{ij} P(t_0, T_j) \right)$$

and where $H_{ij} := \sum_{k=p_{j-1}+1}^{p_j} A_{ik}$

< ∃→

글 🕨 🗦

Arbitrage-free bounds

Iterative computation of model-free bounds

 $\widehat{P}_{\mathsf{min}}(t_0, T_1) \leqslant P(t_0, T_1) \leqslant \widehat{P}_{\mathsf{max}}(t_0, T_1)$

where

• Step 1 :

$$\widehat{P}_{\min}(t_0, T_1) = \frac{1}{A_{1\rho_1}} \left(B_1 - (H_{11} - A_{1\rho_1}) \right)$$
$$\widehat{P}_{\max}(t_0, T_1) = \frac{B_1}{H_{11}}$$

• Step 2 : For
$$i = 2, ..., n$$
,
 $\widehat{P}_{\min}(t_0, T_i) \leqslant P(t_0, T_i) \leqslant \widehat{P}_{\max}(t_0, T_i)$

where

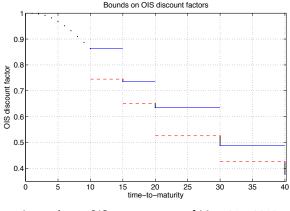
$$\widehat{P}_{\min}(t_{0}, T_{i}) = \frac{1}{A_{i\rho_{i}}} \left(B_{i} - \sum_{j=1}^{i-1} H_{ij} \widehat{P}_{\max}(t_{0}, T_{j-1}) - (H_{ii} - A_{i\rho_{i}}) \widehat{P}_{\max}(t_{0}, T_{i-1}) \right)$$

$$\widehat{P}_{\max}(t_{0}, T_{i}) = \frac{1}{H_{ii}} \left(B_{i} - \sum_{j=1}^{i-1} H_{ij} \widehat{P}_{\min}(t_{0}, T_{j}) \right)$$

- We consider OIS par rates as of $t_0 = May 31st 2013$
- Market quotes S available for n = 14 maturities T = (1y, 2y, ..., 10y, 15y, 20y, 30y, 40y)
- $\mathbf{t} = (1y, 2y, \dots, 10y, 11y, \dots, 40y)$: payment time grid
- A is a 14 \times 40 rectangle matrix, B is a 14 \times 1 column vector
- We are looking for bounds on OIS discount factors $P^{D}(t_{0}, T_{i})$, i = 1, ..., n

Arbitrage-free bounds : OIS discount curve

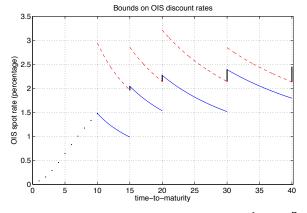
Bounds for OIS discount factors $P^{D}(t_{0}, T_{i})$ are sharp



Input data : OIS swap rates as of May, 31st 2013

Arbitrage-free bounds : OIS discount curves

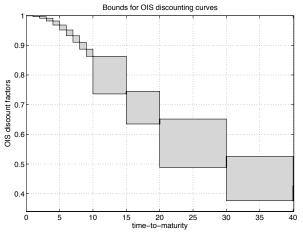
Bounds for the associated discount rates



Input data : OIS swap rates as of May, 31st 2013, $-\frac{1}{T}\log(P^D(t_0,T))$

Arbitrage-free bounds : OIS discount curves

Range of arbitrage-free market-consistent OIS discount curves



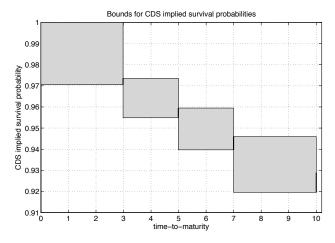
Input data : OIS swap rates as of May, 31st 2013

Arbitrage-free bounds : CDS-implied default curves

- We consider AIG CDS spreads as quoted at $t_0 = \text{Dec } 17, 2007$
- Market quotes **S** available for n = 4 maturity times $\mathbf{T} = (1y, 3y, 5y, 10y)$
- t = the whole time interval (0, 10y)
- A is a $4 \times \infty$ rectangle matrix (the present value of CDS protection legs involves an integral instead of a sum)
- B is a 4 × 1 column vector
- We are looking for bounds on risk-neutral survival probabilities $Q(t_0, T_i)$, i = 1, ..., n

Arbitrage-free bounds : CDS-implied default curves

Range of market-consistent survival curves



Input data : CDS spreads of AIG as of December 17, 2007, R = 40%, $P^D(t_0, t) = \exp(-3\%(t - t_0))$

Mean-reverting term-structure models as generators of admissible yield curves

The risk-neutral dynamics of short-term interest rates (or default intensities) is assumed to follow either

a OU process driven by a Lévy process

$$dX_t = a(b(t; \mathbf{p}, \mathbf{T}, \mathbf{S}) - X_t)dt + \sigma dY_{ct},$$

where Y is a Lévy process with cumulant function κ and parameter set \mathbf{p}_L

or an extended CIR process

$$dX_t = a(b(t; \mathbf{p}, \mathbf{T}, \mathbf{S}) - X_t)dt + \sigma \sqrt{X_t} dW_t,$$

where W is a standard Browian motion

Depending on the context, $\mathbf{p} = (X_0, a, \sigma, c, \mathbf{p}_L)$ will denote the parameter set of the Lévy-OU process and $\mathbf{p} = (X_0, a, \sigma)$ the parameter set of the CIR process

In both cases, b is represented by a step function :

$$b(t; \mathbf{p}, \mathbf{T}, \mathbf{S}) = b_i(\mathbf{p}, \mathbf{T}, \mathbf{S})$$
 for $T_{i-1} < t \leq T_i, i = 1, \dots, n$

The vector $\mathbf{b} = (b_1, \dots, b_n)$ solves a triangular system of non-linear equations.

Market-fit linear conditions

The rectangular market-fit system translates into a triangular system of non-linear equations

$$\mathbf{A} \cdot \mathbf{P}(\mathbf{b}) = \mathbf{B}$$

where

- P(b) = (P(t₀, t_k; b))_{k=1,...,m} is the m × 1 vector of discount factors, ZC bond price or survival probabilities (depending on the context).
- A is a $n \times m$ matrix, B is a $n \times 1$ matrix
- A and B only depend on current market quotes S, on standard maturities T and on products characteristics.

Proposition (Discount factors in the Lévy-OU approach)

Let $T_{i-1} < t \leq T_i$. In the Lévy-OU model, the current value of the discount factor or of an assimilated quantity with maturity time *t* is given by

$$P(t_0, t; \mathbf{b}) := \mathbb{E}\left[\exp\left(-\int_{t_0}^t X_u du\right)\right] = \exp\left(-I(t_0, t, \mathbf{b})\right)$$

where

$$egin{aligned} I(t_0,t,\mathbf{b}) &:= X_0 \phi(t-t_0) + \sum_{k=1}^{i-1} b_k \left(\xi(t-T_{k-1}) - \xi(t-T_k)
ight) \ &+ b_i \xi(t-T_{i-1}) + c \psi(t-t_0) \end{aligned}$$

and functions ϕ , ξ and ψ are defined by

$$\begin{split} \phi(s) &:= \frac{1}{a} \left(1 - e^{-as} \right) \\ \xi(s) &:= s - \phi(s) \\ \psi(s) &:= -\int_0^s \kappa \left(-\sigma \phi(s - \theta) \right) d\theta \end{split}$$
(1)

Proposition (Discount factors in the CIR approach)

Let $T_{i-1} < t \leq T_i$. In the CIR model, the current value of the discount factor or of an assimilated quantity with maturity time *t* is given by

$$P(t_0, t; \mathbf{b}) := \mathbb{E}\left[\exp\left(-\int_{t_0}^t X_u du\right)\right] = \exp\left(-I(t_0, t, \mathbf{b})\right)$$

where

$$I(t_0, t, \mathbf{b}) := X_0 \varphi(t - t_0) + \sum_{k=1}^{i-1} b_k \left(\eta(t - T_{k-1}) - \eta(t - T_k) \right) + b_i \eta(t - T_{i-1})$$

and functions φ and η are defined by

$$\varphi(s) := \frac{2(1-e^{-hs})}{h+a+(h-a)e^{-hs}}$$

$$\eta(s) := 2a \left[\frac{s}{h+a} + \frac{1}{\sigma^2} \log \frac{h+a+(h-a)e^{-hs}}{2h} \right]$$

$$(2)$$

where $h := \sqrt{a^2 + 2\sigma^2}$

Construction of (b_1, \ldots, b_n) by a bootstrap procedure

For any i = 1, ..., n, the present value of the instrument with maturity T_i

- only depends on b_1, \ldots, b_i
- is a monotonic function with respect to b_i

The vector $\mathbf{b} = (b_1, \dots, b_n)$ satisfies a triangular system of non-linear equations that can be solved recursively :

• Find b₁ as the solution of

$$\sum_{j=1}^{p_1} A_{1j} P(t_0, t_j; b_1) = B_1$$

• Assume b_1, \ldots, b_{k-1} are known, find b_k as the solution of

$$\sum_{j=1}^{p_k} A_{kj} P(t_0, t_j; b_1, \dots, b_k) = B_k$$

Proposition (smoothness condition)

A curve $t \to P(t_0, t)$ constructed from the previous approach is of class C^1 and the corresponding forward curve (or default density function) is continuous.

Proof : Let $b(\cdot)$ be a deterministic function of time, instantaneous forward rates are such that

Lévy-driven OU

$$f(t_0,t) = X_0 e^{-a(t-t_0)} + a \int_{t_0}^t e^{-a(t-u)} b(u) du - c\kappa(-\sigma\phi(t-t_0))$$

where ϕ is defined by (1)

extended CIR

$$f^{CIR}(t_0,t) = X_0\varphi'(t-t_0) + a\int_{t_0}^t \varphi'(t-u)b(u)du$$

where φ' is the derivative of φ given by (2)

Assume that a curve has been constructed from a Lévy-OU term-structure model with positive parameters ($X_0, a, \sigma, c, \mathbf{p}_L$) :

$$f(t_0, t) = X_0 e^{-a(t-t_0)} + a \sum_{k=1}^{i-1} b_k \left(\phi(t - T_{k-1}) - \phi(t - T_k)\right) \\ + a b_i \phi(t - T_{i-1}) - c \kappa(-\sigma \phi(t - t_0))$$

for any $T_{i-1} \leq t \leq T_i$, $i = 1, \ldots, n$.

Proposition (arbitrage-free condition in the Lévy-OU approach)

Assume that the derivative of the Lévy cumulant κ' exists and is strictly monotonic on $(-\infty, 0)$. The curve is arbitrage-free on the time interval (t_0, T_n) if and only if, for any i = 1, ..., n, $f(t_0, T_i) > 0$ and one of the following condition holds :

•
$$\frac{\partial f}{\partial t}(t_0, T_{i-1}) \frac{\partial f}{\partial t}(t_0, T_i) \geq 0$$

•
$$\frac{\partial f}{\partial t}(t_0, T_{i-1}) \frac{\partial f}{\partial t}(t_0, T_i) < 0$$
 and $f(t_0, t_i) > 0$ where t_i is such that $\frac{\partial f}{\partial t}(t_0, t_i) = 0$,

Assume that a curve has been constructed from an extended CIR term-structure model with positive parameters (X_0, a, σ) :

$$f^{CIR}(t_0,t) = X_0 \varphi'(t-t_0) + a \sum_{k=1}^{i-1} b_k \left(\varphi(t-T_{k-1}) - \varphi(t-T_k)\right) + a b_i \varphi(t-T_{i-1})$$

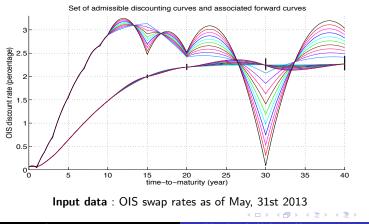
for any
$$T_{i-1} \leq t \leq T_i$$
, $i = 1, \ldots, n$.

Proposition (arbitrage-free condition in the CIR approach)

The constructed curve is arbitrage-free if, for any $i = 1, \dots, n$, the implied b_i is positive

Set of admissible OIS discount and forward curves : Lévy-OU short rates

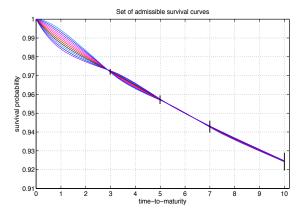
Parameters : a = 0.01, $\sigma = 1$, $X_0 = 0.063\%$ (fair rate of IRS vs OIS 1M). The Lévy driver is a Gamma subordinator with parameter $\lambda = 1/50$ bps (mean jump size of 50 bps). $c = \{1, 10, 20, ..., 100\}$



Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 30/35

Set of admissible survival curves : CIR intensities

Parameters : $a = \sigma = 1$, $100 \cdot X_0 = \{0.01, 0.25, 0.49, 0.73, 0.97, 1.21, 1.45, 1.69, 1.94, 2.18, 2.42\}$



Input data : CDS spreads of AIG as of December 17, 2007, R = 40%, $P^D(t_0, t) = \exp(-3\%(t - t_0))$

The proposed framework could be extended or used in several directions :

• Yield-curve diversity impact on present values (PV) and hedging stategies ?

$$\max_{i,j} \|PV(C_i) - PV(C_j)\|_p$$

where the max is taken over all couples of admissible curves (C_i, C_j)

• Risk management in the presence of uncertain parameters?

$$dX_t = \tilde{a}(b(t; \tilde{a}, \tilde{\sigma}, \mathbf{T}, \mathbf{S}) - X_t)dt + \tilde{\sigma}\sqrt{X_t}dW_t,$$

where $\mathsf{Range}(\tilde{a}, \tilde{\sigma}) \subset \{(a, \sigma) \mid b(t; a, \sigma, \mathsf{T}, \mathsf{S}) \geq 0 \ \forall t\}$

- Extension to multicurve environments?
- Impact on the assessment of counterparty credit risk (CVA, EE, EPE, ...)?

References (curve construction methods)

- Andersen, 2007, Discount curve construction with tension splines
- Ametrano and Bianchetti, 2009, Bootstrapping the illiquidity
- Chibane, Selvaraj and Sheldon, 2009, *Building curves on a good basis*
- Fries, 2013, Curves and term structure models. Definition, calibration and application of rate curves and term structure market models
- Hagan and West, 2006, Interpolation methods for curve construction
- Iwashita, 2013, Piecewise polynomial interpolations
- Jerassy-Etzion, 2010, Stripping the yield curve with maximally smooth forward curves
- Kenyon and Stamm, 2012, Discounting, LIBOR, CVA and funding : Interest rate and credit pricing
- Le Floc'h, 2012, Stable interpolation for the yield curve

References (model risk)

- Branger and Schlag, 2004, Model risk : A conceptual framework for risk measurement and hedging
- Cont, 2006, Model uncertainty and its impact on the pricing of derivative instruments
- Davis and Hobson, 2004, The range of traded option prices
- Derman, 1996, Model risk
- Eberlein and Jacod, 1997, On the range of option prices
- El Karaoui, Jeanblanc and Shreve, 1998, Robustness of the Black and Scholes formula
- Green and Figlewski, 1999, Market risk and model risk for a financial institution writing options
- Hénaff, 2010, A normalized measure of model risk
- Morini, 2010, Understanding and managing model risk

Cumulant function of some Lévy processes

	Cumulant
Brownian motion	$\kappa(\theta) = \frac{\theta^2}{2}$
Gamma process	$\kappa(heta) = -\log\left(1 - rac{ heta}{\lambda} ight)$
Inverse Gaussian process	$\kappa(heta) = \lambda - \sqrt{\lambda^2 - 2 heta}$