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Motivation

Financial term-structures describes the evolution of some financial or
economic quantities as a function of time horizon.

Examples : interest-rates, bond yields, credit spreads, implied default
probabilities, implied volatilities.

Applications : valuation of financial and insurance products, risk
management
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The term-structure construction problem

Several constraints have to be considered

Compatibility with market information : at a given date t0, the curve
under construction T → P(t0,T ) shall be compatible with observed prices
of some reference products.

Arbitrage-free construction : this translates into some specific shape
properties such as positivity, monotonicity, convexity or bounds on the
curve values

Additional conditions can be required : minimum degree of smoothness,
control of local convexity
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The term-structure construction problem

1) Compatibility with market information :

At time t0, we observe the market quotes S1, . . . , Sn of n liquidly traded
instruments

The values of these products depend on the value of the curve at m input
locations X = (τ1, . . . , τm)

The vector of output values P(t0,X ) := (P(t0, τ1), . . . ,P(t0, τm))> satisfies a
linear system of the form

A · P(t0,X ) = b,

where

A is a n ×m real-valued matrix

b is a n-dimensional column vector

n < m =⇒ indirect and partial information on the curve values at τ1, . . . , τm

2) No-arbitrage assumption :

T → P(t0,T ) is typically a monotonic bounded function
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Range of arbitrage-free OIS discount curves

We observe the quoted par rates Si of an OIS with maturities Ti , i = 1, . . . , n

1) Compatibility with market quotes :

The curve T → P(t0,T ) of OIS discount factors is such that

Si

pi−1∑
k=1

δkP(t0, tk) + (Siδpi + 1)P(t0,Ti ) = 1, i = 1, ..., n

t1 < · · · < tpi = Ti : fixed-leg payment dates (annual time grid)

δk : year fraction of period (tk−1, tk)

2) No-arbitrage assumption :

T → P(t0,T ) is a decreasing function such that P(t0, t0) = 1
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Range of arbitrage-free OIS discount curves

n = 14 liquidly traded maturities 1, 2, . . . , 10, 15, 20, 30, 40 years.
m = 40 points involved in the market-fit linear system
No-arbitrage bounds on OIS discount factors
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Bounds for OIS discounting curves

Input data : OIS swap rates as of May, 31st 2013.
Source : Cousin and Niang (2014)
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Range of arbitrage-free CDS-implied survival functions

We observe at time t0 the fair spreads Si of a CDS with maturities Ti ,
i = 1, . . . , n

1) Compatibility with market quotes :

The curve T → P(t0,T ) of (risk-neutral) survival probabilities is such that

Si

pi∑
k=1

δkD(t0, tk)P(t0, tk) = −(1− R)

∫ Ti

t0

D(t0, u)dP(t0, u), i = 1, ..., n

t1 < · · · < tp = Ti : trimestrial premium payment dates, δk : year fraction
of period (tk−1, tk)

D(t0,T ) is the discount factor associated with maturity date T

R : expected recovery rate of the reference entity

2) No-arbitrage assumption :

T → P(t0,T ) is a decreasing function such that P(t0, t0) = 1
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Range of arbitrage-free CDS-implied survival functions

n = 4 liquidly traded maturities 3, 5, 7, 10 years.
m = 40 points involved in the market-fit linear system
No-arbitrage bounds on the issuer implied survival distribution function
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Bounds for CDS implied survival probabilities

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
D(t,T ) = exp(−3%(T − t))
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From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic
interpolation techniques.

Parametric approaches : Nelson-Siegel or Svensson models (used by most
central banks)

Non-parametric interpolation methods : shape-preserving spline techniques
(lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally
allows for quantification of uncertainty ?
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Classical kriging

A function f is only known at a limited number of points x1, . . . , xn

Areski Cousin, ISFA, Université Lyon 1 Kriging of financial term-structures 10/34



Classical kriging

The (unknown) function f is assumed to be a sample path of a Gaussian
process Y

Areski Cousin, ISFA, Université Lyon 1 Kriging of financial term-structures 11/34



Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process
(
Y (x), x ∈ Rd

)
is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R.

and its covariance function

K : (x , x ′) ∈ Rd × Rd −→ Cov(Y (x),Y (x ′)) ∈ R.

Table: Some popular covariance functions K(x , x ′) used in 1D kriging methods.

Name Expression Class

Gaussian σ2 exp
(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x′|

θ

)
C0
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Classical kriging

The estimation of f relies on the conditional distribution of Y given the
observed values yi = f (xi ) at points xi , i = 1, . . . , n.
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Classical kriging

X = (x1, . . . , xn)> ∈ Rn×d : some design points

y = (y1, . . . , yn)> ∈ Rn : observed values of f at these points

Y (X ) = (Y (x1), . . . ,Y (xn))> : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | Y (X ) = y is a GP with mean function

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− k(x)>K−1k(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xn))> , K is the covariance matrix of Y (X )
and k(x) = (K (x , x1) , . . . ,K (x , xn))>
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Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real
function f satisfies some linear equality constraints of the form

A · f (X ) = b, (1)

where

A is a given matrix of dimension n ×m

X = (x1, . . . , xm)> ∈ Rm×d

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm

b ∈ Rn
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Extension to linear equality constraints

X = (x1, . . . , xm)> ∈ Rm×d : some design points

b = (b1, . . . , bn)> ∈ Rn : right-hand side of the linear system

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA>

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function f given
that {

A · f (X ) = b
f ∈M

whereM is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

How to cope with the infinite-dimensional monotonicity constraints ?

Which estimator could we propose for the term-structure ?
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Extension to monotonicity constraints (1D case)

Proposed methodology : On an interval D = [x , x ] of R, we construct a
finite-dimensional approximation of Y for which the monotonicity constraint is
easy to check.

Regular subdivision u0 < . . . < uN of D with a constant mesh δ

Set of increasing basis functions (φi )i=0,...,N defined on this subdivision

hi (x) := max
(
1− |x−ui |

δ
, 0
)

φi (x) =
∫ x

x
hi (u)du
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Extension to monotonicity constraints (1D case)

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely
differentiable paths.

The finite-dimensional process Y N defined on D by

Y N(x) = Y (u0) +
N∑
j=0

Y ′(uj)φj(x)

uniformly converges to Y , almost surely.

Y N is non-decreasing (resp. non-increasing) on D if and only if
Y ′(uj) ≥ 0 (resp. Y ′(uj) ≤ 0) for all j = 0, . . . ,N.

Let ξ := (Y (u0),Y ′(u0), . . . ,Y ′(uN))>, then ξ ∼ N (0, ΓN) where

ΓN =

K(u0, u0) ∂K
∂x′ (u0, uj)

∂K
∂x

(ui , u0) ∂2K
∂x∂x′ (ui , uj)


0≤i,j≤N
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Extension to monotonicity constraints (1D case)

For a given covariance function K , we assume that the unknown function f is a
sample path of the GP

Y N(x) = η +
N∑
j=0

ξjφj(x), x ∈ D,

where ξ := (η, ξ0, . . . , ξN)> ∼ N (0, ΓN).

Kriging f is equivalent to find the conditional distribution of Y N given{
A · Y N(X ) = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint
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Extension to monotonicity constraints (1D case)

Or equivalently, to find the distribution of the truncated Gaussian vector
ξ ∼ N (0, ΓN) given{

A · Φ · ξ = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint

where Φ is a m × (N + 2) matrix defined as

Φi,j :=

{
1 for i = 1, . . . ,m and j = 1,
φj−2 (xi ) for i = 1, . . . ,m and j = 2, . . . ,N + 2.
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Extension to monotonicity constraints (1D case)

Which estimator could we use for f ?

We consider the mode of the truncated gaussian process (most probable path) :

MN
K (x | A, b) = ν +

N∑
j=0

νjφj(x),

where ν = (ν, ν0, . . . , νN)> ∈ RN+2 is the solution of the following convex
optimization problem :

ν = arg min
c∈C∩I(A,b)

(
1
2
c>
(

ΓN
)−1

c
)
,

with

C =
{
ξ ∈ RN+2 : ξj ≤ 0, j = 0, . . . ,N

}
I(A, b) =

{
ξ ∈ RN+2 : A · Φ · ξ = b

}
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Extension to monotonicity constraints (1D case)

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector ξ given the linear equality constraint :

Z ∼ {ξ | B · ξ = b} ∼ N
(

(BΓN)>
(
BΓNB>

)−1
b, ΓN −

(
BΓN

)> (
BΓNB>

)−1
BΓN

)
where B = A · Φ.

2) Simulate

{Z | ξj ≤ 0, j = 0, . . . ,N} ∼ {ξ | B · ξ = b and ξj ≤ 0, j = 0, . . . ,N}

by an accelerated rejection sampling method (we use the method proposed in
Maatouk and Bay, 2014a)

3) The corresponding sample curves Y N(·) = η +
∑N

j=0 ξjφj(·) satisfies the
constraints on the entire domain D.
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Kriging of OIS discount curves

We compare two covariance functions : Gaussian and Matérn 5/2

Hyper-parameters θ and σ are estimated using cross-validation

Comparison with Nelson-Siegel and Svensson curve fitting
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Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance
function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.
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Kriging of OIS discount curves

Corresponding spot rate curves : − 1
x
logP(x)
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely spot rate curve − 1

x
logMN

K (x | A, b).
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Kriging of OIS discount curves

Corresponding forward rate curves : − d
dx

logP (x)

Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely forward rate curve − d

dx
logMN

K (x | A, b).
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Kriging of OIS discount curves (2D)

The previous approach can be extended in dimension 2.

0

10

20

30

40
2010−06−02

2010−07−05

2010−08−03

2010−11−29

2010−12−30

2011−01−31

2011−05−10

2011−06−10

0.4

0.6

0.8

1.0

time−to−maturity dates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Dicount curves. OIS discount factors as a function of time-to-maturities and
quotation dates.

Areski Cousin, ISFA, Université Lyon 1 Kriging of financial term-structures 27/34



Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt

CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian
covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of
06/01/2005.
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Kriging of CDS-implied default distribution (2D)

The previous approach can be extended in dimension 2.
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Perspectives

Impact of curve uncertainty on the assessment of related products and
their associated hedging strategies

What if the underlying market quotes are not reliable due to e.g. market
illiquidity (data observed with a noise) ?

Kriging of arbitrage-free volatility surfaces ?
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Kriging of arbitrage-free volatility surface
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Thanks for your attention.
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