Delta-Hedging Correlation Risk?

Areski Cousin ISFA, Université Lyon 1

Séminaire Lyon-Lausanne

Lausanne, 19 January 2011

э

Areski Cousin, Stéphane Crépey and Yu Hang Kan (2010) Delta-Hedging Correlation Risk?

🗇 🕨 🖉 🖢 🖌 🖉 🕨

Introduction

- Performance analysis of alternative hedging strategies developed for the correlation market
- CDO tranches on standard Index such as CDX North America Investment Grade index

3

A 10

• Credit crisis has deeply affected the CDS index market

- Series 10 of CDX North America index suffers defaults of Fannie Mae, Freddie Mac and Lehman Brothers
- High level of credit spreads and volatility
- Recent revision of Basel II regulation concerns risk-management of credit derivatives
 - Residual risks resulting from dynamic hedging strategies must be reflected in the capital charge
- Performance and efficiency of underlying hedging methods is a topical issue

Generally speaking, ...

Hedging derivative instruments consists in taking opposite positions in some primary liquid instruments whose market values are sensitive to the same underlying risks

- The aim is to minimize the overall exposure to market price evolution
- Composition of the hedging portfolio need to be regularly updated over time
- Require a pricing device based on a model of portfolio credit risk
- Daily recalibration of model parameters on market quotes

・ 同 ト ・ ヨ ト ・ ヨ ト

In this study, ...

- Hedging of a buy protection position on an index CDO tranche
- Hedging portfolio composed of two instruments:
 - CDS Index
 - Savings account

Performance analysis of alternative hedging methods:

- Δ^{Gauss} : delta of the tranche computed within the one-factor Gaussian copula model (standard quotation device)
- $\Delta^{\rm lo}$: delta of the tranche computed within the local intensity model (two specifications of model parameters)

▲■▶ ▲臣▶ ★臣▶ ―臣 … のへで

Data set

- 5-year CDX NA IG Series 5 from 20 September 2005 to 20 March 2006
- 5-year CDX NA IG Series 9 from 20 September 2007 to 20 March 2008
- 5-year CDX NA IG Series 10 from 21 March 2008 to 20 September 2008

Notations

- Credit portfolio with n reference entities
- τ_1, \ldots, τ_n : default times
- R: homogeneous and constant recovery rate at default (In numerical investigations, we consider R = 40%)
- Number of defaults process:

$$N_t = \sum_{i=1}^n \mathbb{1}_{\{\tau_i \le t\}}$$

• CDO tranche cash-flows are driven by the aggregate loss process normalized to unity:

$$L_t = \frac{1}{n}(1-R)N_t$$

• CDO tranche cash-flows only depend on $\varphi(L_t)$, $0 \le t \le T$

(本語)》 (本語)》 (本語)》 (二語)

- $V_i = \rho V + \sqrt{1 \rho^2} \overline{V_i}, \ i = 1 \dots n$: latent variables
 - $V, \bar{V}_i, i = 1 \dots n$: independent Gaussian random variables
- Default times defined by: $\tau_i = F_i^{-1}(\Phi(V_i)), i = 1 \dots n$
 - $F_1 = \ldots = F_n = F$: cdf of τ_i , $i = 1, \ldots, n$
 - Φ : cdf of V_i
- Conditional default probability

$$p_t(V) = \mathbb{P}(\tau_i \le t \mid V) = \Phi\left(\frac{\Phi^{-1}\left(F(t)\right) - \rho V}{\sqrt{1 - \rho^2}}\right)$$

• Loss distribution is merely a binomial mixture:

$$\mathbb{P}(N_t = k) = \binom{n}{k} \int p_t(x)^k (1 - p_t(x))^{n-k} \nu(x) dx, \quad k = 0, \dots, n$$

- $\bullet\,$ At each time t, the model parameters ρ_t and F_t are calibrated on market spreads
- F_t is inferred from the term structure of index spreads at time t
 - Index spread curve assumed to be flat and equal to S_t (5-years spread)

$$F_t(x) = \mathbb{P}(\tau_i \le x) = 1 - \exp\left(-\frac{S_t}{1-R}x\right)$$

- One dependence parameter ρ_t^b associated with each base tranche [0, b], b = 3%, 7%, 10%, 15%, 30% (CDX)
 - $\Pi_t^{ma}(T, a, b)$: market price of CDO tranche [a, b], maturity T
 - $\Pi^{gc}(T,a,b;t,S_t,\rho_t):$ price of CDO tranche [a,b] in the Gaussian copula model
 - Base correlation ρ_t^b is such that:

$$\Pi^{gc}(T,0,b;\,t,S_t,\rho_t^b) = \Pi^{ma}_t(T,0,b)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Correlation between index spread return and 3% base correlation return based on 20-day rolling window. Left: 1-day returns; Right: 5-day returns.

-

Local intensity model

- Parallels the Dupire's local volatility approach developed for the equity derivative market
- The number of defaults N_t is modeled as a continuous-time Markov chain (pure birth process) with generator matrix:

$$\Lambda(t) = \begin{pmatrix} -\lambda(t,0) & \lambda(t,0) & 0 & & 0\\ 0 & -\lambda(t,1) & \lambda(t,1) & & 0\\ & & \ddots & \ddots & \\ 0 & & & -\lambda(t,n-1) & \lambda(t,n-1)\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• $\lambda(t,k)$, $k = 0, \dots, n-1$: state-dependent default intensities

• The time-T loss distribution $P(N_T = k \mid N_t)$ satisfies a n + 1-dimensional system of backward Kolmogorov equations that can be solved numerically

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

Hedging loss derivatives

Gauss delta:

$$\Delta_t^{\mathsf{Gauss}} = \frac{\Pi^{gc}(T, a, b; t, \frac{S_t + \varepsilon, \rho_t}{\rho_t}) - \Pi^{gc}(T, a, b; t, \frac{S_t, \rho_t}{\rho_t})}{\Pi^{gc}(T, 0, 1; t, \frac{S_t + \varepsilon}{\rho_t}) - \Pi^{gc}(T, 0, 1; t, \frac{S_t}{\rho_t})}$$

- $\Pi^{gc}(T, a, b; .)$: price of T-year protection tranche [a,b] computed in the Gaussian copula model
- $\Pi^{gc}(T, 0, 1; .)$: price of the T-year CDX index computed in the Gaussian copula model
- S_t : credit spread of the CDS index at time t
- $\varepsilon = 1 \text{ bp}$
- ρ_t : implied correlation parameter of the tranche at time *t*. Sticky-strike rule: base correlation is kept unchanged when bumping the index credit curve

 $\mathsf{Gauss}\ \mathsf{delta} = \mathsf{Sensitivity}\ \mathsf{with}\ \mathsf{respect}\ \mathsf{to}\ \mathsf{the}\ \mathsf{CDS}\ \mathsf{Index}\ \mathsf{spread}\ \mathsf{using}\ \mathsf{the}\ \mathsf{industry}\ \mathsf{standard}\ \mathsf{quotation}\ \mathsf{device}$

(本語) (本語) (本語) (二語)

Local intensity delta:

$$\Delta_t^{\mathsf{lo}} = \frac{\Pi^{lo}\left(T, a, b; t, \frac{N_t + 1}{N_t + 1}\right) - \Pi^{lo}\left(T, a, b; t, \frac{N_t}{N_t}\right)}{\Pi^{lo}\left(T, 0, 1; t, \frac{N_t + 1}{N_t + 1}\right) - \Pi^{lo}\left(T, 0, 1; t, \frac{N_t}{N_t}\right)}.$$

- $\Pi^{lo}(T, a, b; .)$: price of the tranche computed in the local intensity model
- $\Pi^{lo}\left(T,0,1;\,.\right):$ price of the CDX index computed in the local intensity model
- N_t: current number of defaults

Local intensity delta = Jump-to-Default delta computed using the local intensity model

Model Specifications

- Gauss: Gaussian copula model with one implied correlation parameter per standard tranche (base correlation approach)
- Para: Local intensity model parametric specification of local itensities

$$\lambda(t,k) = \lambda(k) = (n-k) \sum_{i=0}^{k} b_i$$

(Herbertsson (2008))

• EM: Local intensity model – local itensities $\lambda(t, k)$ obtained by minimizing a relative entropy distance with respect to a prior distribution

$$\inf_{\mathbb{Q}\in\Lambda}\mathbb{E}^{\mathbb{Q}_0}\left[rac{d\mathbb{Q}}{d\mathbb{Q}_0}\ln\left(rac{d\mathbb{Q}}{d\mathbb{Q}_0}
ight)
ight]$$

(Cont and Minca (2008))

白 と く ヨ と く ヨ と

Empirical results

Root mean squared calibration errors (in percentage):											
		CDX5		CDX9			CDX10				
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM		
Index	0.04	5.15	5.14	0.03	4.40	4.81	0.02	6.73	6.77		
0%-3%	0.01	2.35	2.36	0.00	1.31	1.32	0.01	1.69	1.68		
3%-7%	0.00	0.51	0.69	0.00	0.61	0.86	0.00	1.04	1.03		
7%-10%	0.00	0.08	1.32	0.00	0.24	0.91	0.00	0.43	0.39		
10%-15%	0.00	0.06	1.77	0.00	0.24	1.15	0.00	0.40	0.36		
15%-30%	0.00	0.29	1.97	0.01	1.19	1.74	0.01	1.80	1.68		

Comparison of typical shapes of local intensities $\lambda(t, k)$, Para (left), EM (right)

Areski Cousin Delta-Hedging Correlation Risk?

Calibration results

Comparison of three alternative hedging methods

• Gauss delta: index Spread sensitivity computed in a one-factor Gaussian copula model

$$\Delta_t^{\text{Gauss}} = \frac{\Pi^{gc}(T, a, b; t, S_t + \varepsilon, \rho_t) - \Pi^{gc}(T, a, b; t, S_t, \rho_t)}{\Pi^{gc}(T, 0, 1; t, S_t + \varepsilon) - \Pi^{gc}(T, 0, 1; t, S_t)}$$

where ${\cal V}$ and ${\cal V}^I$ are the Gaussian copula pricing function associated with (resp.) the tranche and the CDS index.

Local intensity delta:

$$\Delta_t^{\mathsf{lo}} = \frac{\Pi^{lo}\left(T, a, b; t, N_t + 1\right) - \Pi^{lo}\left(T, a, b; t, N_t\right)}{\Pi^{lo}\left(T, 0, 1; t, N_t + 1\right) - \Pi^{lo}\left(T, 0, 1; t, N_t\right)}$$

with both Parametric (Para) and Entropy Minimisation (EM) calibration methods

Credit deltas on 20 September 2007 (normalized to tranche notional)

Tranche	Gauss	Para	EM
0%-3%	15.29	11.05	2.64
3%-7%	5.03	4.59	2.70
7%-10%	1.94	2.26	2.29
10%-15%	1.10	1.47	1.99
15%-30%	0.60	1.01	1.74

Empirical results

Time series of equity tranche credit deltas, CDX.NA.IG series 5, 9 and 10

Areski Cousin Delta-Hedging Correlation Risk?

Back-testing hedging experiments on series 5, 9 and 10

- Hedging portfolio rebalanced everyday (dt=1) or every 5 days (dt=5)
- P&L (Profit-and-Loss) increment of hedged position:

$$\delta P \& L(t) = \delta \Pi_m(t) - \Delta_t \cdot \delta \Pi_m^I(t)$$

- $\delta \Pi_m(t) = \Pi_m(t+dt) \Pi_m(t)$: Increment of tranche market value
- $\delta \Pi_m^I(t) = \Pi_m^I(t+dt) \Pi_m^I(t)$: Increment of index market value
- Δ_t : One of the previous hedging ratios computed at time t
- P&L increments evaluated in the same frequency as rebalancing

Two metrics to compare the hedging strategies:

Relative hedging error

 $= \left| \frac{\text{Average P\&L increment of the hedged position}}{\text{Average P\&L increment of the unhedged position}} \right|$ $= \left| \frac{\text{Average of } \delta P \& L(t)}{\text{Average of } \delta V_m(t)} \right|$

□ > < E > < E > E のQO

Hedging performance for 1-day rebalancing

Relative hedging errors (in percentage)										
CDX5 CDX9 CDX10										
Tranche	Li	Para	EM	Li	Para	EM	Li	Para	EM	
0%-3%	4	5	73	80	10	72	33	55	90	
3%-7%	1	3	35	0.4	19	59	48	49	75	
7%-10%	10	10	43	15	13	37	49	25	44	
10%-15%	7	27	131	27	18	14	139	181	208	
15%-30%	0.54	61	324	3	32	89	172	269	396	

Residual volatilities	(in percentage)	
-----------------------	-----------------	--

	CDX5			CDX9			CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
0%-3%	45	47	79	59	59	87	105	91	93
3%-7%	70	72	68	58	47	64	85	74	78
7%-10%	90	101	120	53	50	46	83	79	70
10%-15%	90	107	188	61	63	60	91	93	86
15%-30%	93	110	256	37	49	77	84	99	127

< ∃ >

Relative hedging errors (in percentage)										
CDX5 CDX9 CDX10										
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM	
0%-3%	6	10	77	59	2	73	24	48	88	
3%-7%	16	16	51	2	18	58	48	43	72	
7%-10%	19	1	15	11	12	36	50	15	41	
10%-15%	22	8	75	13	5	5	141	198	209	
15%-30%	21	30	207	1	35	86	127	227	382	

Residual volatilities	(in percentage)	
-----------------------	-----------------	--

	CDX5			CDX9			CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
0%-3%	42	46	83	50	56	86	71	72	89
3%-7%	75	75	66	73	65	71	43	40	64
7%-10%	99	118	135	57	56	54	40	38	44
10%-15%	82	110	202	94	98	95	42	44	40
15%-30%	77	108	298	46	69	108	31	33	54

- ▲ 문 ▶ - ▲ 문 ▶

Hedging performance for 5-days rebalancing

< ∃ >

B 5

Conclusion

- All model specifications perfectly fit CDO tranche quotes
- However, for the local intensity model, the two introduced specifications give strikingly different deltas and dramatically different hedging performances
- Hedging based on local intensity model with Entropy Minimisation calibration gives poor performance
- Performance of hedging based on the Gaussian copula model and on the parametric local intensity model are comparable for crisis period associated with CDX Series 9 and 10.
- However, the local intensity delta fails to outperform the market delta in pre-crisis period associated with CDX Series 5,

(日本) (日本) (日本)

Thank you for your attention!

白 と く ヨ と く ヨ と

References

CONT, R., DEGUEST, R. AND KAN, Y. H.: Recovering Default Intensity from CDO Spreads: Inversion Formula and Model Calibration, *SIAM Journal on Financial Mathematics*, 1 (2010), pp. 555-585

- CONT, R. AND KAN, Y.H.: Dynamic Hedging of Portfolio Credit Derivatives, *Financial Engineering Report 2008-08*, Columbia University, 2008.
- FREY, R., BACKHAUS, J.: Dynamic hedging of synthetic CDO-tranches with spread- and contagion risk, Forthcoming in *Journal of Economic Dynamics and Control*.
- FREY, R., BACKHAUS, J.: Pricing and hedging of portfolio credit derivatives with interacting default intensities. *International Journal of Theoretical and Applied Finance*, 11 (6), 611-634, 2008.
- LAURENT, J.-P., COUSIN, A. AND FERMANIAN, J-D.: Hedging default risks of CDOs in Markovian contagion models. Forthcoming in *Quantitative Finance*.

-