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Introduction

Admissible curve

A yield curve is said to be admissible if it satisfies the following constraints :

The curve is market-consistent : it perfectly reproduces input data

The curve is arbitrage-free : forward rates are positive

The curve is smooth enough : forward rates are at least continuous
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Introduction

We then address the following questions :

Is it possible to estimate the size of admissible curves ? and how ?

How does the range/diversity of admissible curves affect the present value
of products with non-standard characteristics ?
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Instruments used for curve construction

Assumption : Linear representation of present values

Presents values of products used in the curve construction can be expressed
linearly with respect to some elementary quantities such as zero-coupon prices
or discount factors

Example 1 : Corporate or sovereign debt yield curve

S : market price (in percentage of nominal) at time t0 of a bond with
maturity T

c : fixed coupon rate

t1 < . . . < tp = T : coupon payment dates, δk : year fraction
corresponding to period (tk−1, tk)

c
p∑

k=1

δkP
B(t0, tk) + PB(t0,T ) = S

where PB(t0, tk) represents the price of a (fictitious default-free
issuer-dependent) ZC bond with maturity tk
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Instruments used for curve construction

Example 2 : Discounting curve based on OIS

SOIS : par rate at time t0 of an overnight indexed swap with maturity T

t1 < · · · < tp = T : fixed-leg payment dates

δk : year fraction corresponding to period (tk−1, tk)

SOIS
p∑

k=1

δkP
D(t0, tk) = 1− PD(t0,T )

where PD(t0, tk) is the discount factor associated with maturity date tk
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Arbitrage-free bounds for OIS discount curves

We observe OIS par rates S1, · · · , Sn for maturities T1 < · · · < Tn.

Let t = t0 < t1 < · · · < tpn = Tn be the annual time grid up to time Tn.

The set of indices (pi ) is such that tpi = Ti for i = 1, ..., n.
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Arbitrage-free bounds for OIS discount curves

Market-consistency condition translates into a rectangular system of linear
constraints :

Si

pi−1∑
k=1

δkP
D(t0, tk) + (Siδpi + 1)PD(t0,Ti ) = 1, i = 1, ..., n

Let i0 be the smallest index such that Ti0 6= ti0 (i0 = 11 in our
applications)

Define Hi :=

pi−1∑
k=pi−1+1

δk , for i = i0, . . . , n
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Arbitrage-free bounds for OIS discount curves

Proposition (arbitrage-free bounds for discount factors)

PD(t0,T1) =
1

1+ S1δ1
,

PD(t0,Ti ) =
1

1+ Siδi

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))
, i = 2, . . . , i0 − 1

For i = i0, . . . , n,

PD
min(t0,Ti ) 6 PD(t0,Ti ) 6 PD

max(t0,Ti )

where

PD
min(t0,Ti ) =

1
1+ Siδpi

(
1− Si

Si−1

(
1− (1− Si−1Hi )PD(t0,Ti−1)

))
PD

max(t0,Ti ) =
1

1+ Si (Hi + δpi )

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))
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Arbitrage-free bounds for OIS discount curves

Iterative computation of model-free bounds

Step 1 : For i = 1, . . . , i0 − 1,

PD(t0,Ti ) =
1

1+ Siδi

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))
Step 2 : For i = i0, . . . , n,

Pmin(Ti ) 6 PD(t0,Ti ) 6 Pmax(Ti )

where

Pmin(Ti ) =
1

1+ Siδpi

(
1− Si

Si−1
(1− (1− Si−1Hi )Pmin(Ti−1))

)
Pmax(Ti ) =

1
1+ Si (Hi + δpi )

(
1− Si

Si−1
(1− Pmax(Ti−1))

)

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 11/29



Arbitrage-free bounds for OIS discount curves

The previous bounds are sharp
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Arbitrage-free bounds for OIS discount curves

Model-free bounds for the associated discount rates
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Arbitrage-free bounds for OIS discount curves

Range of arbitrage-free market-consistent OIS discount curves
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How to construct admissible yield curves ?

The yield-curve is built from market quotes of a set of standard products

t0 : quotation date

T = (T1, . . . ,Tn) : set of increasing standard maturities, T0 = t0

S = (S1, . . . , Sn) : corresponding set of market quotes at t0

We assume that present values can be expressed as linear combinations of
zero-coupon prices or discount factors :

P = PB , zero-coupon prices as in Example 1

P = PD , discount factors as in Example 2

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 15/29



How to construct admissible yield curves ?

Mean-reverting term-structure models as generators of admissible yield curves

The risk-neutral dynamics of (default-free) interest rates is assumed to follow
either

a OU process driven by a Lévy process

dXt = a(b(t; p,T,S)− Xt)dt + σdYct ,

where Y is a Lévy process with cumulant function κ and parameter set pL

or an extended CIR process

dXt = a(b(t; p,T,S)− Xt)dt + σ
√

XtdWt ,

where W is a standard Browian motion

Depending on the context, p = (X0, a, σ, c, pL) will denote the parameter set of
the Lévy-OU process and p = (X0, a, σ) the parameter set of the CIR process
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How to construct admissible yield curves ?

In both cases, b is represented by a step function :

b(t; p,T,S) = bi (p,T,S) for Ti−1 < t 6 Ti , i = 1, . . . , n

The vector b = (b1, . . . , bn) solves the following pseudo-linear system.

Market-fit linear conditions

The market-fit condition can be restated as a pseudo-linear system

A · P(b) = B

where

P(b) = (P(t0, tk ; b))k=1,...,m is the m × 1 vector of elementary quantities
that appear in the present value formula of instruments used to build the
curve (see Examples 1 and 2).

A is a n ×m matrix, B is a n × 1 matrix

A and B only depend on current market quotes S, on standard maturities
T and on products characteristics.

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 17/29



How to construct admissible yield curves ?

Proposition (Discount factors in the Lévy-OU approach)

Let Ti−1 < t 6 Ti . In the Lévy-OU model, the current value of the discount
factor or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0φ(t − t0) +
i−1∑
k=1

bk (ξ(t − Tk−1)− ξ(t − Tk))

+ biξ(t − Ti−1) + cψ(t − t0)

and functions φ, ξ and ψ are defined by

φ(s) :=
1
a
(
1− e−as) (1)

ξ(s) := s − φ(s)

ψ(s) := −
∫ s

0
κ (−σφ(s − θ)) dθ
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How to construct admissible yield curves ?

Proposition (Discount factors in the CIR approach)

Let Ti−1 < t 6 Ti . In the CIR model, the current value of the discount factor
or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0ϕ(t − t0) +
i−1∑
k=1

bk (η(t − Tk−1)− η(t − Tk)) + biη(t − Ti−1)

and functions ϕ and η are defined by

ϕ(s) :=
2(1− e−hs)

h + a + (h − a)e−hs (2)

η(s) := 2a
[

s
h + a

+
1
σ2 log

h + a + (h − a)e−hs

2h

]
where h :=

√
a2 + 2σ2

Areski Cousin, ISFA, Université Lyon 1 Model Risk Embedded in Yield-Curve Const. Meth. 19/29



How to construct admissible yield curves ?

Construction of (b1, . . . , bn) by a bootstrap procedure

For any i = 1, . . . , n, the present value of the instrument with maturity Ti

only depends on b1, . . . , bi

is a monotonic function with respect to bi

The vector b = (b1, . . . , bn) satisfies a triangular system of non-linear equations
that can be solved recursively :

Find b1 as the solution of

p1∑
j=1

A1jP(t0, tj ; b1) = B1

Assume b1, . . . , bk−1 are known, find bk as the solution of

pk∑
j=1

AkjP(t0, tj ; b1, . . . , bk) = Bk
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How to construct admissible yield curves ?

Proposition (smoothness condition)

A curve t → P(t0, t) constructed from the previous approach satisfies the
smoothness condition : it is of class C1 and the corresponding forward curve (or
default density function) is continuous.

Proof : Let b(·) be a deterministic function of time, instantaneous forward
rates are such that

Lévy-driven OU

f (t0, t) = X0e−a(t−t0) + a
∫ t

t0
e−a(t−u)b(u)du − cκ(−σφ(t − t0))

where φ is defined by (1)

extended CIR

f CIR(t0, t) = X0ϕ
′(t − t0) + a

∫ t

t0
ϕ′(t − u)b(u)du

where ϕ′ is the derivative of ϕ given by (2)
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How to construct admissible yield curves ?
Assume that a curve has been constructed from a Lévy-OU term-structure
model with positive parameters (X0, a, σ, c, pL) :

f (t0, t) = X0e−a(t−t0) + a
i−1∑
k=1

bk (φ(t − Tk−1)− φ(t − Tk))

+ abiφ(t − Ti−1)− cκ(−σφ(t − t0))

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the Lévy-OU approach)

Assume that the derivative of the Lévy cumulant κ′ exists and is strictly
monotonic on (−∞, 0). The curve is arbitrage-free on the time interval (t0,Tn)
if and only if, for any i = 1, . . . , n, f (t0,Ti ) > 0 and one of the following
condition holds :

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) ≥ 0

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) < 0 and f (t0, ti ) > 0 where ti is such that
∂f
∂t

(t0, ti ) = 0,
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How to construct admissible yield curves ?

Assume that a curve has been constructed from an extended CIR
term-structure model with positive parameters (X0, a, σ) :

f CIR(t0, t) = X0ϕ
′(t−t0)+a

i−1∑
k=1

bk (ϕ(t − Tk−1)− ϕ(t − Tk))+abiϕ(t−Ti−1)

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the CIR approach)

The constructed curve is arbitrage-free if, for any i = 1, · · · , n, the implied bi is
positive
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How to construct admissible yield curves ?
Set of admissible OIS discount and forward curves : Lévy-OU short rates

Parameters : a = 0.01, σ = 1, X0 = 0.063% (fair rate of IRS vs OIS 1M). The
Lévy driver is a Gamma subordinator with parameter λ = 1/50bps (mean jump
size of 50 bps). c = {1, 10, 20, . . . , 100}
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Perspectives

The proposed framework could be extended or used in several directions :

Yield-curve diversity impact on present values (PV) and hedging
stategies ?

max
i,j
‖PV (Ci )− PV (Cj )‖p

where the max is taken over all couples of admissible curves (Ci ,Cj )

Sensitivity analysis in the presence of uncertain parameters ?

dXt = ã(b(t; ã, σ̃,T,S)− Xt)dt + σ̃
√

XtdWt ,

where Range(ã, σ̃) ⊂ {(a, σ) | b(t; a, σ,T,S) ≥ 0 ∀t}

Extension to a multicurve environment ?
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Cumulant function of some Lévy processes

Cumulant

Brownian motion κ(θ) = θ2

2

Gamma process κ(θ) = − log
(
1− θ

λ

)
Inverse Gaussian process κ(θ) = λ−

√
λ2 − 2θ
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