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General setting and motivation

Robust control may be overly conservative when applied to the true
unknown system

We develop an adaptive robust methodology for solving a discrete-time
Markovian control problem subject to Knightian uncertainty

We focus on a financial hedging problem, but the methodology can be
applied to any kind of Markov decision process under model uncertainty

As in the classical robust case, the uncertainty comes from the fact that
the true law of the driving process is only known to belong to a certain
family of probability laws
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General setting and motivation

T : terminal date of our finite horizon control problem

T = {0, 1, 2, . . . ,T} : time grid

T ′ = {0, 1, 2, . . . ,T − 1} : time grid without last date

S = {St , t ∈ T } : stochastic process that drives the random system

We assume that :

S is observable and we denote by FS = (F S
t , t ∈ T ) its natural filtration.

The law of S is not known but it belongs to a family of parametrized
distributions P(Θ) := {Pθ, θ ∈ Θ}, Θ ⊂ Rd

The unknown (true) law of S is denoted by Pθ∗ and is such that θ∗ ∈ Θ

Model uncertainty occurs if Θ 6= {θ∗}
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General setting and motivation

We consider the following stochastic control problem

inf
ϕ∈A

Eθ∗ (L(S , ϕ)) .

where

A is a set of admissible control processes : FS–adapted processes
ϕ = {ϕt , t ∈ T ′}
L is a measurable functional (loss or error to minimize in our case)

Obviously, the problem cannot be dealt with directly since we do not know the
value of θ∗
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General setting and motivation

Robust control problem : Başar and Bernhard (1995), Hansen et al. (2006),
Hansen and Sargent (2008)

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S , ϕ)) . (1)

Best strategy over the worst possible model parameter in Θ

If the true model is close to the best one, the solution to this problem
could perform very badly
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General setting and motivation

Strong robust control problem : Sirbu (2014), Bayraktar, Cosso and Pham
(2014)

inf
ϕ∈A

sup
Q∈Qϕ,ΨK

EQ (L(S , ϕ)) , (2)

ΨK is the set of strategies chosen by a Knightian adversary (the nature)
that may keep changing the system distribution over time

Qϕ,ΨK represents all possible model dynamics resulting from ϕ and when
nature plays strategies in ΨK

Solution is even more conservative than in the classical robust case

No learning mechanism to reduce model uncertainty
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General setting and motivation

Bayesian adaptive control problem : Kumar and Varaiya (1986), Runggaldier
et al. (2002), Corsi et al. (2007)

inf
ϕ∈A

∫
Θ

Eθ (L(S , ϕ)) ν0(dθ). (3)

The unknown parameter θ is treated as an unobserved state variable with
a prior distribution ν0

Control problem with partial information solved by transforming the
original problem into a full-information separated problem (adding the
posterior distribution as a new state variable)

No reduction of uncertainty is really involved
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General setting and motivation

Bayesian adaptive control vs robust control

Proposition

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S , ϕ))) = inf
ϕ∈A

sup
ν0∈P(Θ)

∫
Θ

Eθ (L(S , ϕ)) ν0(dθ)

Thus, for any given prior distribution ν0 we have :

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S , ϕ)) ≥ inf
ϕ∈A

∫
Θ

Eθ (L(S , ϕ)) ν0(dθ).

⇒ The Bayesian adaptive problem is less conservative than the classical robust

one.
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General setting and motivation

Adaptive control problem : Kumar and Varaiya (1986), Chen and Guo (1991)

For each θ ∈ Θ solve :

inf
ϕ∈A

Eθ (L(S , ϕ)) . (4)

Let ϕθ be a corresponding optimal control

At each time t, compute a point estimate θ̂t of θ∗, using a chosen, F S
t

measurable estimator and apply control value ϕθ̂tt .

Known to have poor performance for finite horizon problems
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Hedging under model uncertainty

Problem : Hedging a short position on an European-type option with maturity
T , payoff function Φ and underlying asset S with price dynamics

S0 = s0 ∈ (0,∞),

St+1 = Zt+1St , t ∈ T ′

where

Z = {Zt , t = 1, . . . ,T} is a non-negative random process

Under each measure Pθ, Zt+1 is independent from F S
t for each t ∈ T

The true law Pθ∗ of Z is not known.
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Hedging under model uncertainty

Hedging is made using a self-financing portfolio composed of the underlying
risky asset S and of a risk-free asset (with constant value equal to 1).

The hedging portfolio has the following dynamics

V0 = v0,

Vt+1 = Vt + ϕt(St+1 − St), t = 0, . . . ,T − 1

Exact replication is out of reach in our setting (v0 may be too small), so that
the nominal control problem (without uncertainty) is

inf
ϕ∈A

Eθ∗
(
`[(Φ(ST )− VT (ϕ))+]

)
,

where l is a loss function, i.e., an increasing function such that `(0) = 0
(shortfall risk minimization approach)
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Adaptive robust control methodology

The methodology relies on recursive construction of confidence regions. We
assume that :

1) A point estimator θ̂t of θ∗ can be constructed recursively

θ̂0 = θ0,

θ̂t+1 = R(t, θ̂t ,Zt+1), t = 0, . . . ,T − 1

where R(t, c, z) is a deterministic measurable function.

2) An approximate α-confidence region Θt of θ∗ can be constructed from θ̂t by
a deterministic rule :

Θt = τ(t, θ̂t)

where τ(t, ·) : Rd → 2Θ is a deterministic set valued function. The region Θt

should be such that Pθ∗ (θ∗ ∈ Θt) ≈ 1− α and limt→∞Θt = {θ∗} where the
convergence is understood Pθ

∗
almost surely, and the limit is in the Hausdorff

metric.
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Adaptive robust control methodology

We consider the following (augmented) state process

Xt = (St ,Vt , θ̂t), t ∈ T

with state space EX := R+ × R× Rd .

In our hedging problem, X = (S ,V , θ̂) is a Markov process with dynamics :

St+1 = Zt+1St ,

Vt+1 = Vt + ϕtSt(Zt+1 − 1),

θ̂t+1 = R(t, θ̂t ,Zt+1)

We denote by

Q(B | t, x , a, θ) := Pθ(Xt+1 ∈ B | Xt = x , ϕt = a)

the time-t Markov transition kernel under probability Pθ when strategy a is
applied
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Adaptive robust control methodology

Let us denote by

Ht := ((S0,V0, θ̂0), (S1,V1, θ̂1), . . . , (St ,Vt , θ̂t)), t ∈ T ,

the history of the state process up to time t.

Note that, for any admissible trading strategy ϕ, Ht is F S
t measurable and

Ht ∈ Ht := EX × EX × . . .× EX︸ ︷︷ ︸
t+1 times

.

We denote by

ht = (x0, x1, . . . , xt) = (s0, v0, c0, s1, v1, c1, . . . , st , vt , ct)

a realization of Ht .

Areski Cousin, ISFA, Université Lyon 1 Adaptive robust hedging under model uncertainty 14/31



Adaptive robust control methodology

A robust control problem can be viewed as a game between a controller and
nature (the Knightian opponent).

The controller plays history-dependent strategies ϕ that belong to

A = {(ϕt)t∈T ′ | ϕt : Ht → A, t ∈ T ′}

where ϕt is a measurable mapping.

Strong robust case : nature plays history-dependent strategies ψ that belong to

ΨK = {(ψt)t∈T ′ | ψt : Ht → Θ, t ∈ T ′}

Adaptive robust case : nature plays history-dependent strategies ψ that belong

to
ΨA = {(ψt)t∈T ′ | ψt : Ht → Θt , t ∈ T ′}

where Θt = τ(t, θ̂t) is the α-confidence region of θ∗ at time t
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Adaptive robust control methodology

Given that the controller plays ϕ and nature plays ψ, using Ionescu-Tulcea
theorem, we define the canonical law of the state process X on ET

X as

Qϕ,ψh0
(B1, . . . ,BT ) =∫

B1

· · ·
∫
BT

Q(dxT | T − 1, xT−1, ϕT−1(hT−1), ψT−1(hT−1))

· · ·Q(dx2 | 1, x1, ϕ1(h1), ψ1(h1))Q(dx1 | 0, x0, ϕ0(h0), ψ0(h0)).

For a given strategy ϕ, we define

Qϕ,ΨK
h0

:= {Qϕ,ψh0
, ψ ∈ ΨK}

and
Qϕ,ΨA

h0
:= {Qϕ,ψh0

, ψ ∈ ΨA}
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Adaptive robust control methodology

The strong robust hedging problem :

inf
ϕ∈A

sup
Q∈Qϕ,ΨK

h0

EQ
(
`[(Φ(ST )− VT )+]

)

The adaptive robust hedging problem :

inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
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Adaptive robust control methodology

Without uncertainty

t

✓⇤

 t
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Adaptive robust control methodology

Robust

t

✓⇤

 t

min(⇥)

max(⇥)
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Adaptive robust control methodology

Strong robust

t

✓⇤

 t

min(⇥)

max(⇥)
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Adaptive robust control methodology

Adaptive robust

t

✓⇤

 t

min(⇥)

max(⇥)

max(⇥t)

min(⇥t)
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Adaptive robust control methodology

Proposition

The following inequalities hold

inf
ϕ∈A

Eθ∗
(
`[(Φ(ST )− VT )+]

)
≤ inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
≤ inf
ϕ∈A

sup
Q∈Qϕ,ΨK

h0

EQ
(
`[(Φ(ST )− VT )+]

)
.

and

inf
ϕ∈A

sup
θ∈Θ

Eθ
(
`[(Φ(ST )− VT )+]

)
≤ inf
ϕ∈A

sup
Q∈Qϕ,ΨK

h0

EQ
(
`[(Φ(ST )− VT )+]

)
.

We conjecture that

inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
≤ inf
ϕ∈A

sup
θ∈Θ

Eθ
(
`[(Φ(ST )− VT )+]

)
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Adaptive robust control methodology

Dynamic programming principle

Proposition

The solution ϕ∗ = (ϕ∗t (ht))t∈T ′ of

inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
coincides with the solution of the following robust Bellman equation :

WT (x) = `
[
(Φ(s)− v)+

]
, x = (s, v , θ̂) ∈ EX ,

Wt(x) = inf
a∈A

sup
θ∈τ(t,θ̂)

∫
EX

Wt+1(y)Q(dy | t, x , a, θ),

for any x = (s, v , θ̂) ∈ EX and t = T − 1, . . . , 0.

Note that the optimal strategy at time t is such that ϕ∗t (ht) = ϕ∗t (xt).
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Example : uncertain log-normal model

We consider that the stock price is driven by an uncertain log-normal model

St+1 = Zt+1St

where Zt is an iid sequence such that lnZt
Pθ∗∼ N(µ∗, (σ∗)2).

The MLE θ̂t = (µ̂t , σ̂
2
t ) of the unknown parameter θ∗ = (µ∗, (σ∗)2) can be

expressed in the following recursive way :

µ̂t+1 =
t

t + 1
µ̂t +

1
t + 1

lnZt+1,

σ̂2
t+1 =

t

t + 1
σ̂2
t +

t

(t + 1)2 (µ̂t − lnZt+1)2,

with µ̂1 = lnZ1 = ln S1
S0

and σ̂2
1 = 0.
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Example : uncertain log-normal model

Due to asymptotic normality of the MLE θ̂t = (µ̂t , σ̂
2
t ), we have

t

σ̂2
t

(µ̂t − µ∗)2 +
t

2σ̂4
t

(σ̂2
t − (σ∗)2)2 d−−−→

t→∞
χ2

2

So that, if κα is the (1− α)–quantile of the χ2
2 distribution,

Θt = τ(t, µ̂, σ̂2) :=
{

(µ, σ2) ∈ R2 :
t

σ̂2 (µ̂− µ)2 +
t

2σ̂4 (σ̂2 − σ2)2 ≤ κα
}

is an approximate α-confidence region of θ∗, i.e., Θt is such that

Pθ∗ (θ∗ ∈ Θt) ≈ 1− α

[See Bielecki et al. (2016) for more details]
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Example : uncertain log-normal model

The adaptive robust control problem can be solved using the following dynamic
programming principle :

WT (x) = `
[
(Φ(s)− v)+

]
, x = (s, v , µ̂, σ̂2) ∈ EX ,

Wt(x) = inf
a∈A

sup
(µ,σ2)∈τ(t,µ̂,σ̂2)

∫
EX

Wt+1(y)Q(dy | t, x , a;µ, σ2)

where x = (s, v , µ̂, σ̂2) ∈ EX = R+ × R× R× R+, t = T − 1, . . . , 0
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Example : uncertain log-normal model

The integral in the previous slide can be written as∫
R
Wt+1

(
seµ+σz , v + as(eµ+σz − 1),R(t, µ̂, σ̂2, µ+ σz)

)
φ(z)dz

where φ is the density of the standard normal distribution and R is such that

R
(
t, µ̂, σ̂2, y

)
=

(
t

t + 1
µ̂+

1
t + 1

y ,
t

t + 1
σ̂2 +

t

(t + 1)2 (µ̂− y)2
)
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Perspectives

Numerically solve Bellman equation for the considered hedging problem :
challenging issue due to the curse of dimensionality (optimal quantization,
approximate dynamic programming could be used)

Compare hedging performance with other approaches : control without
uncertainty, standard robust, adaptive robust, Bayesian adaptive robust
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Thanks for your attention.
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