Model uncertainty in finance : Term-structure construction and hedging issues

Areski Cousin ISFA, Université Lyon 1

Séminaire équipe TOSCA

INRIA Sophia-Antipolis, November 24, 2016

Contents

Kriging of financial term-structures

2 Adaptive robust control of Markov decision process

3

< 注→ < 注→

Motivation

- Financial term-structures describes the evolution of some financial or economic quantities as a function of time horizon.
- **Examples** : interest-rates, bond yields, credit spreads, implied default probabilities, implied volatilities.
- Applications : valuation of financial and insurance products, risk management

The term-structure construction problem

Several constraints have to be considered

- Compatibility with market information : at a given date t_0 , the curve under construction $T \rightarrow P(t_0, T)$ shall be compatible with observed prices of some reference products.
- Arbitrage-free construction : this translates into some specific shape properties such as positivity, monotonicity, convexity or bounds on the curve values
- Additional conditions can be required : minimum degree of smoothness, control of local convexity

(B)

The term-structure construction problem

1) Compatibility with market information :

- At time t_0 , we observe the market quotes S_1, \ldots, S_n of n liquidly traded instruments
- The values of these products depend on the value of the curve at *m* input locations X = (τ₁,...,τ_m)

The vector of output values $P(t_0, X) := (P(t_0, \tau_1), \dots, P(t_0, \tau_m))^{\top}$ satisfies a linear system of the form

$$A \cdot P(t_0, X) = \boldsymbol{b},$$

where

- A is a $n \times m$ real-valued matrix
- **b** is a *n*-dimensional column vector

 $n < m \Longrightarrow$ indirect and partial information on the curve values at τ_1, \ldots, τ_m

2) No-arbitrage assumption :

 $T \rightarrow P(t_0, T)$ is typically a monotonic bounded function

3

▶ ★ 문 ▶ ★ 문 ▶ ...

Range of arbitrage-free OIS discount curves

We observe the quoted par rates S_i of an OIS with maturities T_i , i = 1, ..., n

1) Compatibility with market quotes :

The curve $T \rightarrow P(t_0, T)$ of **OIS discount factors** is such that

$$S_i \sum_{k=1}^{p_i-1} \delta_k P(t_0, t_k) + (S_i \delta_{p_i} + 1) P(t_0, T_i) = 1, \quad i = 1, ..., n$$

t₁ < ··· < t_{pi} = T_i : fixed-leg payment dates (annual time grid)
δ_k : year fraction of period (t_{k-1}, t_k)

2) No-arbitrage assumption :

 $T
ightarrow P(t_0, T)$ is a decreasing function such that $P(t_0, t_0) = 1$

□→ ★注→ ★注→

Range of arbitrage-free OIS discount curves

- n = 14 liquidly traded maturities 1, 2, ..., 10, 15, 20, 30, 40 years.
- m = 40 points involved in the market-fit linear system
- No-arbitrage bounds on OIS discount factors

Range of arbitrage-free CDS-implied survival functions

We observe at time t_0 the fair spreads S_i of a CDS with maturities T_i , i = 1, ..., n

1) Compatibility with market quotes :

The curve $T \rightarrow P(t_0, T)$ of (risk-neutral) survival probabilities is such that

$$S_{i}\sum_{k=1}^{P_{i}}\delta_{k}D(t_{0},t_{k})P(t_{0},t_{k}) = -(1-R)\int_{t_{0}}^{T_{i}}D(t_{0},u)dP(t_{0},u), \quad i=1,...,n$$

- t₁ < · · · < t_p = T_i : trimestrial premium payment dates, δ_k : year fraction of period (t_{k-1}, t_k)
- $D(t_0, T)$ is the discount factor associated with maturity date T
- R : expected recovery rate of the reference entity

2) No-arbitrage assumption :

 $\mathcal{T}
ightarrow \mathcal{P}(t_0,\mathcal{T})$ is a decreasing function such that $\mathcal{P}(t_0,t_0)=1$

→ < ≥ > < ≥ >

Range of arbitrage-free CDS-implied survival functions

- n = 4 liquidly traded maturities 3, 5, 7, 10 years.
- m = 40 points involved in the market-fit linear system
- No-arbitrage bounds on the issuer implied survival distribution function

Bounds for CDS implied survival probabilities

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%, $D(t, T) = \exp(-3\%(T - t))$

From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic interpolation techniques.

- Parametric approaches : Nelson-Siegel or Svensson models (used by most central banks)
- Non-parametric interpolation methods : shape-preserving spline techniques (lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally allows for quantification of uncertainty?

< ∃ > < ∃ >

A function f is only known at a limited number of points x_1, \ldots, x_n

3

∃→ < ∃→</p>

The (unknown) function f is assumed to be a sample path of a Gaussian process Y

3

A B > A B >

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions.

A Gaussian process $(Y(x), x \in \mathbb{R}^d)$ is characterized by its mean function

$$\mu: x \in \mathbb{R}^d \longrightarrow \mathbb{E}(Y(x)) \in \mathbb{R}.$$

and its covariance function

$$K:(x,x')\in \mathbb{R}^d imes \mathbb{R}^d\longrightarrow \mathrm{Cov}(Y(x),Y(x'))\in \mathbb{R}.$$

K(x,x')	Class
$\sigma^2 \exp\left(-\frac{(x-x')^2}{2\theta^2}\right)$	\mathcal{C}^{∞}
$\sigma^2 \left(1 + \frac{\sqrt{5} x-x' }{\theta} + \frac{5(x-x')^2}{3\theta^2} \right) \exp\left(-\frac{\sqrt{5} x-x' }{\theta}\right)$	\mathcal{C}^2
$\sigma^2 \left(1 + \frac{\sqrt{3} x - x' }{\theta}\right) \exp\left(-\frac{\sqrt{3} x - x' }{\theta}\right)$	\mathcal{C}^{1}
$\sigma^2 \exp\left(-\frac{ x-x' }{\theta}\right)$	\mathcal{C}^{0}
	$\frac{\mathcal{K}(\mathbf{x},\mathbf{x}')}{\sigma^{2}\exp\left(-\frac{(\mathbf{x}-\mathbf{x}')^{2}}{2\theta^{2}}\right)} \\ \sigma^{2}\left(1+\frac{\sqrt{5} \mathbf{x}-\mathbf{x}' }{\theta}+\frac{5(\mathbf{x}-\mathbf{x}')^{2}}{3\theta^{2}}\right)\exp\left(-\frac{\sqrt{5} \mathbf{x}-\mathbf{x}' }{\theta}\right) \\ \sigma^{2}\left(1+\frac{\sqrt{3} \mathbf{x}-\mathbf{x}' }{\theta}\right)\exp\left(-\frac{\sqrt{3} \mathbf{x}-\mathbf{x}' }{\theta}\right) \\ \sigma^{2}\exp\left(-\frac{ \mathbf{x}-\mathbf{x}' }{\theta}\right)$

The estimation of f relies on the conditional distribution of Y given the observed values $y_i = f(x_i)$ at points x_i , i = 1, ..., n.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $\boldsymbol{X} = (x_1, \dots, x_n)^\top \in \mathbb{R}^{n \times d}$: some design points
- $\mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$: observed values of f at these points
- $Y(X) = (Y(x_1), \dots, Y(x_n))^\top$: vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean μ and covariance function K. The conditional process $Y \mid Y(X) = y$ is a GP with mean function

$$\eta(x) = \mu(x) + \boldsymbol{k}(x)^{\top} \mathbb{K}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}), \quad x \in \mathbb{R}^{d}$$

and covariance function \tilde{K} given by

$$ilde{\mathcal{K}}(x,x') = \mathcal{K}(x,x') - oldsymbol{k}(x)^{ op} \mathbb{K}^{-1} oldsymbol{k}(x'), \quad x,x' \in \mathbb{R}^d$$

where $\boldsymbol{\mu} = \boldsymbol{\mu}(\boldsymbol{X}) = (\boldsymbol{\mu}(x_1), \dots, \boldsymbol{\mu}(x_n))^\top$, \mathbb{K} is the covariance matrix of $\boldsymbol{Y}(\boldsymbol{X})$ and $\boldsymbol{k}(\boldsymbol{x}) = (K(\boldsymbol{x}, x_1), \dots, K(\boldsymbol{x}, x_n))^\top$

Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real function f satisfies some linear equality constraints of the form

$$A \cdot f(X) = \boldsymbol{b},\tag{1}$$

where

• A is a given matrix of dimension $n \times m$

•
$$X = (x_1, \ldots, x_m)^\top \in \mathbb{R}^{m \times d}$$

•
$$f(X) = (f(x_1), \ldots, f(x_m))^\top \in \mathbb{R}^m$$

•
$$\boldsymbol{b} \in \mathbb{R}^n$$

Extension to linear equality constraints

- $X = (x_1, \dots, x_m)^\top \in \mathbb{R}^{m \times d}$: some design points
- $\boldsymbol{b} = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)^\top \in \mathbb{R}^n$: right-hand side of the linear system
- $Y(X) = (Y(x_1), \dots, Y(x_m))$: vector composed of Y at point **X**

The conditional process is still a Gaussian Process

Let Y be a GP with mean μ and covariance function K. The conditional process $Y \mid AY(X) = \mathbf{b}$ is a GP with mean function

$$\eta(x) = \mu(x) + (\boldsymbol{A}\boldsymbol{k}(x))^{\top} (\boldsymbol{A}\mathbb{K}\boldsymbol{A}^{\top})^{-1} (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{\mu}), \quad x \in \mathbb{R}^{d}$$

and covariance function \tilde{K} given by

$$ilde{\mathcal{K}}(x,x') = \mathcal{K}(x,x') - \left(\mathcal{A}\boldsymbol{k}(x)
ight)^{ op} \left(\mathcal{A}\mathbb{K}\mathcal{A}^{ op}
ight)^{-1}\mathcal{A}\boldsymbol{k}(x'), \quad x,x'\in\mathbb{R}^d$$

where $\boldsymbol{\mu} = \boldsymbol{\mu}(X) = (\boldsymbol{\mu}(x_1), \dots, \boldsymbol{\mu}(x_m))^\top$, \mathbb{K} is the covariance matrix of Y(X), $\boldsymbol{k}(x) = (K(x, x_1), \dots, K(x, x_m))^\top$

・ 同 ト ・ ヨ ト ・ ヨ ト

Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function \boldsymbol{f} given that

$$\left\{ egin{array}{l} A \cdot f(X) = b \ f \in \mathcal{M} \end{array}
ight.$$

where \mathcal{M} is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

- How to cope with the infinite-dimensional monotonicity constraints?
- Which estimator could we propose for the term-structure?

(E) < E)</p>

Proposed methodology : On an interval $D = [\underline{x}, \overline{x}]$ of \mathbb{R} , we construct a finite-dimensional approximation of Y for which the monotonicity constraint is easy to check.

- Regular subdivision $u_0 < \ldots < u_N$ of D with a constant mesh δ
- Set of increasing basis functions $(\phi_i)_{i=0,...,N}$ defined on this subdivision

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely differentiable paths.

• The finite-dimensional process Y^N defined on D by

$$Y^{N}(x) = Y(u_{0}) + \sum_{j=0}^{N} Y'(u_{j})\phi_{j}(x)$$

uniformly converges to Y, almost surely.

- Y^N is non-decreasing (resp. non-increasing) on D if and only if $Y'(u_j) \ge 0$ (resp. $Y'(u_j) \le 0$) for all j = 0, ..., N.
- Let $\boldsymbol{\xi} := (Y(u_0), Y'(u_0), \dots, Y'(u_N))^\top$, then $\boldsymbol{\xi} \sim \mathcal{N}(0, \Gamma^N)$ where

$$\Gamma^{N} = \begin{bmatrix} K(u_{0}, u_{0}) & \frac{\partial K}{\partial x^{\prime}}(u_{0}, u_{j}) \\ \\ \frac{\partial K}{\partial x}(u_{i}, u_{0}) & \frac{\partial^{2} K}{\partial x \partial x^{\prime}}(u_{i}, u_{j}) \end{bmatrix}_{0 \leq i, j \leq N}$$

For a given covariance function K, we assume that the unknown function f is a sample path of the GP

$$Y^N(x) = \eta + \sum_{j=0}^N \xi_j \phi_j(x), \qquad x \in D,$$

where $\boldsymbol{\xi} := (\eta, \xi_0, \dots, \xi_N)^\top \sim \mathcal{N}(0, \Gamma^N).$

Kriging f is equivalent to find the conditional distribution of Y^N given

{	$A \cdot Y^N(X) = \boldsymbol{b}$	linear equality condition
	$\xi_j \leq 0, \ j = 0, \dots, N$	monotonicity constraint

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Or equivalently, to find the distribution of the truncated Gaussian vector $\pmb{\xi}\sim\mathcal{N}(0,\Gamma^N)$ given

 $\begin{cases} A \cdot \Phi \cdot \boldsymbol{\xi} = \boldsymbol{b} & \text{linear equality condition} \\ \xi_j \leq 0, \ j = 0, \dots, N & \text{monotonicity constraint} \end{cases}$

where Φ is a $m \times (N+2)$ matrix defined as

$$\Phi_{i,j} := \begin{cases} 1 & \text{for } i = 1, \dots, m \text{ and } j = 1, \\ \phi_{j-2}(x_i) & \text{for } i = 1, \dots, m \text{ and } j = 2, \dots, N+2. \end{cases}$$

Which estimator could we use for f?

We consider the mode of the truncated gaussian process (most probable path) :

$$M_{K}^{N}\left(x\mid A, \boldsymbol{b}
ight)=
u+\sum_{j=0}^{N}
u_{j}\phi_{j}(x),$$

where $\boldsymbol{\nu} = (\nu, \nu_0, \dots, \nu_N)^\top \in \mathbb{R}^{N+2}$ is the solution of the following convex optimization problem :

$$\boldsymbol{\nu} = \arg\min_{\boldsymbol{c}\in\mathcal{C}\cap\mathcal{I}(A,\boldsymbol{b})} \left(\frac{1}{2}\boldsymbol{c}^{\top}\left(\boldsymbol{\Gamma}^{N}\right)^{-1}\boldsymbol{c}\right),$$

with

•
$$C = \{ \boldsymbol{\xi} \in \mathbb{R}^{N+2} : \xi_j \leq 0, \ j = 0, \dots, N \}$$

• $\mathcal{I}(A, \boldsymbol{b}) = \{ \boldsymbol{\xi} \in \mathbb{R}^{N+2} : A \cdot \Phi \cdot \boldsymbol{\xi} = \boldsymbol{b} \}$

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector $\boldsymbol{\xi}$ given the linear equality constraint :

$$Z \sim \{\boldsymbol{\xi} \mid \boldsymbol{B} \cdot \boldsymbol{\xi} = \boldsymbol{b}\} \sim \mathcal{N}\left((\boldsymbol{B}\boldsymbol{\Gamma}^{N})^{\top} \left(\boldsymbol{B}\boldsymbol{\Gamma}^{N}\boldsymbol{B}^{\top} \right)^{-1} \boldsymbol{b}, \boldsymbol{\Gamma}^{N} - \left(\boldsymbol{B}\boldsymbol{\Gamma}^{N} \right)^{\top} \left(\boldsymbol{B}\boldsymbol{\Gamma}^{N}\boldsymbol{B}^{\top} \right)^{-1} \boldsymbol{B}\boldsymbol{\Gamma}^{N} \right)$$

where $B = A \cdot \Phi$.

2) Simulate

$$\{Z \mid \xi_j \leq 0, j = 0, \dots, N\} \sim \{\boldsymbol{\xi} \mid B \cdot \boldsymbol{\xi} = \boldsymbol{b} \text{ and } \xi_j \leq 0, j = 0, \dots, N\}$$

by an accelerated rejection sampling method (we use the method proposed in Maatouk and Bay, 2014a)

3) The corresponding sample curves $Y^{N}(\cdot) = \eta + \sum_{j=0}^{N} \xi_{j}\phi_{j}(\cdot)$ satisfies the constraints on the entire domain D.

Kriging of OIS discount curves

- We compare two covariance functions : Gaussian and Matérn 5/2
- Hyper-parameters θ and σ are estimated using cross-validation
- Comparison with Nelson-Siegel and Svensson curve fitting

Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.

Kriging of OIS discount curves

Corresponding spot rate curves : $-\frac{1}{x} \log P(x)$

Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010. The black solid line is the most likely spot rate curve $-\frac{1}{x} \log M_K^N (x \mid A, \mathbf{b})$.

26/63

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Kriging of OIS discount curves

Corresponding forward rate curves : $-\frac{d}{dx} \log P(x)$

Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010. The black solid line is the most likely forward rate curve $-\frac{d}{dx} \log M_{K}^{N} (x \mid A, b)$.

Kriging of OIS discount curves (2D)

The previous approach can be extended in dimension 2.

Dicount curves. OIS discount factors as a function of time-to-maturities and quotation dates.

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance

28/63

Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt

CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of 06/01/2005.

Kriging of CDS-implied default distribution (2D)

The previous approach can be extended in dimension 2.

Survival curves. CDS implied survival probabilities as a function of time-to-maturities and quotation dates.

30/63

Perspectives

- Impact of curve uncertainty on the assessment of related products and their associated hedging strategies
- What if the underlying market quotes are not reliable due to e.g. market illiquidity (data observed with a noise)?
- Kriging of arbitrage-free volatility surfaces?

Kriging of arbitrage-free volatility surface

э

> < => < =>

Contents

2 Adaptive robust control of Markov decision process

3

- Robust control may be overly conservative when applied to the true unknown system
- We develop an adaptive robust methodology for solving a discrete-time Markovian control problem subject to Knightian uncertainty
- We focus on a financial hedging problem, but the methodology can be applied to any kind of Markov decision process under model uncertainty
- As in the classical robust case, the uncertainty comes from the fact that the true law of the driving process is only known to belong to a certain family of probability laws

< ∃ > < ∃ >

- T : terminal date of our finite horizon control problem
- $\mathcal{T} = \{0, 1, 2, \dots, T\}$: time grid
- $\mathcal{T}' = \{0, 1, 2, \dots, \mathcal{T} 1\}$: time grid without last date
- $S = \{S_t, t \in \mathcal{T}\}$: stochastic process that drives the random system

We assume that :

- S is observable and we denote by $\mathbb{F}^{S} = (\mathscr{F}_{t}^{S}, t \in \mathcal{T})$ its natural filtration.
- The law of S is not known but it belongs to a family of parametrized distributions P(Θ) := {ℙ_θ, θ ∈ Θ}, Θ ⊂ ℝ^d
- The unknown (true) law of S is denoted by $\mathbb{P}_{ heta^*}$ and is such that $heta^* \in oldsymbol{\Theta}$

Model uncertainty occurs if $\Theta \neq \{\theta^*\}$

3

▲圖 → ▲ 画 → ▲ 画 → ……

We consider the following stochastic control problem

$$\inf_{\varphi\in\mathcal{A}}\mathbb{E}_{\theta^*}\left(L(S,\varphi)\right).$$

where

- \mathcal{A} is a set of admissible control processes : \mathbb{F}^{S} -adapted processes $\varphi = \{\varphi_{t}, t \in \mathcal{T}'\}$
- L is a measurable functional (loss or error to minimize in our case)

Obviously, the problem cannot be dealt with directly since we do not know the value of θ^{\ast}

Robust control problem : Başar and Bernhard (1995), Hansen et al. (2006), Hansen and Sargent (2008)

$$\inf_{\varphi \in \mathcal{A}} \sup_{\theta \in \Theta} \mathbb{E}_{\theta} \left(L(S, \varphi) \right).$$
(2)

- ullet Best strategy over the worst possible model parameter in ullet
- If the true model is close to the best one, the solution to this problem could perform very badly

(E) < E)</p>

Strong robust control problem : Sirbu (2014), Bayraktar, Cosso and Pham (2014)

$$\inf_{\varphi \in \mathcal{A}} \sup_{\mathbb{Q} \in \mathcal{Q}^{\varphi, \Psi_{K}}} \mathbb{E}_{\mathbb{Q}}\left(L(S, \varphi)\right), \tag{3}$$

- Ψ_{κ} is the set of strategies chosen by a Knightian adversary (the nature) that may keep changing the system distribution over time
- Q^{φ, Ψ_K} represents all possible model dynamics resulting from φ and when nature plays strategies in Ψ_K
- Solution is even more conservative than in the classical robust case
- No learning mechanism to reduce model uncertainty

(신문) (문)

Adaptive control problem : Kumar and Varaiya (1986), Chen and Guo (1991)

For each $\theta \in \Theta$ solve :

$$\inf_{\varphi \in \mathcal{A}} \mathbb{E}_{\theta} \left(L(S, \varphi) \right). \tag{4}$$

- Let φ^{θ} be a corresponding optimal control
- At each time t, compute a point estimate $\hat{\theta}_t$ of θ^* , using a chosen, \mathscr{F}_t^S measurable estimator and apply control value $\varphi_t^{\hat{\theta}_t}$.
- Known to have poor performance for finite horizon problems

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Hedging under model uncertainty

Problem : Hedging a short position on an European-type option with maturity T, payoff function Φ and underlying asset S with price dynamics

$$egin{aligned} S_0 &= s_0 \in (0,\infty), \ S_{t+1} &= Z_{t+1}S_t, \quad t \in \mathcal{T}' \end{aligned}$$

where

- $Z = \{Z_t, t = 1, ..., T\}$ is a non-negative random process
- Under each measure \mathbb{P}_{θ} , Z_{t+1} is independent from \mathscr{F}_t^{S} for each $t \in \mathcal{T}$
- The true law \mathbb{P}_{θ^*} of Z is not known.

Hedging under model uncertainty

Hedging is made using a self-financing portfolio composed of the underlying risky asset S and of a risk-free asset (with constant value equal to 1).

The hedging portfolio has the following dynamics

$$V_0 = v_0,$$

 $V_{t+1} = V_t + \varphi_t(S_{t+1} - S_t), \quad t = 0, \dots, T - 1$

Exact replication is out of reach in our setting (v_0 may be too small), so that the nominal control problem (without uncertainty) is

$$\inf_{\varphi \in \mathcal{A}} \mathbb{E}_{\theta^*} \left(\ell [(\Phi(S_T) - V_T(\varphi))^+] \right),$$

where I is a loss function, i.e., an increasing function such that $\ell(0) = 0$ (shortfall risk minimization approach)

The methodology relies on recursive construction of confidence regions. We assume that :

1) A point estimator $\widehat{\theta}_t$ of θ^* can be constructed recursively

$$\widehat{ heta}_0 = heta_0,$$

 $\widehat{ heta}_{t+1} = R(t, \widehat{ heta}_t, Z_{t+1}), \quad t = 0, \dots, T-1$

where R(t, c, z) is a deterministic measurable function.

2) An approximate α -confidence region Θ_t of θ^* can be constructed from $\hat{\theta}_t$ by a deterministic rule :

$$\boldsymbol{\Theta}_t = \tau(t, \widehat{\theta}_t)$$

where $\tau(t, \cdot) : \mathbb{R}^d \to 2^{\Theta}$ is a deterministic set valued function. The region Θ_t should be such that $\mathbb{P}_{\theta^*} (\theta^* \in \Theta_t) \approx 1 - \alpha$ and $\lim_{t\to\infty} \Theta_t = \{\theta^*\}$ where the convergence is understood \mathbb{P}^{θ^*} almost surely, and the limit is in the Hausdorff metric.

We consider the following (augmented) state process

$$X_t = (S_t, V_t, \widehat{ heta}_t), \quad t \in \mathcal{T}$$

with state space $E_X := \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}^d$.

In our hedging problem, $X = (S, V, \widehat{ heta})$ is a Markov process with dynamics :

$$S_{t+1} = Z_{t+1}S_t,$$

$$V_{t+1} = V_t + \varphi_t S_t(Z_{t+1} - 1),$$

$$\hat{\theta}_{t+1} = R(t, \hat{\theta}_t, Z_{t+1})$$

We denote by

$$Q(B \mid t, x, a, \theta) := \mathbb{P}_{\theta}(X_{t+1} \in B \mid X_t = x, \varphi_t = a)$$

the time-t Markov transition kernel under probability \mathbb{P}_{θ} when strategy a is applied

Let us denote by

$$H_t := ((S_0, V_0, \widehat{\theta}_0), (S_1, V_1, \widehat{\theta}_1), \dots, (S_t, V_t, \widehat{\theta}_t)), \ t \in \mathcal{T},$$

the history of the state process up to time t.

Note that, for any admissible trading strategy φ , H_t is \mathscr{F}_t^S measurable and

$$H_t \in \mathbf{H}_t := \underbrace{E_X \times E_X \times \ldots \times E_X}_{t+1 \text{ times}}.$$

We denote by

$$h_t = (x_0, x_1, \ldots, x_t) = (s_0, v_0, c_0, s_1, v_1, c_1, \ldots, s_t, v_t, c_t)$$

a realization of H_t .

4 B 6 4 B 6

A robust control problem can be viewed as a game between a controller and nature (the Knightian opponent).

The controller plays history-dependent strategies φ that belong to

$$\mathcal{A} = \{ (\varphi_t)_{t \in \mathcal{T}'} \mid \varphi_t : \mathbf{H}_t \to \mathcal{A}, \ t \in \mathcal{T}' \}$$

where φ_t is a measurable mapping.

Strong robust case : nature plays history-dependent strategies ψ that belong to

$$\Psi_{\mathsf{K}} = \{ (\psi_t)_{t \in \mathcal{T}'} \mid \psi_t : \mathsf{H}_t \to \Theta, \ t \in \mathcal{T}' \}$$

Adaptive robust case : nature plays history-dependent strategies ψ that belong

to

$$\Psi_{\mathsf{A}} = \{(\psi_t)_{t \in \mathcal{T}'} \mid \psi_t : \mathsf{H}_t \to \Theta_t, t \in \mathcal{T}'\}$$

where ${f \Theta}_t = au(t,\widehat{ heta}_t)$ is the lpha-confidence region of $heta^*$ at time t

Given that the controller plays φ and nature plays ψ , using lonescu-Tulcea theorem, we define the canonical law of the state process X on E_X^T as

$$\begin{aligned} \mathbb{Q}_{h_{0}}^{\varphi,\psi}(B_{1},\ldots,B_{T}) &= \\ \int_{B_{1}}\cdots\int_{B_{T}}Q(dx_{T} \mid T-1,x_{T-1},\varphi_{T-1}(h_{T-1}),\psi_{T-1}(h_{T-1})) \\ &\cdots Q(dx_{2} \mid 1,x_{1},\varphi_{1}(h_{1}),\psi_{1}(h_{1})) Q(dx_{1} \mid 0,x_{0},\varphi_{0}(h_{0}),\psi_{0}(h_{0})) \end{aligned}$$

For a given strategy φ , we define

$$\mathcal{Q}_{h_{\mathbf{0}}}^{\varphi, \Psi_{K}} := \{ \mathbb{Q}_{h_{\mathbf{0}}}^{\varphi, \psi}, \ \psi \in \Psi_{K} \}$$

and

$$\mathcal{Q}_{h_{\mathbf{0}}}^{\varphi, \Psi_{A}} := \{ \mathbb{Q}_{h_{\mathbf{0}}}^{\varphi, \psi}, \ \psi \in \Psi_{A} \}$$

(E) < E)</p>

The strong robust hedging problem :

$$\inf_{\varphi \in \mathcal{A}} \sup_{\mathbb{Q} \in \mathcal{Q}_{h_{0}}^{\varphi, \Psi_{K}}} \mathbb{E}_{\mathbb{Q}} \left(\ell [(\Phi(S_{T}) - V_{T})^{+}] \right)$$

The adaptive robust hedging problem :

$$\inf_{\varphi \in \mathcal{A}} \sup_{\mathbb{Q} \in \mathcal{Q}_{h_{0}}^{\varphi, \Psi_{\mathcal{A}}}} \mathbb{E}_{\mathbb{Q}} \left(\ell [(\Phi(S_{\mathcal{T}}) - V_{\mathcal{T}})^{+}] \right)$$

< ∃ > < ∃ >

Adaptive robust control methodology

Without uncertainty

48/63

∃→ < ∃→</p>

Adaptive robust control methodology

3

∃→ < ∃→</p>

Adaptive robust control methodology

Strong robust Ŵł $\max(\Theta)$ θ^* $\min(\Theta)$

-

Adaptive robust control methodology

Adaptive robust ψ_{i} $\max(\Theta)$ $\max(\boldsymbol{\Theta}_t)$ θ^* $\min(\boldsymbol{\Theta}_t)$ $\min(\Theta)$ **⊾**t

Dynamic programming principle

Proposition

The solution $\varphi^* = (\varphi^*_t(h_t))_{t \in \mathcal{T}'}$ of

$$\inf_{\varphi \in \mathcal{A}} \sup_{\mathbb{Q} \in \mathcal{Q}_{h_{0}}^{\varphi, \Psi_{A}}} \mathbb{E}_{\mathbb{Q}} \left(\ell [(\Phi(S_{T}) - V_{T})^{+}] \right)$$

coincides with the solution of the following robust Bellman equation :

$$W_{T}(x) = \ell \left[(\Phi(s) - v)^{+} \right], \quad x = (s, v, \widehat{\theta}) \in E_{X},$$
$$W_{t}(x) = \inf_{a \in A} \sup_{\theta \in \tau(t, \widehat{\theta})} \int_{E_{X}} W_{t+1}(y) Q(dy \mid t, x, a, \theta),$$

for any $x = (s, v, \widehat{\theta}) \in E_X$ and $t = T - 1, \dots, 0$.

Note that the optimal strategy at time t is such that $\varphi_t^*(h_t) = \varphi_t^*(x_t)$.

We consider that the stock price is driven by an uncertain log-normal model

$$S_{t+1} = Z_{t+1}S_t$$

where Z_t is an iid sequence such that $\ln Z_t \stackrel{\mathbb{P}_{\theta^*}}{\sim} N(\mu^*, (\sigma^*)^2)$.

The MLE $\hat{\theta}_t = (\hat{\mu}_t, \hat{\sigma}_t^2)$ of the unknown parameter $\theta^* = (\mu^*, (\sigma^*)^2)$ can be expressed in the following recursive way :

$$\widehat{\mu}_{t+1} = \frac{t}{t+1}\widehat{\mu}_t + \frac{1}{t+1}\ln Z_{t+1}, \\ \widehat{\sigma}_{t+1}^2 = \frac{t}{t+1}\widehat{\sigma}_t^2 + \frac{t}{(t+1)^2}(\widehat{\mu}_t - \ln Z_{t+1})^2,$$

with $\widehat{\mu}_1 = \ln Z_1 = \ln \frac{S_1}{S_0}$ and $\widehat{\sigma}_1^2 = 0$.

Due to asymptotic normality of the MLE $\hat{\theta}_t = (\hat{\mu}_t, \hat{\sigma}_t^2)$, we have

$$\frac{t}{\widehat{\sigma}_t^2} (\widehat{\mu}_t - \mu^*)^2 + \frac{t}{2\widehat{\sigma}_t^4} (\widehat{\sigma}_t^2 - (\sigma^*)^2)^2 \xrightarrow[t \to \infty]{d} \chi_2^2$$

So that, if κ_{α} is the $(1 - \alpha)$ -quantile of the χ^2_2 distribution,

$$\boldsymbol{\Theta}_t = \tau(t,\widehat{\mu},\widehat{\sigma}^2) := \left\{ (\mu,\sigma^2) \in \mathbb{R}^2 : \frac{t}{\widehat{\sigma}^2} (\widehat{\mu} - \mu)^2 + \frac{t}{2\widehat{\sigma}^4} (\widehat{\sigma}^2 - \sigma^2)^2 \leq \kappa_\alpha \right\}$$

is an approximate α -confidence region of θ^* , i.e., Θ_t is such that

$$\mathbb{P}_{\theta^*} \left(\theta^* \in \mathbf{\Theta}_t \right) \approx 1 - \alpha$$

[See Bielecki et al. (2016) for more details]

The adaptive robust control problem can be solved using the following dynamic programming principle :

$$\begin{split} & W_{T}(x) = \ell \left[\left(\Phi(s) - v \right)^{+} \right], \quad x = (s, v, \widehat{\mu}, \widehat{\sigma}^{2}) \in E_{X}, \\ & W_{t}(x) = \inf_{a \in A} \sup_{(\mu, \sigma^{2}) \in \tau(t, \widehat{\mu}, \widehat{\sigma}^{2})} \int_{E_{X}} W_{t+1}(y) Q(dy \mid t, x, a; \mu, \sigma^{2}) \end{split}$$

where $x = (s, v, \widehat{\mu}, \widehat{\sigma}^2) \in E_X = \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}_+, \ t = T - 1, \dots, 0$

The integral in the previous slide can be written as

$$\int_{\mathbb{R}} W_{t+1}\left(se^{\mu+\sigma z}, v+as(e^{\mu+\sigma z}-1), R(t,\widehat{\mu},\widehat{\sigma}^2,\mu+\sigma z)\right)\phi(z)dz$$

where ϕ is the density of the standard normal distribution and R is such that

$$R\left(t,\widehat{\mu},\widehat{\sigma}^{2},y\right) = \left(\frac{t}{t+1}\widehat{\mu} + \frac{1}{t+1}y,\frac{t}{t+1}\widehat{\sigma}^{2} + \frac{t}{(t+1)^{2}}(\widehat{\mu}-y)^{2}\right)$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Perspectives

- Numerically solve Bellman equation for the considered hedging problem : challenging issue due to the curse of dimensionality (optimal quantization, approximate dynamic programming could be used)
- Compare hedging performance with other approaches : control without uncertainty, standard robust, adaptive robust, Bayesian adaptive robust

4 3 5 4 3 5

Thanks for your attention.

< ∃ > < ∃ >

References I

Bachoc, F. (2013).

Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian processes with model misspecification.

```
Computational Statistics & Data Analysis, 66(0):55 - 69.
```


Başar, T. and Bernhard, P. (1995).

 $H^\infty\text{-}optimal$ control and related minimax design problems.

Systems & Control : Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, second edition.

A dynamic game approach.

Bay, X., Grammont, L., and Maatouk, H. (2016).

Generalization of the Kimeldorf-Wahba correspondence for constrained interpolation.

Bayraktar, E., Cosso, A., and Pham, H. (2014).

Robust feedback switching control : dynamic programming and viscosity solutions. http://arxiv.org/pdf/1409.6233v1.pdf.

Bielecki, T., Chen, T., and Cialenco, I. (2016).

Recursive Construction of Confdence Regions. Preprint.

Chen, H. F. and Guo, L. (1991).

Identification and stochastic adaptive control. Systems & Control : Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA.

-

・ 同 ト ・ ヨ ト ・ ヨ ト

References II

Corsi, M., Pham, H., and Runggaldier, W. (2007). Numerical approximation by quantization of control problems in finance under partial observations. <i>preprint</i> .
Cousin, A., Maatouk, H., and Rullière, D. (2015). Kriging of Financial Term-Structures.
Cousin, A. and Niang, I. (2014). On the Range of Admissible Term-Structures.
Golchi, S., Bingham, D., Chipman, H., and Campbell, D. (2015). Monotone Emulation of Computer Experiments. SIAM/ASA Journal on Uncertainty Quantification, 3(1) :370–392.
Hansen, L. P., Sargent, T. J., Turmuhambetova, G., and Williams, N. (2006). Robust control and model misspecification. <i>J. Econom. Theory</i> , 128(1) :45–90.
Hansen, P. L. and Sargent, T. J. (2008). <i>Robustness.</i> Princeton University Press.

æ –

◆□ > ◆□ > ◆豆 > ◆豆 >

References III

Iyengar, G. N. (2005).

Robust dynamic programming.

Mathematics of Operations Research, 30(2) :pp. 257-280.

Kumar, P. R. and Varaiya, P. (1986).

Stochastic systems : estimation, identification and adaptive control. Prentice-Hall, Inc.

Maatouk, H. and Bay, X. (2014a).

A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Sets.

To appear in Monte Carlo and Quasi-Monte Carlo Methods 2014, Springer-Verlag, Berlin 2016.

Maatouk, H. and Bay, X. (2014b).

Gaussian Process Emulators for Computer Experiments with Inequality Constraints. in revision SIAM/ASA J. Uncertainty Quantification.

Runggaldier, W., Trivellato, B., and Vargiolu, T. (2002).

A Bayesian adaptive control approach to risk management in a binomial model. In Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), volume 52 of Progr. Probab., pages 243–258.

Sirbu, M. (2014).

A note on the strong formulation of stochastic control problems with model uncertainty. *Electronic Communications in Probability*, 19.

< ∃ > < ∃ >

References IV

æ –

(日) (四) (王) (王)