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Motivation

Financial term-structures describes the evolution of some financial or
economic quantities as a function of time horizon.

Examples : interest-rates, bond yields, credit spreads, implied default
probabilities, implied volatilities.

Applications : valuation of financial and insurance products, risk
management
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The term-structure construction problem

Several constraints have to be considered

Compatibility with market information : at a given date t0, the curve
under construction T → P(t0,T ) shall be compatible with observed prices
of some reference products.

Arbitrage-free construction : this translates into some specific shape
properties such as positivity, monotonicity, convexity or bounds on the
curve values

Additional conditions can be required : minimum degree of smoothness,
control of local convexity
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The term-structure construction problem

1) Compatibility with market information :

At time t0, we observe the market quotes S1, . . . , Sn of n liquidly traded
instruments

The values of these products depend on the value of the curve at m input
locations X = (τ1, . . . , τm)

The vector of output values P(t0,X ) := (P(t0, τ1), . . . ,P(t0, τm))> satisfies a
linear system of the form

A · P(t0,X ) = b,

where

A is a n ×m real-valued matrix

b is a n-dimensional column vector

n < m =⇒ indirect and partial information on the curve values at τ1, . . . , τm

2) No-arbitrage assumption :

T → P(t0,T ) is typically a monotonic bounded function
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Range of arbitrage-free OIS discount curves

We observe the quoted par rates Si of an OIS with maturities Ti , i = 1, . . . , n

1) Compatibility with market quotes :

The curve T → P(t0,T ) of OIS discount factors is such that

Si

pi−1∑
k=1

δkP(t0, tk) + (Siδpi + 1)P(t0,Ti ) = 1, i = 1, ..., n

t1 < · · · < tpi = Ti : fixed-leg payment dates (annual time grid)

δk : year fraction of period (tk−1, tk)

2) No-arbitrage assumption :

T → P(t0,T ) is a decreasing function such that P(t0, t0) = 1
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Range of arbitrage-free OIS discount curves

n = 14 liquidly traded maturities 1, 2, . . . , 10, 15, 20, 30, 40 years.
m = 40 points involved in the market-fit linear system
No-arbitrage bounds on OIS discount factors
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Bounds for OIS discounting curves

Input data : OIS swap rates as of May, 31st 2013.
Source : Cousin and Niang (2014)
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Range of arbitrage-free CDS-implied survival functions

We observe at time t0 the fair spreads Si of a CDS with maturities Ti ,
i = 1, . . . , n

1) Compatibility with market quotes :

The curve T → P(t0,T ) of (risk-neutral) survival probabilities is such that

Si

pi∑
k=1

δkD(t0, tk)P(t0, tk) = −(1− R)

∫ Ti

t0

D(t0, u)dP(t0, u), i = 1, ..., n

t1 < · · · < tp = Ti : trimestrial premium payment dates, δk : year fraction
of period (tk−1, tk)

D(t0,T ) is the discount factor associated with maturity date T

R : expected recovery rate of the reference entity

2) No-arbitrage assumption :

T → P(t0,T ) is a decreasing function such that P(t0, t0) = 1
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Range of arbitrage-free CDS-implied survival functions

n = 4 liquidly traded maturities 3, 5, 7, 10 years.
m = 40 points involved in the market-fit linear system
No-arbitrage bounds on the issuer implied survival distribution function
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Bounds for CDS implied survival probabilities

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
D(t,T ) = exp(−3%(T − t))
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From spline interpolation to kriging

In practice, financial term-structures are constructed using deterministic
interpolation techniques.

Parametric approaches : Nelson-Siegel or Svensson models (used by most
central banks)

Non-parametric interpolation methods : shape-preserving spline techniques
(lack of interpretability but better ability to fit the data).

Could we propose an arbitrage-free interpolation method that additionally
allows for quantification of uncertainty ?
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Classical kriging

A function f is only known at a limited number of points x1, . . . , xn
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Classical kriging

The (unknown) function f is assumed to be a sample path of a Gaussian
process Y
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Classical kriging

Definition : Gaussian process (GP) or Gaussian random field

A Gaussian process is a collection of random variables, any finite number of
which have (consistent) joint Gaussian distributions.

A Gaussian process
(
Y (x), x ∈ Rd

)
is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R.

and its covariance function

K : (x , x ′) ∈ Rd × Rd −→ Cov(Y (x),Y (x ′)) ∈ R.

1D kriging kernel K(x , x ′) Class

Gaussian σ2 exp
(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x′|

θ

)
C0
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Classical kriging

The estimation of f relies on the conditional distribution of Y given the
observed values yi = f (xi ) at points xi , i = 1, . . . , n.
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Classical kriging

X = (x1, . . . , xn)> ∈ Rn×d : some design points

y = (y1, . . . , yn)> ∈ Rn : observed values of f at these points

Y (X ) = (Y (x1), . . . ,Y (xn))> : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | Y (X ) = y is a GP with mean function

η(x) = µ(x) + k(x)>K−1(y − µ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− k(x)>K−1k(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xn))> , K is the covariance matrix of Y (X )
and k(x) = (K (x , x1) , . . . ,K (x , xn))>
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Extension to linear equality constraints

Recall that, in our term-structure construction problem, the (unknown) real
function f satisfies some linear equality constraints of the form

A · f (X ) = b, (1)

where

A is a given matrix of dimension n ×m

X = (x1, . . . , xm)> ∈ Rm×d

f (X ) = (f (x1), . . . , f (xm))> ∈ Rm

b ∈ Rn
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Extension to linear equality constraints

X = (x1, . . . , xm)> ∈ Rm×d : some design points

b = (b1, . . . , bn)> ∈ Rn : right-hand side of the linear system

Y (X ) = (Y (x1), . . . ,Y (xm)) : vector composed of Y at point X

The conditional process is still a Gaussian Process

Let Y be a GP with mean µ and covariance function K . The conditional
process Y | AY (X ) = b is a GP with mean function

η(x) = µ(x) + (Ak(x))>
(
AKA>

)−1
(b − Aµ), x ∈ Rd

and covariance function K̃ given by

K̃(x , x ′) = K(x , x ′)− (Ak(x))>
(
AKA>

)−1
Ak(x ′), x , x ′ ∈ Rd

where µ = µ(X ) = (µ(x1), . . . , µ(xm))> , K is the covariance matrix of Y (X ),
k(x) = (K (x , x1) , . . . ,K (x , xm))>
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Extension to monotonicity constraints

New formulation of the problem : estimation of an unknown function f given
that {

A · f (X ) = b
f ∈M

whereM is the set of (say) non-increasing functions.

Problem : The conditional process is not a Gaussian process anymore.

How to cope with the infinite-dimensional monotonicity constraints ?

Which estimator could we propose for the term-structure ?
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Extension to monotonicity constraints (1D case)

Proposed methodology : On an interval D = [x , x ] of R, we construct a
finite-dimensional approximation of Y for which the monotonicity constraint is
easy to check.

Regular subdivision u0 < . . . < uN of D with a constant mesh δ

Set of increasing basis functions (φi )i=0,...,N defined on this subdivision

hi (x) := max
(
1− |x−ui |

δ
, 0
)

φi (x) =
∫ x

x
hi (u)du
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Extension to monotonicity constraints (1D case)

Proposition (Maatouk and Bay, 2014b)

Let Y be a zero-mean GP with covariance function K and with almost surely
differentiable paths.

The finite-dimensional process Y N defined on D by

Y N(x) = Y (u0) +
N∑
j=0

Y ′(uj)φj(x)

uniformly converges to Y , almost surely.

Y N is non-decreasing (resp. non-increasing) on D if and only if
Y ′(uj) ≥ 0 (resp. Y ′(uj) ≤ 0) for all j = 0, . . . ,N.

Let ξ := (Y (u0),Y ′(u0), . . . ,Y ′(uN))>, then ξ ∼ N (0, ΓN) where

ΓN =

K(u0, u0) ∂K
∂x′ (u0, uj)

∂K
∂x

(ui , u0) ∂2K
∂x∂x′ (ui , uj)


0≤i,j≤N
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Extension to monotonicity constraints (1D case)

For a given covariance function K , we assume that the unknown function f is a
sample path of the GP

Y N(x) = η +
N∑
j=0

ξjφj(x), x ∈ D,

where ξ := (η, ξ0, . . . , ξN)> ∼ N (0, ΓN).

Kriging f is equivalent to find the conditional distribution of Y N given{
A · Y N(X ) = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint
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Extension to monotonicity constraints (1D case)

Or equivalently, to find the distribution of the truncated Gaussian vector
ξ ∼ N (0, ΓN) given{

A · Φ · ξ = b linear equality condition
ξj ≤ 0, j = 0, . . . ,N monotonicity constraint

where Φ is a m × (N + 2) matrix defined as

Φi,j :=

{
1 for i = 1, . . . ,m and j = 1,
φj−2 (xi ) for i = 1, . . . ,m and j = 2, . . . ,N + 2.
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Extension to monotonicity constraints (1D case)

Which estimator could we use for f ?

We consider the mode of the truncated gaussian process (most probable path) :

MN
K (x | A, b) = ν +

N∑
j=0

νjφj(x),

where ν = (ν, ν0, . . . , νN)> ∈ RN+2 is the solution of the following convex
optimization problem :

ν = arg min
c∈C∩I(A,b)

(
1
2
c>
(

ΓN
)−1

c
)
,

with

C =
{
ξ ∈ RN+2 : ξj ≤ 0, j = 0, . . . ,N

}
I(A, b) =

{
ξ ∈ RN+2 : A · Φ · ξ = b

}
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Extension to monotonicity constraints (1D case)

Efficient simulation of the truncated Gaussian vector

1) Simulate a truncated vector ξ given the linear equality constraint :

Z ∼ {ξ | B · ξ = b} ∼ N
(

(BΓN)>
(
BΓNB>

)−1
b, ΓN −

(
BΓN

)> (
BΓNB>

)−1
BΓN

)
where B = A · Φ.

2) Simulate

{Z | ξj ≤ 0, j = 0, . . . ,N} ∼ {ξ | B · ξ = b and ξj ≤ 0, j = 0, . . . ,N}

by an accelerated rejection sampling method (we use the method proposed in
Maatouk and Bay, 2014a)

3) The corresponding sample curves Y N(·) = η +
∑N

j=0 ξjφj(·) satisfies the
constraints on the entire domain D.
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Kriging of OIS discount curves

We compare two covariance functions : Gaussian and Matérn 5/2

Hyper-parameters θ and σ are estimated using cross-validation

Comparison with Nelson-Siegel and Svensson curve fitting
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Discount curves. N = 50, 100 sample paths. Left : Gaussian covariance
function. Right : Matérn 5/2 covariance function. OIS data of 03/06/2010.
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Kriging of OIS discount curves

Corresponding spot rate curves : − 1
x
logP(x)
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Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely spot rate curve − 1
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logMN
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Kriging of OIS discount curves

Corresponding forward rate curves : − d
dx

logP (x)

Spot rate curves. Left : Gaussian covariance function. Right : Matérn 5/2
covariance function. OIS data of 03/06/2010. The black solid line is the most
likely forward rate curve − d

dx
logMN

K (x | A, b).
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Kriging of OIS discount curves (2D)
The previous approach can be extended in dimension 2.
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Kriging of CDS-implied default distribution

Implied survival function of the Russian sovereign debt

CDS implied survival curves. N = 50, 100 sample paths. Left : Gaussian
covariance function. Right : Matérn 5/2 covariance function. CDS spreads as of
06/01/2005.
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Kriging of CDS-implied default distribution (2D)
The previous approach can be extended in dimension 2.

0
1

2
3

4
5

6
7

8
9

10
2005−01−06

2006−02−02

2007−03−20

2008−04−04

2009−05−11

2010−06−21

2011−07−14

2012−08−23

0.7

0.8

0.9

1.0

protection maturities dates

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Survival curves. CDS implied survival probabilities as a function of
time-to-maturities and quotation dates.

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance 30/63



Kriging of financial term-structures
Adaptive robust control of Markov decision process

Perspectives

Impact of curve uncertainty on the assessment of related products and
their associated hedging strategies

What if the underlying market quotes are not reliable due to e.g. market
illiquidity (data observed with a noise) ?

Kriging of arbitrage-free volatility surfaces ?
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Kriging of arbitrage-free volatility surface
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General setting and motivation

Robust control may be overly conservative when applied to the true
unknown system

We develop an adaptive robust methodology for solving a discrete-time
Markovian control problem subject to Knightian uncertainty

We focus on a financial hedging problem, but the methodology can be
applied to any kind of Markov decision process under model uncertainty

As in the classical robust case, the uncertainty comes from the fact that
the true law of the driving process is only known to belong to a certain
family of probability laws
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General setting and motivation

T : terminal date of our finite horizon control problem

T = {0, 1, 2, . . . ,T} : time grid

T ′ = {0, 1, 2, . . . ,T − 1} : time grid without last date

S = {St , t ∈ T } : stochastic process that drives the random system

We assume that :

S is observable and we denote by FS = (F S
t , t ∈ T ) its natural filtration.

The law of S is not known but it belongs to a family of parametrized
distributions P(Θ) := {Pθ, θ ∈ Θ}, Θ ⊂ Rd

The unknown (true) law of S is denoted by Pθ∗ and is such that θ∗ ∈ Θ

Model uncertainty occurs if Θ 6= {θ∗}

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance 35/63



Kriging of financial term-structures
Adaptive robust control of Markov decision process

General setting and motivation

We consider the following stochastic control problem

inf
ϕ∈A

Eθ∗ (L(S , ϕ)) .

where

A is a set of admissible control processes : FS–adapted processes
ϕ = {ϕt , t ∈ T ′}
L is a measurable functional (loss or error to minimize in our case)

Obviously, the problem cannot be dealt with directly since we do not know the
value of θ∗

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance 36/63



Kriging of financial term-structures
Adaptive robust control of Markov decision process

General setting and motivation

Robust control problem : Başar and Bernhard (1995), Hansen et al. (2006),
Hansen and Sargent (2008)

inf
ϕ∈A

sup
θ∈Θ

Eθ (L(S , ϕ)) . (2)

Best strategy over the worst possible model parameter in Θ

If the true model is close to the best one, the solution to this problem
could perform very badly
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General setting and motivation

Strong robust control problem : Sirbu (2014), Bayraktar, Cosso and Pham
(2014)

inf
ϕ∈A

sup
Q∈Qϕ,ΨK

EQ (L(S , ϕ)) , (3)

ΨK is the set of strategies chosen by a Knightian adversary (the nature)
that may keep changing the system distribution over time

Qϕ,ΨK represents all possible model dynamics resulting from ϕ and when
nature plays strategies in ΨK

Solution is even more conservative than in the classical robust case

No learning mechanism to reduce model uncertainty
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General setting and motivation

Adaptive control problem : Kumar and Varaiya (1986), Chen and Guo (1991)

For each θ ∈ Θ solve :

inf
ϕ∈A

Eθ (L(S , ϕ)) . (4)

Let ϕθ be a corresponding optimal control

At each time t, compute a point estimate θ̂t of θ∗, using a chosen, F S
t

measurable estimator and apply control value ϕθ̂tt .

Known to have poor performance for finite horizon problems
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Hedging under model uncertainty

Problem : Hedging a short position on an European-type option with maturity
T , payoff function Φ and underlying asset S with price dynamics

S0 = s0 ∈ (0,∞),

St+1 = Zt+1St , t ∈ T ′

where

Z = {Zt , t = 1, . . . ,T} is a non-negative random process

Under each measure Pθ, Zt+1 is independent from F S
t for each t ∈ T

The true law Pθ∗ of Z is not known.
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Hedging under model uncertainty

Hedging is made using a self-financing portfolio composed of the underlying
risky asset S and of a risk-free asset (with constant value equal to 1).

The hedging portfolio has the following dynamics

V0 = v0,

Vt+1 = Vt + ϕt(St+1 − St), t = 0, . . . ,T − 1

Exact replication is out of reach in our setting (v0 may be too small), so that
the nominal control problem (without uncertainty) is

inf
ϕ∈A

Eθ∗
(
`[(Φ(ST )− VT (ϕ))+]

)
,

where l is a loss function, i.e., an increasing function such that `(0) = 0
(shortfall risk minimization approach)
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Adaptive robust control methodology

The methodology relies on recursive construction of confidence regions. We
assume that :

1) A point estimator θ̂t of θ∗ can be constructed recursively

θ̂0 = θ0,

θ̂t+1 = R(t, θ̂t ,Zt+1), t = 0, . . . ,T − 1

where R(t, c, z) is a deterministic measurable function.

2) An approximate α-confidence region Θt of θ∗ can be constructed from θ̂t by
a deterministic rule :

Θt = τ(t, θ̂t)

where τ(t, ·) : Rd → 2Θ is a deterministic set valued function. The region Θt

should be such that Pθ∗ (θ∗ ∈ Θt) ≈ 1− α and limt→∞Θt = {θ∗} where the
convergence is understood Pθ

∗
almost surely, and the limit is in the Hausdorff

metric.

Areski Cousin, ISFA, Université Lyon 1 Model uncertainty in finance 42/63



Kriging of financial term-structures
Adaptive robust control of Markov decision process

Adaptive robust control methodology

We consider the following (augmented) state process

Xt = (St ,Vt , θ̂t), t ∈ T

with state space EX := R+ × R× Rd .

In our hedging problem, X = (S ,V , θ̂) is a Markov process with dynamics :

St+1 = Zt+1St ,

Vt+1 = Vt + ϕtSt(Zt+1 − 1),

θ̂t+1 = R(t, θ̂t ,Zt+1)

We denote by

Q(B | t, x , a, θ) := Pθ(Xt+1 ∈ B | Xt = x , ϕt = a)

the time-t Markov transition kernel under probability Pθ when strategy a is
applied
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Adaptive robust control methodology

Let us denote by

Ht := ((S0,V0, θ̂0), (S1,V1, θ̂1), . . . , (St ,Vt , θ̂t)), t ∈ T ,

the history of the state process up to time t.

Note that, for any admissible trading strategy ϕ, Ht is F S
t measurable and

Ht ∈ Ht := EX × EX × . . .× EX︸ ︷︷ ︸
t+1 times

.

We denote by

ht = (x0, x1, . . . , xt) = (s0, v0, c0, s1, v1, c1, . . . , st , vt , ct)

a realization of Ht .
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Adaptive robust control methodology

A robust control problem can be viewed as a game between a controller and
nature (the Knightian opponent).

The controller plays history-dependent strategies ϕ that belong to

A = {(ϕt)t∈T ′ | ϕt : Ht → A, t ∈ T ′}

where ϕt is a measurable mapping.

Strong robust case : nature plays history-dependent strategies ψ that belong to

ΨK = {(ψt)t∈T ′ | ψt : Ht → Θ, t ∈ T ′}

Adaptive robust case : nature plays history-dependent strategies ψ that belong

to
ΨA = {(ψt)t∈T ′ | ψt : Ht → Θt , t ∈ T ′}

where Θt = τ(t, θ̂t) is the α-confidence region of θ∗ at time t
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Adaptive robust control methodology

Given that the controller plays ϕ and nature plays ψ, using Ionescu-Tulcea
theorem, we define the canonical law of the state process X on ET

X as

Qϕ,ψh0
(B1, . . . ,BT ) =∫

B1

· · ·
∫
BT

Q(dxT | T − 1, xT−1, ϕT−1(hT−1), ψT−1(hT−1))

· · ·Q(dx2 | 1, x1, ϕ1(h1), ψ1(h1))Q(dx1 | 0, x0, ϕ0(h0), ψ0(h0)).

For a given strategy ϕ, we define

Qϕ,ΨK
h0

:= {Qϕ,ψh0
, ψ ∈ ΨK}

and
Qϕ,ΨA

h0
:= {Qϕ,ψh0

, ψ ∈ ΨA}
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Adaptive robust control methodology

The strong robust hedging problem :

inf
ϕ∈A

sup
Q∈Qϕ,ΨK

h0

EQ
(
`[(Φ(ST )− VT )+]

)

The adaptive robust hedging problem :

inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
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Adaptive robust control methodology

Without uncertainty

t

✓⇤

 t
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Adaptive robust control methodology

Robust

t

✓⇤

 t

min(⇥)

max(⇥)
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Adaptive robust control methodology

Strong robust

t

✓⇤

 t

min(⇥)

max(⇥)
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Adaptive robust control methodology

Adaptive robust

t

✓⇤

 t

min(⇥)

max(⇥)

max(⇥t)

min(⇥t)
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Adaptive robust control methodology

Dynamic programming principle

Proposition

The solution ϕ∗ = (ϕ∗t (ht))t∈T ′ of

inf
ϕ∈A

sup
Q∈Qϕ,ΨA

h0

EQ
(
`[(Φ(ST )− VT )+]

)
coincides with the solution of the following robust Bellman equation :

WT (x) = `
[
(Φ(s)− v)+

]
, x = (s, v , θ̂) ∈ EX ,

Wt(x) = inf
a∈A

sup
θ∈τ(t,θ̂)

∫
EX

Wt+1(y)Q(dy | t, x , a, θ),

for any x = (s, v , θ̂) ∈ EX and t = T − 1, . . . , 0.

Note that the optimal strategy at time t is such that ϕ∗t (ht) = ϕ∗t (xt).
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Example : uncertain log-normal model

We consider that the stock price is driven by an uncertain log-normal model

St+1 = Zt+1St

where Zt is an iid sequence such that lnZt
Pθ∗∼ N(µ∗, (σ∗)2).

The MLE θ̂t = (µ̂t , σ̂
2
t ) of the unknown parameter θ∗ = (µ∗, (σ∗)2) can be

expressed in the following recursive way :

µ̂t+1 =
t

t + 1
µ̂t +

1
t + 1

lnZt+1,

σ̂2
t+1 =

t

t + 1
σ̂2
t +

t

(t + 1)2 (µ̂t − lnZt+1)2,

with µ̂1 = lnZ1 = ln S1
S0

and σ̂2
1 = 0.
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Example : uncertain log-normal model

Due to asymptotic normality of the MLE θ̂t = (µ̂t , σ̂
2
t ), we have

t

σ̂2
t

(µ̂t − µ∗)2 +
t

2σ̂4
t

(σ̂2
t − (σ∗)2)2 d−−−→

t→∞
χ2

2

So that, if κα is the (1− α)–quantile of the χ2
2 distribution,

Θt = τ(t, µ̂, σ̂2) :=
{

(µ, σ2) ∈ R2 :
t

σ̂2 (µ̂− µ)2 +
t

2σ̂4 (σ̂2 − σ2)2 ≤ κα
}

is an approximate α-confidence region of θ∗, i.e., Θt is such that

Pθ∗ (θ∗ ∈ Θt) ≈ 1− α

[See Bielecki et al. (2016) for more details]
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Example : uncertain log-normal model

The adaptive robust control problem can be solved using the following dynamic
programming principle :

WT (x) = `
[
(Φ(s)− v)+

]
, x = (s, v , µ̂, σ̂2) ∈ EX ,

Wt(x) = inf
a∈A

sup
(µ,σ2)∈τ(t,µ̂,σ̂2)

∫
EX

Wt+1(y)Q(dy | t, x , a;µ, σ2)

where x = (s, v , µ̂, σ̂2) ∈ EX = R+ × R× R× R+, t = T − 1, . . . , 0
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Example : uncertain log-normal model

The integral in the previous slide can be written as∫
R
Wt+1

(
seµ+σz , v + as(eµ+σz − 1),R(t, µ̂, σ̂2, µ+ σz)

)
φ(z)dz

where φ is the density of the standard normal distribution and R is such that

R
(
t, µ̂, σ̂2, y

)
=

(
t

t + 1
µ̂+

1
t + 1

y ,
t

t + 1
σ̂2 +

t

(t + 1)2 (µ̂− y)2
)
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Perspectives

Numerically solve Bellman equation for the considered hedging problem :
challenging issue due to the curse of dimensionality (optimal quantization,
approximate dynamic programming could be used)

Compare hedging performance with other approaches : control without
uncertainty, standard robust, adaptive robust, Bayesian adaptive robust
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Thanks for your attention.
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