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Introduction

What is understood as a term-structure in this presentation ?

What is it used for ?
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Introduction

Term-structures are constructed from market quotes of fixed income, fx or
default-risky securities

Information provided by the market is reliable only for a small set of liquid
products with standard characteristics/maturities

We have to rely on interpolation/calibration schemes to construct the
curve for missing maturities

A variety of curve construction methods exists : no consensus towards a
particular best practice in all circumstances
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Introduction

Andersen (2007), curves based on tension splines

Le Floc’h (2012),
examples of one-day

forward curves
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Introduction

What can be defined as a good yield curve construction method ? (Hagan and
West (2006))

Ability to fit market quotes

Arbitrage freeness

Smoothness

Locality of the interpolation method

Stability of forward rate

Consistency of hedging strategies : Locality of deltas ? Sum of sequential
deltas close enough to the corresponding parallel delta ? (Le Floc’h (2012))
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Introduction

Interestingly, there is a pretty large recent literature on the subject of
yield-curve construction methods

Single-curve environment : Hagan and West (2006), Andersen (2007),
Jerassy-Etzion (2010), Le Floc’h (2012)

Multi-curve environment : Ametrano and Bianchetti (2009), Iwashita
(2013), Kenyon and Stamm (2012), Fries (2013), Chibane et al (2009)
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Introduction

And a flourishing literature on model risk

Branger and Schlag (2004), Cont (2006), Davis and Hobson (2004),
Derman (1996), Eberlein and Jacod (1997), El Karoui et al (1998), Green
and Figlewski (1999), Hénaff (2010), Morini (2010), etc...
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Introduction

Arbitrage-free curve

A curve is said to be arbitrage-free if

IR curves : the forward rates are non-negative or equivalently, the (pseudo)
discount factors are nonincreasing with respect to time-to-maturities

Credit : the curve is associated with a well-defined default distribution
function

Smoothness condition

A curve is said to be smooth if

IR curves : the instantaneous forward rates exist for all maturities and are
continuous.

Credit : the default density function exists and is continuous.
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Introduction

Admissible curve

A yield curve is said to be admissible if it satisfies the following constraints :

The input data set is perfectly reproduced by the curve

The curve is arbitrage-free

The curve satisfies the smoothness condition
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Introduction

We then address the following questions :

Is it possible to estimate the size of admissible curves ? and how ?

How does the range/diversity of admissible curves affect the present value
of products with non-standard characteristics ?

We develop a framework in which it is possible to measure the diversity of yield
curves with some specific features.
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Instruments used for curve construction

Assumption I : pseudo-linear representation of present values

Products used in the curve construction have presents values that can be
expressed as linear combination of some elementary quantities such as
zero-coupon prices, discount factors, Ibor forward rates or survival probabilities.

Example 1 : Corporate or sovereign debt yield curve

S : market price (in percentage of nominal) at time t0 of a bond with
maturity T

c : fixed coupon rate

t1 < . . . < tp = T : coupon payment dates, δk : year fraction
corresponding to period (tk−1, tk)

c
p∑

k=1

δkP
B(t0, tk) + PB(t0,T ) = S

where PB(t0, tk) represents the price of a (fictitious default-free
issuer-dependent) ZC bond with maturity tk
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Instruments used for curve construction

Example 2 : Discounting curve based on OIS

SOIS : par rate at time t0 of an overnight indexed swap with maturity T

t1 < · · · < tp = T : fixed-leg payment dates

δk : year fraction corresponding to period (tk−1, tk)

SOIS
p∑

k=1

δkP
D(t0, tk) = 1− PD(t0,T )

where PD(t0, tk) is the discount factor associated with maturity date tk
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Instruments used for curve construction

Example 3 : Forward curve based on fixed-vs-Ibor-floating IRS

S IRS : par rate at time t0 of an interest rate swap with maturity T and
tenor j (typically, j = 3M or j = 6M)

t1 < · · · < tp = T : fixed-leg payment dates, δk : year fraction
corresponding to period (tk−1, tk)

t = t̃0 < t̃1 < · · · < t̃q = T : floating-leg payment dates, δ̃i : year fraction
of (t̃i−1, t̃i )

S IRS
p∑

k=1

δkP
D(t0, tk) =

q∑
i=1

PD(t0, t̃i )δ̃iFj (t0, t̃i )

where Fj (t0, t̃i ) is the forward Libor or Euribor rate defined as the fixed rate to
be exchanged at time t̃i against the j-tenor Libor or Euribor rate established at
time t̃i−1 so that the swap has zero value at time t0
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Instruments used for curve construction

Example 4 : credit curve based on CDS

SCDS : fair spread at time t0 of a credit default swap with maturity T

t1 < · · · < tp = T : premium payment dates, δk : year fraction
corresponding to period (tk−1, tk)

R : expected recovery rate of the reference entity

SCDS
p∑

k=1

δkP
D(t0, tk)Q(t0, tk) = −(1− R)

∫ T

t0
PD(t0, u)dQ(t0, u)

where u → Q(t0, u) is the Ft0 -conditional (risk-neutral) survival distribution of
the reference entity.

We implicitly assume here that recovery, default and interest rates are
stochastically independent.
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Instruments used for curve construction

Example 4 : credit curve based on CDS (cont)

Using an integration by parts, the survival function u → Q(t0, u) satisfies a
linear relation :

SCDS
p∑

k=1

δkP
D(t0, tk)Q(t0, tk) + (1− R)PD(t0,T )Q(t0,T )

+ (1− R)

∫ T

t0
f D(t0, u)PD(t0, u)Q(t0, u)du = 1− R

where f D(t0, u) is the instantaneous forward (discount) rate associated with
maturity date u.
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Geometric nature of the problem

Proposition (admissible curves form a convex set)

Under Assumption I, the set of admissible yield-curve is convex.

This derives immediately from the definition of admissible curves and the linear
representation of present values.

Proposition

Under Assumption I, the set of admissible yield-curves is characterized by the
convex hull of the extreme points of its closure.

Identifying the set of admissible yield-curves amounts to identify its convex hull
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Geometric nature of the problem

The proof follows from successive applications of Ascoli-Arzelà theorem and
Krein-Milman theorem.

Ascoli-Arzelà theorem

Let (X , d) be a compact space. A subset F of C(X ) is relatively compact if and
only if F is equibounded and equicontinuous.

We have to prove that F is equibounded and equicontinuous.

Krein-Milman theorem

Let X be a locally convex topological vector space (assumed to be Hausdorff or
separable), and let K be a compact convex subset of X . Then K is the closed
convex hull of its extreme points.

Areski Cousin, ISFA, Université Lyon 1 Model risk in yield curve construction methods 17/48



Arbitrage-free bounds for OIS discount curves

We observe OIS par rates S1, · · · , Sn for maturities T1 < · · · < Tn.

Let t = t0 < t1 < · · · < tpn = Tn be the annual time grid up to time Tn.

The set of indices (pi ) is such that tpi = Ti for i = 1, ..., n.

Si

pi−1∑
k=1

δkP
D(t0, tk) + (Siδpi + 1)PD(t0,Ti ) = 1, i = 1, ..., n

Let i0 be the smallest index such that Ti0 6= ti0 (i0 = 11 in our
applications)

Define Hi :=

pi−1∑
k=pi−1+1

δk , for i = i0, . . . , n
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Arbitrage-free bounds for OIS discount curves

Proposition (arbitrage-free bounds for discount factors)

PD(t0,T1) =
1

1+ S1δ1
,

PD(t0,Ti ) =
1

1+ Siδi

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))
, i = 2, . . . , i0 − 1

For i = i0, . . . , n,

PD
min(t0,Ti ) 6 PD(t0,Ti ) 6 PD

max(t0,Ti )

where

PD
min(t0,Ti ) =

1
1+ Siδpi

(
1− Si

Si−1

(
1− (1− Si−1Hi )PD(t0,Ti−1)

))
PD

max(t0,Ti ) =
1

1+ Si (Hi + δpi )

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))

Areski Cousin, ISFA, Université Lyon 1 Model risk in yield curve construction methods 19/48



Arbitrage-free bounds for OIS discount curves

Proof :

For any i = i0, . . . , n, the previous rectangular system of OIS present values can
be simplified :

Si

Si−1

(
1− PD(t0,Ti−1)

)
+Si

pi−1∑
k=pi−1+1

δkP
D(t0, tk)+(1+ Siδpi )PD(t0,Ti ) = 1

The bounds derive from the following system of arbitrage-free inequalities :


PD(t0,Ti0) 6 PD(t0, tk) 6 PD(t0,Ti0−1) for pi0−1 + 1 6 k 6 pi0−

...
PD(t0,Ti ) 6 PD(t0, tk) 6 PD(t0,Ti−1) for pi−1 + 1 6 k 6 pi − 1

These bounds cannot be computed since we do not know the discount factors

PD(t0,Ti ) for i = i0, . . . , n
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Arbitrage-free bounds for OIS discount curves

Iterative computation of model-free bounds

Step 1 : For i = 1, . . . , i0 − 1,

PD(t0,Ti ) =
1

1+ Siδi

(
1− Si

Si−1

(
1− PD(t0,Ti−1)

))
Step 2 : For i = i0, . . . , n,

Pmin(Ti ) 6 PD(t0,Ti ) 6 Pmax(Ti )

where

Pmin(Ti ) =
1

1+ Siδpi

(
1− Si

Si−1
(1− (1− Si−1Hi )Pmin(Ti−1))

)
Pmax(Ti ) =

1
1+ Si (Hi + δpi )

(
1− Si

Si−1
(1− Pmax(Ti−1))

)
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Arbitrage-free bounds for OIS discount curves

The previous model-free bounds are sharp
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Arbitrage-free bounds for OIS discount curves

Corresponding model-free bounds on discount rates
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Arbitrage-free bounds for OIS discount curves

Range of arbitrage-free market-consistent OIS discount curves

0 5 10 15 20 25 30 35 40

0.4

0.5

0.6

0.7

0.8

0.9

1

time to maturity

O
IS

 d
isc

ou
nt

 fa
ct

or
s

Bounds for OIS discounting curves

Input data : OIS swap rates as of May, 31st 2013

Areski Cousin, ISFA, Université Lyon 1 Model risk in yield curve construction methods 24/48



Arbitrage-free bounds for OIS discount curves

Proposition (detecting arbitrage opportunities)

An arbitrage opportunity can be detected in the data set (Si )i=1,...,n at the first
index i such that

Si <

(
1

Si−1
+ δi

PD(t0,Ti−1)

1− PD(t0,Ti−1)

)−1

, i = 2, . . . , i0 − 1,

Si <

(
1

Si−1
+ (Hi + δpi )

Pmax(Ti−1)

1− Pmax(Ti−1)

)−1

, i = i0, . . . , n.

Proof :

For i = 2, . . . , i0 − 1, the inequality on Si leads to PD(t0,Ti ) > PD(t0,Ti−1)

For i = i0, . . . , n, the inequality on Si leads to PD
min(t0,Ti ) > PD

max(t0,Ti )

Areski Cousin, ISFA, Université Lyon 1 Model risk in yield curve construction methods 25/48



Arbitrage-free bounds for OIS discount curves

Corollary (increasing OIS par rates are arbitrage-free)

An increasing sequence of OIS par rates S1 ≤ · · · ≤ Sn is arbitrage-free : there
always exits an arbitrage-free discount curve which is compatible with this
sequence.
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Arbitrage-free bounds for survival curves

We observe CDS fair spreads S1, . . . , Sn for maturities T1 < · · · < Tn.

Let t = t0 < t1 < · · · < tpn = Tn be the time grid corresponding to
premium payment dates.

The set of indices (pi ) is such that p0 = 1 and tpi = Ti for i = 1, ..., n.

For i = 1, . . . , n,

Si

pi∑
k=1

δkP
D(t0, tk)Q(t0, tk) + (1− R)PD(t0,T )Q(t0,T )

+ (1− R)

∫ Ti

t0
f D(t0, t)PD(t0, t)Q(t0, t)dt = 1− R
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Arbitrage-free bounds for survival curves

Proposition (arbitrage-free bounds for survival probabilities)

For i = 1, . . . , n,

Qmin(t0,Ti ) 6 Q(t0,Ti ) 6 Qmax(t0,Ti )

where

Qmin(t0,Ti ) =

1− R −
i∑

k=1

((1− R)Mk + SiNk)Q(t0,Tk−1)

PD(t0,Ti )(1− R + Siδpi )
,

Qmax(t0,Ti ) =

1− R −
i−1∑
k=1

((1− R)Mk + SiNk)Q(t0,Tk)

PD(t0,Ti−1)(1− R) + Si (Ni + δpi PD(t0,Ti ))
,

with Mi := PD(t0,Ti−1)− PD(t0,Ti ) and Ni :=

pi−1∑
k=pi−1

δkP
D(t0, tk).
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Arbitrage-free bounds for survival curves

Proof :

For any i = 1, . . . , n, the proof is based on CDS present value representations
as linear combinations of survival probabilities and application of the following
system of “arbitrage-free inequalities” :


Q(t0,T1) 6 Q(t0, t) 6 1 for t0 6 t < T1,

...
Q(t0,Ti ) 6 Q(t0, t) 6 Q(t0,Ti−1) for Ti−1 6 t < Ti

These bounds cannot be computed explicitly since we do not know the survival
probabilities Q(t,Ti ) with certainty for i = 1, . . . , n
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Arbitrage-free bounds for survival curves

Iterative computation of model-free bounds

For i = 1, . . . , n, compute recursively

Qmin(Ti ) 6 Q(t0,Ti ) 6 Qmax(Ti )

where

Qmin(Ti ) =

1− R −
i∑

k=1

((1− R)Mk + SiNk)Qmax(Tk−1)

PD(t,Ti )(1− R + Siδpi )

Qmax(Ti ) =

1− R −
i−1∑
k=1

((1− R)Mk + SiNk)Qmin(Tk)

PD(t,Ti−1)(1− R) + Si (Ni + δpi PD(t,Ti ))
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Arbitrage-free bounds for survival curves
Range of arbitrage-free market-consistent survival curves
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Arbitrage-free bounds for survival curves

Bounds sensitivity with respect to the recovery rate assumption
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How to construct admissible yield curves ?

The yield-curve is built from market quotes of a set of standard products

t0 : quotation date

T = (T1, . . . ,Tn) : set of increasing standard maturities, T0 = t0

S = (S1, . . . , Sn) : corresponding set of market quotes at t0

We assume that present values can be expressed as linear combination of
generic elementary quantities comparable to discount factors :

P = PB , zero-coupon prices as in Example 1

P = PD , discount factors as in Example 2

P = Q, risk-neutral survival probabilities as in Example 4

In this presentation, we do not treat the case of elementary quantities
comparable to forward rates as in Example 3 .
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How to construct admissible yield curves ?

Mean-reverting term-structure models as generators of admissible yield curves

The risk-neutral dynamics of (default-free) interest rates or of default
intensities is assumed to follow either

a OU process driven by a Lévy process

dXt = a(b(t; p,T,S)− Xt)dt + σdYct ,

where Y is a Lévy process with cumulant function κ and parameter set pL

or an extended CIR process

dXt = a(b(t; p,T,S)− Xt)dt + σ
√

XtdWt ,

where W is a standard Browian motion

Depending on the context, p = (X0, a, σ, c, pL) will denote the parameter set of
the Lévy-OU process and p = (X0, a, σ) the parameter set of the CIR process
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How to construct admissible yield curves ?

In both cases, b is represented by a step function :

b(t; p,T,S) = bi (p,T,S) for Ti−1 < t 6 Ti , i = 1, . . . , n

The vector b = (b1, . . . , bn) solves the following pseudo-linear system.

Market-fit linear conditions

The market-fit condition can be restated as a pseudo-linear system

A · P(b) = B

where

P(b) = (P(t0, tk ; b))k=1,...,m is the m × 1 vector of elementary quantities
that appear in the present value formula of instruments used to build the
curve (see Examples 1 to 4).

A is a n ×m matrix, B is a n × 1 matrix

A and B only depend on current market quotes S, on standard maturities
T and on products characteristics.
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How to construct admissible yield curves ?

Proposition (Discount factors in the Lévy-OU approach)

Let Ti−1 < t 6 Ti . In the Lévy-OU model, the current value of the discount
factor or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0ϕ(t − t0) +
i−1∑
k=1

bk (ξ(t − Tk−1)− ξ(t − Tk))

+ biξ(t − Ti−1) + cψ(t − t0)

and functions ϕ, ξ and ψ are defined by

ϕ(s) :=
1
a
(
1− e−as) (1)

ξ(s) := s − ϕ(s)

ψ(s) := −
∫ s

0
κ (−σϕ(s − θ)) dθ
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How to construct admissible yield curves ?

Proposition (Discount factors in the CIR approach)

Let Ti−1 < t 6 Ti . In the CIR model, the current value of the discount factor
or of an assimilated quantity with maturity time t is given by

P(t0, t; b) := E
[
exp

(
−
∫ t

t0
Xudu

)]
= exp (−I (t0, t, b))

where

I (t0, t, b) := X0ϕ(t − t0) +
i−1∑
k=1

bk (η(t − Tk−1)− η(t − Tk)) + biη(t − Ti−1)

and functions ϕ and η are defined by

ϕ(s) :=
2(1− e−hs)

h + a + (h − a)e−hs (2)

η(s) := 2a
[

s
h + a

+
1
σ2 log

h + a + (h − a)e−hs

2h

]
where h :=

√
a2 + 2σ2
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How to construct admissible yield curves ?

Construction of (b1, . . . , bn) by a bootstrap procedure

For any i = 1, . . . , n, the present value of the instrument with maturity Ti

only depends on b1, . . . , bi

is a monotonic function with respect to bi

The vector b = (b1, . . . , bn) satisfies a triangular system of non-linear equations
that can be solved recursively :

Find b1 as the solution of

p1∑
j=1

A1jP(t0, tj ; b1) = B1

Assume b1, . . . , bk−1 are known, find bk as the solution of

pk∑
j=1

AkjP(t0, tj ; b1, . . . , bk) = Bk
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How to construct admissible yield curves ?

Proposition (smoothness condition)

A curve t → P(t0, t) constructed from the previous approach satisfies the
smoothness condition : it is of class C1 and the corresponding forward curve (or
default density function) is continuous.

Proof : Let b(·) be a deterministic function of time, instantaneous forward
rates are such that

Lévy-driven OU

f (t0, t) = X0e−a(t−t0) + a
∫ t

t0
e−a(t−u)b(u)du − cκ(−σϕ(t − t0))

where ϕ is defined by (1)

extended CIR

f CIR(t0, t) = X0ϕ
′(t − t0) + a

∫ t

t0
ϕ′(t − u)b(u)du

where ϕ′ is the derivative of ϕ given by (2)
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How to construct admissible yield curves ?
Assume that a curve has been constructed from a Lévy-OU term-structure
model with positive parameters (X0, a, σ, c, pL) :

f (t0, t) = X0e−a(t−t0) + a
i−1∑
k=1

bk (ϕ(t − Tk−1)− ϕ(t − Tk))

+ abiϕ(t − Ti−1)− cκ(−σϕ(t − t0))

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the Lévy-OU approach)

Assume that the derivative of the Lévy cumulant κ′ exists and is strictly
monotonic on (−∞, 0). The curve is arbitrage-free on the time interval (t0,Tn)
if and only if, for any i = 1, . . . , n, f (t0,Ti ) > 0 and one of the following
condition holds :

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) ≥ 0

∂f
∂t

(t0,Ti−1)
∂f
∂t

(t0,Ti ) < 0 and f (t0, ti ) > 0 where ti is such that
∂f
∂t

(t0, ti ) = 0,
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How to construct admissible yield curves ?

Assume that a curve has been constructed from a extended CIR term-structure
model with positive parameters (X0, a, σ) :

f CIR(t0, t) = X0ϕ
′(t−t0)+a

i−1∑
k=1

bk (ϕ(t − Tk−1)− ϕ(t − Tk))+abiϕ(t−Ti−1)

for any Ti−1 ≤ t ≤ Ti , i = 1, . . . , n.

Proposition (arbitrage-free condition in the Lévy-OU approach)

The constructed curve is arbitrage-free if, for any i = 1, · · · , n, the implied bi is
positive
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How to construct admissible yield curves ?
Set of admissible OIS discount and forward curves : Lévy-OU short rates

Parameters : a = 0.01, σ = 1, X0 = 0.063% (fair rate of IRS vs OIS 1M). The
Lévy driver is a Gamma subordinator with parameter λ = 1/50bps (mean jump
size of 50 bps). c = {1, 10, 20, . . . , 100}

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

time to maturity (year)

OI
S 

dis
co

un
t r

ate
 (p

er
ce

nta
ge

)

Set of admissible discounting curves and associated forward curves

Input data : OIS swap rates as of May, 31st 2013
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How to construct admissible yield curves ?

Arbitrage-free bounds used to generate a wider range of admissible curves

Parameters : CIR short rates with a = 5, σ = 1, X0 = 0.063% (fair rate of IRS
vs OIS 1M).
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Set of admissible discounting curves

Input data : OIS swap rates as of May, 31st 2013
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How to construct admissible yield curves ?
Set of admissible survival curves : CIR intensities

Parameters : a = σ = 1, 100X0 = {0.01, 0.25, 0.49, 0.73, 0.97,
1.21, 1.45, 1.69, 1.94, 2.18, 2.42}

0 1 2 3 4 5 6 7 8 9 10
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Set of admissible survival curves

time to maturity

su
rv

iv
al

 p
ro

ba
bi

lit
y

Input data : CDS spreads of AIG as of December 17, 2007, R = 40%,
PD(t0, t) = exp(−3%(t − t0))

Areski Cousin, ISFA, Université Lyon 1 Model risk in yield curve construction methods 44/48



How to construct admissible yield curves ?

Set of admissible survival curves : Lévy-OU intensities

Parameters : a is Uniform on [0.5, 10], c is Uniform on [1, 50] (c : mean
number of jumps per year), σ = 1. The Lévy driver is a Gamma subordinator
with parameter λ = 1/2bps (mean jump size of 2 bps), X0 is bootstrapped
with b1 in such a way that X0 = b1

Input data : CDS spreads of AIG as of December 17, 2007
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Perspectives

The proposed framework could be extended or used in several directions :

Yield-curve diversity impact on present values (PV) and hedging
stategies ?

max
i,j
‖PV (Ci )− PV (Cj )‖p

where the max is taken over all couples of admissible curves (Ci ,Cj )

Sensitivity analysis in the presence of uncertain parameters ?

dXt = ã(b(t; ã, σ̃,T,S)− Xt)dt + σ̃
√

XtdWt ,

where Range(ã, σ̃) ⊂ {(a, σ) | b(t; a, σ,T,S) ≥ 0 ∀t}

Extension to a multicurve environment ?

Impact on the assessment of counterparty credit risk (CVA, EE, EPE, ...) ?
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Cumulant function of some Lévy processes

Cumulant

Brownian motion κ(θ) = θ2

2

Gamma process κ(θ) = − log
(
1− θ

λ

)
Inverse Gaussian process κ(θ) = λ−

√
λ2 − 2θ
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