

Hedging default risks of CDOs in Markovian contagion models

Areski COUSIN

Université Claude Bernard Lyon 1 – ISFA Sous la direction du Professeur Jean-Paul LAURENT

> Demi-Journée Doctorant Séminaire Bachelier – 22 Juin 2007

Introduction

- Purpose of the paper
 - Describe a hedging strategy of CDO tranches
 - Based upon dynamic trading of corresponding CDS Index and the risk-free asset
- Contagion models
 - Class of intensity models ...
 - Credit spreads only depend on the history of default events
 - Credit spreads are deterministic between two default dates
 - Default Risk governs Credit Spread Risk
- Homogeneous credit portfolio
 - No individual name effect
 - Only need of the CDS Index
- Markovian dynamics of default intensities
 - Pricing and hedging CDO within a binomial tree

Introduction

- Dynamic hedging of defaultable contingent claim in complete market
 - Blanchet-Scaillet & Jeanblanc [2004]
- Dynamic hedging of basket credit derivatives in complete market
 - Bielecki, Jeanblanc & Rutkowski [2007], Frey & Backhaus [2006]
- Dynamic hedging in asymptotically complete market
 - Laurent [2006]
- Dynamic hedging in incomplete market
 - Super-replication : Walker [2005]
 - Quadratic hedging: Becherer & Schweizer [2005], Elouerkhaoui [2006]

Martingale Representation Theorem

Some notations :

- τ_1, \dots, τ_n : default dates of counterparties 1,...,n
- H_{t} : natural filtration of default dates
- $N_1(t) = 1_{\{\tau_1 \le t\}}, \dots, N_n(t) = 1_{\{\tau_n \le t\}}$: default indicators at date t
- $N(t) = \sum_{i=1}^{n} N_i(t)$: number of default at date t
- $\alpha_1(t),...,\alpha_n(t)$: spreads of **instantaneous CDS** 0
- Probabillity Q such that
 - under Q, $\alpha_1(t),...,\alpha_n(t)$ are default intensities of $N_1(t),...,N_n(t)$

t

Martingale Representation Theorem

- Integral representation of point process martingale
 - Jacod [1975], Brémaud Chap. III
 - No simultaneous default

$$M = E^{\mathcal{Q}}[M] + \sum_{i=1}^{n} \int_{0}^{T} \theta_{i}(s) (dN_{i}(s) - \alpha_{i}(s) ds)$$

- $M: H_T$ -mesurable Q-integrable payoff
 - CDO Tranches payoff can be perfectly replicated
 - Using n instantaneous CDS

Markovian homogeneous contagion model

- Contagion models : Davis & Lo[2001], Jarrow & Yu[2001], Yu[2001]
 - Default intensities depend on the complete history of defaults

$$Q(\tau_i \in [t, t+dt]|H_t) = \alpha_i(t, H_t)dt, \quad i = 1, \dots, n$$

- Homogeneous assumption
 - Default intensities are the same for all names $\implies \alpha$
 - Total loss is simply expressed as $L(t) = (1-R)\frac{N(t)}{T}$
- Homogeneous + Markovian assumption

Recovery rate

Default intensities only depend on the current number of defaults

$$Q\left(\tau_{i} \in [t, t+dt] \middle| H_{t}\right) = Q\left(\tau_{i} \in [t, t+dt] \middle| N_{t}\right) = \alpha(t, N(t)) dt, \quad i = 1, \dots, n$$

Markovian homogeneous contagion model

- No simultaneous defaults assumption
 - Intensity λ of the number of defaults process N(t) is simply the sum of individual default intensities:

$$\lambda(t, N(t)) = (n - N(t)) \times \alpha(t, N(t))$$

• The process N(t) is a Markov chain (a pure death process) with generator :

$$\Lambda(t) = \begin{pmatrix} -\lambda(t,0) & \lambda(t,0) & 0 & 0 & 0 & 0 & 0 \\ 0 & -\lambda(t,1) & \lambda(t,1) & 0 & & & 0 \\ 0 & & & \bullet & & 0 \\ 0 & & & & \bullet & & 0 \\ 0 & & & & & -\lambda(t,n-1) & \lambda(t,n-1) \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

• $\{N(t) = n\}$ is an absorbing state

Tree Approach to hedging defaults

- Computation of Index and CDO tranche premiums
 - Based on the distribution of the aggregated loss $L(t) = (1-R)\frac{N(t)}{n}$
- The transition matrix of N(t) can be expressed as

$$Q(t,t') = \exp\left(\int_{t}^{t'} \Lambda(s)ds\right)$$

- Arnsdorf & Halperin[2007], Herbertsson[2007]
- Suppose that k defaults have occured at time t :

$$k+1 \longrightarrow Q(N(t+dt) = k+1 | N(t) = k) \approx 1 - e^{-\lambda(t,k)dt}$$

$$k \longrightarrow k \longrightarrow Q(N(t+dt) = k | N(t) = k) \approx e^{-\lambda(t,k)dt}$$

$$t+dt$$

Tree Approach to hedging defaults

- Calibration of $\lambda_0, \ldots, \lambda_n$ on marginal distribution of N(t)
 - forward induction
- Computation of CDO Tranches and Index present values
 - backward induction

• Calibration of loss intensities $\lambda_0, \ldots, \lambda_n$ on a gaussian copula distribution

- Homogeneous portfolio n = 125
- T = 5 years
- CDS Spreads : 20 bps per annum
- Recovery rate R = 40%
- Correlation $\rho = 30\%$
- Q(N(t) = k), k = 0,...,20

- Calibration of loss intensities $\lambda_0, \dots, \lambda_n$ on a gaussian copula distribution
 - Figure below represents loss intensities, with respect to the number of defaults
 - Increase in intensities: contagion effects

• Dynamics of credit deltas
$$\delta(t,k) = \frac{CDO(t+1,k+1) - CDO(t+1,k)}{Index(t+1,k+1) - Index(t+1,k)}$$

Credit deltas - Tranche equity [0,3%]

		OutStanding Weeks							
		Nominal	0	14	28	42	56	70	84
Nb Defaults	0	3.00%	0.810	0.839	0.865	0.889	0.911	0.929	0.946
	1	2.52%	0	0.613	0.657	0.701	0.743	0.785	0.823
	2	2.04%	0	0.343	0.386	0.432	0.483	0.536	0.591
	3	1.56%	0	0.142	0.167	0.197	0.231	0.271	0.318
	4	1.08%	0	0.046	0.055	0.066	0.080	0.097	0.119
	5	0.60%	0	0.014	0.015	0.018	0.021	0.025	0.031
	6	0.12%	0	0.002	0.002	0.002	0.003	0.003	0.004
	7	0.00%	0	0	0	0	0	0	0

- Gradually decrease with the number of defaults
 - concave payoff
 - When the number of default is > 6, the tranche is exhausted, delta = 0
- Credit deltas increase with time

Credit deltas - Tranche [3,6%]

		OutStanding	Weeks						
		Nominal	0	14	28	42	56	70	84
Nb Defaults	0	3.00%	0.162	0.139	0.118	0.097	0.078	0.061	0.046
	1	3.00%	0	0.325	0.296	0.265	0.232	0.198	0.164
	2	3.00%	0	0.492	0.484	0.468	0.444	0.413	0.374
	3	3.00%	0	0.516	0.546	0.570	0.584	0.588	0.580
	4	3.00%	0	0.399	0.451	0.505	0.556	0.604	0.645
	5	3.00%	0	0.242	0.289	0.344	0.405	0.471	0.540
	6	3.00%	0	0.126	0.156	0.193	0.238	0.293	0.359
	7	2.64%	0	0.061	0.075	0.093	0.118	0.150	0.193
	8	2.16%	0	0.032	0.037	0.044	0.054	0.068	0.089
	9	1.68%	0	0.019	0.021	0.023	0.027	0.032	0.039
	10	1.20%	0	0.012	0.012	0.013	0.015	0.016	0.018
	11	0.72%	0	0.006	0.007	0.007	0.008	0.008	0.009
	12	0.24%	0	0.002	0.002	0.002	0.002	0.002	0.003
	13	0.00%	0	0	0	0	0	0	0

When the number of default is > 12, the tranche is exhausted

Conclusion

- Thanks to stringent assumptions
 - Credit spreads driven by defaults
 - Homogeneity
 - Markov property
- It is possible to compute a dynamic hedging strategy
 - Based on the CDS Index
- That fully replicates the CDO tranche payoffs
 - Very simple implementation using a recombining tree
- Credit spread dynamics need to be improved

