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Introduction

= Purpose of the paper
= Describe a hedging strategy of CDO tranches

= Based upon dynamic trading of corresponding CDS Index and the risk-free
asset

= Contagion models
= Class of intensity models ...
= Credit spreads only depend on the history of default events
= Credit spreads are deterministic between two default dates
= Default Risk governs Credit Spread Risk

= Homogeneous credit portfolio
= No individual name effect
= Only need of the CDS Index
= Markovian dynamics of default intensities
= Pricing and hedging CDO within a binomial tree 33
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Introduction

= Dynamic hedging of defaultable contingent claim in complete market
= Blanchet-Scaillet & Jeanblanc [2004]

= Dynamic hedging of basket credit derivatives in complete market
= Bielecki, Jeanblanc & Rutkowski [2007], Frey & Backhaus [2006]

= Dynamic hedging in asymptotically complete market
= Laurent [2006]

= Dynamic hedging in incomplete market

= Super-replication : Walker [2005]
= Quadratic hedging : Becherer & Schweizer [2005], Elouerkhaoui [2006]
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Martingale Representation Theorem

= Some notations :

= T...,T, : default dates of counterparties 1,...,n

H .+ natural filtration of default dates

N.(t)=1

SN (1) = 1{,[ e default indicators at date t

{g<i}>

N(t)= Zn:Ni(t) : number of default at date t / |-, (t)dt
=1

o, (t),...,a (t) : spreads of instantaneous CDS 0 \
ND —Q, (¢)dt

Probabillity Q such that l t+dt

= under Q, &, (¢),...,, () are default intensities of N,(¢),...,N ()
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Martingale Representation Theorem

= Integral representation of point process martingale
= Jacod [1975], Brémaud Chap. III
= No simultaneous default
n T
M =E°[M]+" [6,(s)(dN,(s)~ e, (s)ds)
i=1 ¢
= M : H_-mesurable Q-integrable payoff
= CDO Tranches payoff can be perfecty replicated

= Using n instantaneous CDS

mm)> Does not provide a practical way to construct hedging stategies
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Markovian homogeneous contagion model

= Contagion models : Davis & Lo[2001], Jarrow & Yu[2001], Yu[2001]

= Default intensities depend on the complete history of defaults

O(r,et.t+di|H, )=a,(t.H,)dt, i=1,....n

= Homogeneous assumption

= Default intensities are the same for all names => «@

= Total loss is simply expressed as L(¢) = (1- R)M

= Homogeneous + Markovian assumption Recovery rate

= Default intensities only depend on the current number of defaults

O(re[t.t+dt)|H,)=0(z e [t.t+df|N,)=a(t, N@t))dt, i=1,..., =0
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Markovian homogeneous contagion model

= No simultaneous defaults assumption

= Intensity 4 of the number of defaults process N(t) is simply the sum of
individual default intensities:

A, N@®)=(n—-N@))Xxa(,N(1))

= The process N(t) is a Markov chain (a pure death process) with generator :

~“At0) A10) 0 0 0 0 0
0 At Al 0 0
0 0
A= 0 0
0 . 0
0 ~At,n—1) At,n—1)
0 0 0 00 0 0

= {N(1)=n} is an absorbing state 4§§



Tree Approach to hedging defaults

= Computation of Index and CDO tranche premiums
N(?)

n

= Based on the distribution of the aggregated loss L(t) =(1—R)

= The transition matrix of N(#) can be expressed as

Q(1,1") =exp U A(s)dsj

= Arnsdorf & Halperin[2007], Herbertsson[2007]

= Suppose that k defaults have occured at time t :

/k+1 —= Q(N@+dt)=k+|N(@t)=k)=1-e*"

kT k = Q(N(t+dt)=k|N(t)=k)=e P
t t+dt [\ZA
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Tree Approach to hedging defaults

= Number of defaults tree (time homogeneous case) 1—

N(2)=2 Pl N3)=2
|- l/eM’/
N(1)=1 X NQ2)=1 e NQ3)=1
|—o y/ %/
NDH=0 NQ)=0“—=— NG3)=0

N (O) =0 o ol e—ﬂodt dt

= Calibration of 4,,... 4, on marginal distribution of N(¢)
= forward induction
= Computation of CDO Tranches and Index present values
= backward induction AEA
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Computation of deltas

= Calibration of loss intensities 4., ...

= Homogeneous portfolio n =125

= T =5years

= CDS Spreads : 20 bps per annum
= Recovery rate R =40%

= Correlation p =30%

« OIN(t)=k), k=0,...,20

A on a gaussian copula distribution

Caussian copula
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Computation of deltas

= Calibration of loss intensities 4,,... 4, on a gaussian copula distribution
= Figure below represents loss intensities, with respect to the number of defaults

= Increase in intensities: contagion effects
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Dynamics of credit deltasd{?,k)

Computation of deltas

CDO(t +1,k +1)— CDO(t +1,k)

 Index(t +1,k +1)— Index(t +1,k)

Credit deltas - Tranche equity [0,3%]

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 0.810 | 0.839 | 0.865 | 0.889 | 0.911 0.929 | 0.946
m 1 2.52% 0 0.613 | 0.657 | 0.701 0.743 | 0.785 | 0.823
= 2 2.04% 0 0.343 | 0.386 | 0.432 | 0.483 | 0.536 | 0.591
8 3 1.56% 0 0.142 | 0.167 | 0.197 | 0.231 0.271 0.318
a 4 1.08% 0 0.046 | 0.055 | 0.066 | 0.080 | 0.097 | 0.119
g 5 0.60% 0 0.014 | 0.015 | 0.018 | 0.021 0.025 | 0.031
6 0.12% 0 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.004

7 0.00% 0 0 0 0 0 0 0

Gradually decrease with the number of defaults

concave payoff
When the number of default is > 6, the tranche is exhausted, delta = 0

Credit deltas increase with time

i
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Computation of deltas

= Credit deltas - Tranche [3,6%]

OutStanding Weeks

Nominal 0 14 28 42 56 70 84
0 3.00% 162 | 0.139 | 0.118 | 0.097 | 0.078 | 0.061 0.046
1 3.00% 0 0.325 | 0.296 | 0.265 | 0.232 | 0.198 | 0.164
2 3.00% 0 0.492 | 0.484 | 0.468 | 0.444 | 0.413 | 0.374
3 3.00% 0 0.516 | 0546 | 0.570 | 0.584 | 0.588 | 0.580
w 4 3.00% 0 0.399 | 0.451 0.505 | 0.556 | 0.604 | 0.645
= 5 3.00% 0 0.242 | 0.289 | 0.344 | 0.405 | 0.471 0.540
S 6 3.00% 0 0.126 | 0.156 | 0.193 | 0.238 | 0.293 | 0.359
a 7 2.64% 0 0.061 0.075 | 0.093 | 0.118 | 0.150 | 0.193
2 8 2.16% 0 0.032 | 0.037 | 0.044 | 0.054 | 0.068 | 0.089
9 1.68% 0 0.019 | 0.021 0.023 | 0.027 | 0.032 | 0.039
10 1.20% 0 0.012 | 0.012 | 0.013 | 0.015 | 0.016 | 0.018
11 0.72% 0 0.006 | 0.007 | 0.007 | 0.008 | 0.008 | 0.009
12 0.24% 0 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.003

13 0.00% 0 0 0 0 0 0 0

When the number of default is > 12, the tranche is exhausted



Conclusion

= Thanks to stringent assumptions
= Credit spreads driven by defaults
= Homogeneity
= Markov property
= Itis possible to compute a dynamic hedging strategy
= Based on the CDS Index
= That fully replicates the CDO tranche payoffs

= Very simple implementation using a recombining tree

= Credit spread dynamics need to be improved
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