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Abstract 

 
This paper is a primer on the hedging and the risk management of CDO tranches. It intends to 
provide a global perspective on the current issues and refers to research papers for modelling 
and mathematical details. Though the basics of the risk management within the Gaussian 
copula model are not discussed, we review some issues which may eventually lead to the 
decline of the current market approach. We consider the computation of spread sensitivities in 
arbitrage-free dynamic models based on affine intensities and on Markov chains. We show 
that the one dimensional Markov chain for the aggregate loss process may viewed as the 
analogue for credit markets of the local volatility model in equity derivatives markets. In such 
a framework, CDO tranches can be fully replicated with the credit default swap index and a 
risk-free asset and the corresponding deltas correspond to a “sticky implied tree model”. 
Hedging issues related to tranchelets on standard indices or to CDO tranches on bespoke 
portfolios are dealt with. We also investigate some paths for the future, including the use of 
credit default swaps of different maturities to cope simultaneously with default and credit 
spread risks, local and asymptotic hedging approaches. 
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models, quadratic hedging  
 
JEL: G13 
 
 
Introduction 
 
The risk management and the hedging of CDOs and related products are topics of 
tremendous importance, especially given the 2007 credit turmoil. The risks at hand 
are usually split into different categories, which may sometimes overlap, such as 
credit spread and default risks, correlation and contagion risks. These will be the 
centre of our discussion. The 2007 credit crisis also drove attention to counterparty 
risk and related issues such as collateral management, downgrading of guarantors and 
of course liquidity issues. For simplicity, these will not be dealt within this paper3. 
 
Though this contribution is non mathematical in nature, we will comment about 
technical issues and refer to the corresponding research papers for the readers with 
more quantitative tendencies. We will introduce the main hedging issues and a state of 
the art of theoretical ideas, given that the techniques are quickly evolving and have 
not yet come to maturity. Let us also stress that the credit derivatives modelling area 
is characterized by a number of competing approaches with pros and cons, none of 
them could pretend to be the ultimate standard. 
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Lyon, France, and BNP-Paribas, laurent.jeanpaul@free.fr, http://laurent.jeanpaul.free.fr 
3 See Gibson (2007) for a discussion of the issues involved. 
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Surprisingly enough, since pricing at the cost of the hedge is the cornerstone of the 
derivatives modelling field, models that actually connect pricing and hedging issues 
have been studied after the one factor Gaussian copula model became a pricing 
standard. This discrepancy with the equity or interest derivatives fields can actually be 
seen as a weakness and one can reasonably think that further researches in the credit 
area will aim at closing the gap between pricing and hedging. 
 
Before proceeding further, let us recall the main features in a hedging and risk 
management problem, which come to light whatever the underlying risks: 
 

- A first issue is related to the choice and the liquidity of the hedging instruments: 
typically, one could think of credit index default swaps, CDS on names with 
possibly different maturities, standardized synthetic single tranche CDOs and 
even other products such as equity put options, though this will not be detailed 
in this paper. We reckon that the use of equity products to mitigate risks can be 
useful in the high yield market, but this is seemingly not the case for CDO 
tranches related to investment grade portfolios. 

- A second issue is related to the products to be hedged. In the remainder, we will 
focus on basket credit derivatives, such as First to Default Swaps, CDO 
tranches, bespoke CDOs or tranchelets. We will leave aside interest rate or 
foreign exchange hybrid products, credit spread options and exotic basket 
derivatives such as leveraged tranches, forward starting CDOs or tranche 
options. 

- A third issue relies on the choice of the hedging method. The mainstream 
theoretical approach in mathematical finance favours the notion of replication of 
complex products through dynamic hedging strategies based on plain 
underlying instruments. However, it is clear that in many cases, risk can be 
mitigated by offsetting long and short positions, providing either a complete 
clearing or more usually leaving the dealer exposed to some basis albeit small 
risk. Moreover, such an approach is obviously quite robust to model risk. 
Unfortunately, there are some imbalances in customer demand and investment 
banks can be left with rather large outstanding positions on parts of the capital 
structure that must be managed up to maturity. 

 
Since some risks within CDO tranches cannot be reasonably fully hedged, a suitable 
reserve policy is usually required. This applies obviously to model risk, especially for 
some illiquid bespoke tranches and to default risk, notably when risk management is 
primarily concerned with shifts in credit spreads. 
 
The paper is organised as follows. Section I focuses on the computation of 
sensitivities with respect to market or risk parameters given a pricing model for CDO 
tranches. This approach is primarily used by market participants, as is also the case in 
other fields of the derivatives industry. We however emphasize that the mainstream 
pricing model for CDO tranches is neither exempt from static arbitrage opportunities 
nor related to the cost of the hedge of a self-financed replicating strategy. Section II 
also deals with hedging CDO tranches through sensitivity analysis but the focus is put 
on models that are calibrated to liquid tranche quotes. These standardized tranches can 
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be seen as hedging instruments that should perform better than plain credit default 
swaps with respect to correlation and model risk. Section III is devoted to the hedging 
of CDO tranches in a complete market framework. By completeness, we mean that 
CDO tranches can be replicated by a dynamic strategy based on traded instruments 
such as single name credit default swaps, at least within the model assumptions. 
Though this approach encompasses copula and Markov chain models, these differ 
regarding implementation of hedging strategies. Eventually, Section IV briefly 
discusses other approaches that will be a field for future research. 
 
I) Risk management of CDO tranches based on sensitivity approaches 
 
In these approaches the pricing engine is given and there is no theoretical connexion 
between the price of the tranche and the global cost of the hedging strategy. We may 
even say that in most examples discussed below, there does not exist a replicating 
strategy.  
 
For example, on the industry side, the market participants rely on the one factor 
Gaussian copula model amended with a base correlation structure. The principles of 
the hedging and risk management are fairly simple: the pricing tools are used to 
compute sensitivities to market inputs and to market parameters, such as credit 
spreads of the constituents of the reference credit portfolio. The main focus is put on 
credit spread risk, while default risk is usually dealt with a reserve policy. Such risks 
are managed thanks to credit index default swaps or CDS on the underlying names of 
the basket. Other risks, such as idiosyncratic and parallel gamma4 credit spread risks, 
or correlation exposure can be in principle managed by trading liquid index tranches 
across the capital structure. Petrelli, Zhang, Jobst and Kapoor (2007) conduct a 
thorough study of popular trading strategies involving CDO tranches hedged with 
respect to small shifts in credit spreads. This shows that convexity and correlation 
risks may actually lead to a poor hedging performance of such trades.  
 
Let us emphasize a key issue when computing credit deltas in the one factor Gaussian 
copula model with base correlations. There are actually two approaches that can be 
denoted as “sticky strike” and “sticky delta” to parallel the terminology used in equity 
derivatives markets (see Derman (1999)). In the sticky strike approach, the base 
correlations are kept unchanged when bumping the credit curves. When computing 
“sticky deltas”, one takes into account the change in base correlations due to the 
change in the moneyness of the tranche when credit spreads move up: the equity 
tranche becomes more junior, which actually leads to using a smaller base correlation. 
In other words, in the sticky delta approach an increase in credit spreads is associated 
with a smaller dependence between default events. As a consequence, the sticky delta 
of an equity tranche is lower than the delta computed under the sticky strike approach. 
 
Morgan and Mortensen (2007) have investigated some anomalies when using the base 
correlation for the computation of sensitivities. They show that credit spread deltas on 

                                                           
4 Idiosyncratic Gamma is also denoted as iGamma and referred to as “microconvexity”. Parallel 
Gamma is also known as Index Gamma and referred to as “macroconvexity”. 



 4

iTraxx S7 5Y [12-22%] tranche can be negative due to the steepness of the base 
correlation curve. Such a counterintuitive effect5 is illustrated in the graph below: 
 

 
Figure 1. Negative deltas due to the steepness of the base correlation curve. 

 
Example: consider a mezzanine [6-9%] tranche on a bespoke portfolio. The expected loss on 
the portfolio at inception is equal to 10%. Figures in red show the present value of the default 
leg of the [0-6%] and [0-9%] base correlation tranches as a function of the expected loss on 
the portfolio. The base correlation for the [0-9%] is assumed to be very high, thus the 
volatility of the reference portfolio is quite small as the time value of the base tranche. 
Conversely, the base correlation of the [0-6%] tranche is much smaller which is consistent 
with steep upward base correlation curves. Thus, the volatility of the (same) reference 
portfolio is much higher as the time value of the option. The present value of the default leg 
of the mezzanine [6-9%] tranche is the difference between the present values of the [0-6%] 
and [0-9%] base correlation tranches and should remain between 0 and 3% to avoid plain 
arbitrage opportunities. Given this constraint, it may be (see Figure 1) that the delta of the 
more junior tranche is smaller than the delta of the more senior tranche for some levels of 
expected portfolio loss. In such regions, the present value of the mezzanine tranche will 
decrease as the expected loss on the underlying portfolio increases which is rather unlikely. 
 
 
We refer to Jobst (2007) or Meissner, Hector and Rasmussen (2008) for further 
discussions about hedging CDOs within the Gaussian copula framework. On the 
numerical side, Andersen, Sidenius and Basu (2003), Gregory and Laurent (2003), 
Iscoe and Kreinin (2006) provide semi-analytical techniques to compute sensitivities 
within the Gaussian copula framework. Brasch (2004), Joshi and Kainth (2004), Rott 
and Fries (2005), Chen and Glasserman (2006) detail some improvements of the 
Monte Carlo approach which are applicable to the pricing and hedging of CDO 
tranches, especially when one falls outside the factor framework. 
 
The sensitivity approach also applies to other copulas that, contrary to the base 
correlation approach provide arbitrage-free CDO tranche quotes. Schloegl, Mortensen 
and Morgan (2008) prove that tranchelet sensitivities are always positive in such a 
                                                           
5 Schloegl, Mortensen and Morgan (2008) show that such effects could occur in arbitrage-free models. 
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framework. However, some other issues come to light such as huge discrepancies 
between individual name deltas and subsequently very large positive or negative 
idiosyncratic Gammas in high correlation regimes as observed in 2008 on the iTraxx 
and CDX markets. This is illustrated for example in the stochastic correlation 
described by Burtschell, Gregory and Laurent (2007). The bumps in Figure 2 are 
related to the comonotonic state and the heterogeneity amongst credit spreads. Such a 
rather counterintuitive pattern precludes the use of the credit default swap index as 
hedging tool for CDO tranches. Other heterogeneity effects in individual credit deltas 
are reported by Houdain (2006). 
 

 
Figure 2. irregular patterns of individual names deltas in regimes of high correlation. 

 
Figure 2 exhibits CDO tranche deltas with respect to the level of credit spreads 
computed on 31-August-2005. Nominal is equal to 125. 5 year credit spreads on the x-
axis are expressed in basis points per annum. Credit deltas of the equity tranche are on 
right axis. Figure 2 shows that individual credit deltas may actually differ significantly 
from one name to another. 
 
Though the pricing methodology differs, Eckner (2007), Arnsdorf and Halperin 
(2007) provide some examples of the use of dynamic arbitrage free pricing models for 
the computation of sensitivities to credit spreads and thus of hedge ratios with respect 
to credit default swaps.  
 
Eckner (2007) model relies on an affine specification of default intensities. 
Conditionally on the path of default intensities, default times are independent (i.e. 
there are no contagion effects at default times). The model is parametric with respect 
to the term structure of credit spreads and to CDO tranches. Calibration of the model 
parameters to credit spreads and liquid tranche quotes on the CDX NA IG5 index in 
December 2005 is provided and hedge ratios with respect to the credit default swap 
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index are then computed6. The sensitivities of CDO tranche and index prices are 
computed with respect to a uniform and relative shift of individual intensities. The 
approach can be extended in order to compute different hedge ratios with respect to 
the single name default swaps. However, the overall procedure, including the 
calibration and the computation of individual hedge ratios is likely to be rather 
involved. The model deltas can be compared with those computed from the Gaussian 
copula model. As can be seen from Table 1, though the figures differ, the orders of 
magnitude are roughly the same. The equity tranche deltas computed in Eckner (2007) 
are slightly larger than those computed under the Gaussian copula, as in a “sticky 
delta” approach. Such a result is consistent with a market where an increase in the 
average credit spread is the outcome of some idiosyncratic shifts and an increase in 
the dispersion of credit spreads. This is typical of the correlation crisis in May 2005, 
which was actually associated with smaller correlations on the equity tranches. 
 
 

Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
market deltas 18.5 5.5 1.5 0.8 0.4
model deltas 21.7 6.0 1.1 0.4 0.1  

Table 1. Market deltas and model deltas as in Eckner (2007). 
 
Arnsdorf and Halperin (2007) consider a Markov chain that accounts for the dynamics 
of defaults and credit spreads. This can be seen as a “two dimensional” Markov chain. 
Contrary to the previous model, defaults are informative and credit spreads jump at 
the arrival of defaults. The theoretical properties of the model with respect to 
completeness are not studied but Arnsdorf and Halperin (2007) compute deltas of 
standard iTrraxx tranches with respect to the corresponding credit default swap index. 
As in Eckner (2007), the deltas with respect to individual credit default swaps are not 
provided. However, one could think of using the random thinning procedure discussed 
in Giesecke and Goldberg (2005) or Giesecke (2008) to provide such individual 
deltas. 
 
 

Tranches [0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 26.5 4.5 1.3 0.7 0.3
model deltas 21.9 4.8 1.6 0.8 0.4  

Table 2. Market and model deltas as in Arnsdorf and Halperin (2007). 
 
 
Table 2 shows some market (computed under the Gaussian copula model) and model 
deltas (corresponding to “model B” in Arnsdorf and Halperin (2007)) in March 2007, 
for five year CDO tranches. As in Table 1, it can be seen that the figures are roughly 
the same. However, it is noticeable that equity tranche deltas are smaller when using 
the Markov chain. 
 
Though the previous contributions were focused on sensitivities with respect to credit 
spreads, it is straightforward to extend the approach to other risk parameters such as 
correlation sensitivities. Figure 3 taken from Gregory and Laurent (2004) shows how 
                                                           
6 Let us remark that this model would hardly be calibrated during the 2008 crisis on CDX and iTraxx 
tranches. 
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correlation sensitivities do depend on the riskiness of the names within the underlying 
portfolio. For instance, the correlation sensitivity of equity tranche premiums is much 
higher when considering names with higher spreads. 
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Figure 3. Correlation sensitivities with respect to the level of credit spreads. Changes in the 

present value of the equity tranche are on the z-axis. Spreads of the pairs of names considered 
are on the x and y axes. 

 
A clear issue is that the market pricing tools do not derive from the standard approach 
in mathematical finance, where the price of a derivatives contract is the cost of a fully 
replicating self-financing strategy. As far as the investors or investment banks deal 
with rather illiquid contracts, that are rather marked-to-model than marked-to-market, 
internal inconsistencies between the pricing and hedging approaches will have only 
small effects on the dynamics of the P&L. However, it may be that discrepancies 
gradually arise through time, such as an unexplained time decay effects, which is 
clearly a problem for dealers who need to manage contracts up to lengthy maturities. 
 
 
II) Hedging CDO tranches with liquid CDO tranches 
 
Since there is now a liquid market for standardized tranches on iTraxx or CDX 
indexes, it is then quite natural to use these tranches as hedging tools. Clearly, this 
assumes that the market for standardized tranches is not segmented which might be 
the case in periods of turmoil that market participants have already experimented. 
Petrelli, Zhang, Jobst and Kapoor (2007) conducted a review of popular positive carry 
hedging strategies, involving several CDO tranches and showed some rather 
unexpected outcomes, due to the complexity of the dynamics of the capital structure. 
Such unpleasant issues are also discussed in Patel (2007).  
 
We will firstly discuss the hedging of tranches with non standard attachment or 
detachment points on standard indices and in a second step the more involved issue of 
hedging CDO tranches on bespoke portfolios. 
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II.1) Hedging of CDO tranches on standard indices 
 
Walker (2005) provides a detailed account of the price constraints of CDO tranches. 
Thanks to linear programming techniques, he derives maximum and minimum prices 
of CDO tranches consistent with the absence of arbitrage opportunities. An outcome 
of the approach is the “super-replication” of non standard tranches or of tranchelets 
based on portfolios of liquid tranches. This is a robust model-free approach to the 
pricing and hedging. However, in some cases the range of arbitrage-free prices can be 
large and a model-based approach may be required. 
 
Whatever the chosen model, it can be seen as an interpolation or extrapolation pricing 
tool depending on the attachment or detachment points. Since the model is usually 
calibrated to liquid tranche quotes, it is possible to compute sensitivities with respect 
to these input quotes (including the credit default swap index) and thus deltas with 
respect to these liquid tranches. 
 
One could think of using either parametric or non parametric approaches. For 
instance, Burtschell, Gregory and Laurent (2007) compare a stochastic correlation 
model and the random factor loading model of Andersen, Sidenius and Basu (2003). 
Though both models can be reasonably well calibrated to standardized iTraxx tranche 
quotes, they provide strikingly different prices for very junior tranches, say a [0-1%] 
tranche. Though the sensitivity of these prices to the liquid tranches quotes is not 
studied, it casts some doubt about the robustness of the corresponding hedge ratios. 
Similar issues appear at the other end of the capital structure. It is well known that 
prices of bespoke super-senior tranches (say a [30-100%] tranche on the iTraxx index) 
are quite sensitive to assumptions on recovery rates. As a consequence, extrapolating 
prices even with the help of an arbitrage-free model could be hazardous and this lack 
of robustness is likely to apply to hedge ratios too. 
 
Amongst the non parametric approaches, one can think of purely smoothing 
procedures using liquid tranche quotes as inputs. When applied with caution, this can 
produce arbitrage-free tranche quotes. However, the resulting prices are quite 
sensitive to the smoothing method as shown in Gregory and Laurent (2008). Once 
again, this is not good news regarding the robustness of the resulting hedge ratios. The 
non parametric approach can be improved as in Hull and White (2006) who derive 
distributions of conditional default probabilities from market quotes. Another non 
parametric approach, based on the static loss-surface model is discussed in Walker 
(2008) who also provides a number of empirical results. 
 
However, as can be seen from the above comments, more detailed and systematic 
studies of the robustness of the hedge ratios of bespoke tranches with respect to 
standardized tranches remain to be done. 
 
II.2) Hedging of CDO tranches on bespoke portfolios 
 
Though the hedging of CDO tranches on bespoke portfolios is quite topical, we are 
not aware of many published papers related to this subject.  
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We can mention Smithson and Pearson (2007) who investigate different mapping 
procedures for the pricing of such bespoke tranches. Unsurprisingly, they obtain a 
wide range of prices depending on the mapping procedure. However, it appears that 
most of the variation is due to the difference in the source of base correlations (iTraxx 
and CDX). Of course, it is not clear why an arbitrary scheme would provide the 
correct correlations between names of a bespoke portfolio whose constituents may 
differ a lot from standard indices. As discussed above, it is likely that the sensitivity of 
the prices of bespoke tranches with respect to liquid quotes inputs depends also a lot 
on the mapping procedure and significant model risk could well occur.  
 
The mapping procedures actually lead to unexpected sensitivities: the present value of 
a tranche on a bespoke portfolio depends upon credit spreads on names which are in 
the somehow arbitrary reference portfolio and that may not appear in the bespoke 
portfolio. Such extraneous deltas cannot be cancelled out without introducing some 
discrepancies between the pricing and hedging procedures. 
 
 
 
III) CDO pricing models associated with perfect hedging 
 
There are a number of papers related to this approach such as Bielecki, Crépey, 
Jeanblanc and Rutkowski (2007), Bielecki, Jeanblanc and Rutkowski (2007b), Frey 
and Backhaus (2007a, 2007b), Laurent, Cousin and Fermanian (2007). These 
contributions are primarily concerned with the hedging of default events. Credit 
spread or correlation risks may actually occur but stem from the arrival of defaults. In 
this pricing and hedging approach, one can perfectly replicate a CDO tranche payoff 
thanks to a self-financed dynamic strategy based upon single name credit default 
swaps.  
 
Laurent, Cousin and Fermanian (2007), Frey and Backhauss (2007a, 2007b) consider 
a continuous time Markov chain for the loss process. The number of states within the 
Markov chain is equal to 1n +  where n  is the number of names in the reference 
portfolio. This is associated with a simple modelling of pre-default name intensities, 
all these being equal and driven only by the number of defaults. Credit spreads of non 
defaulted names jump at default times, thus the model is associated with contagion 
effects. As far as the pricing is concerned the model is well-known and has been 
studied by Schönbucher (2006) or Herbertsson (2007) among others. The model can 
be perfectly calibrated to CDO tranche quotes as observed in the market. Thanks to a 
martingale representation theorem for point processes, it is possible to express the 
payoff of a CDO tranche as the outcome of a dynamic strategy based on the credit 
default swap index related to the underlying portfolio. The numerical implementation 
is fairly easy and can be conducted through a binomial tree on the loss process. Let us 
remark that the continuous time Markov chain can be seen as the analogue of the local 
volatility model of Dupire (1994): it is a one dimensional Markov complete model 
and there is a one to one correspondence between the dynamics of the “underlying” 
process (here the aggregate loss) and a complete set of CDO tranche quotes thanks to 
the forward Kolmogorov equations. The discrete binomial version of the model 
corresponds to the implied tree of Derman and Kani (1994).  
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Dealing with idiosyncratic risks such as the widening of a given credit spread within 
the reference portfolio is of great importance as far as risk management of equity 
tranches is concerned. This cannot be taken easily into account in a low dimensional 
Markovian contagion model since dealing with heterogeneity breaks down the 
Markov property7 of the aggregate loss process. On theoretical grounds, one could in 
principle consider a Markov chain with 2n  states, but this is not applicable to iTraxx 
or CDX tranches due to obvious computational issues. 
 
Though the Markovian contagion model is quite easy to understand and implement, 
provides a perfect fit to quoted CDO tranches and a tight link between the pricing and 
the hedging of tranches, it has another seemingly major drawback: credit spreads are 
only driven by the arrival of defaults. Meanwhile, credit spreads are constant and do 
not have specific dynamics as is obviously seen in the credit market. Moreover, credit 
spreads can usually (in case of positive dependence) only increase through time and 
do no mean-revert to any long term level after a credit crisis. 
 
Despite these simplistic and questionable assumptions about the credit spread 
dynamics, we actually believe that the outcomes of the model, displayed in Table 38, 
are insightful. The discrepancy between the equity tranche deltas in the Markov chain 
and in the Gaussian copula model can be easily explained by a dynamic correlation 
effect. The arrival of defaults is associated with contagion effects, thus an increase of 
dependence, which is actually taken in account in the Markov chain model but not in 
the Gaussian copula approach. This tends to lower the equity tranche deltas.  
 
 
 

[0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
market deltas 27 4.5 1.25 0.6 0.25
model deltas 21.5 4.63 1.63 0.9 0.6  

Table 3. Market delta spreads and model deltas (a default event) at inception. 
 
 
 
Figure 5 shows the base correlation curves at a 14 weeks horizon, when the number of 
defaults is equal to zero, one or two. We can see that the arrival of the first defaults is 
associated with parallel shifts in the base correlation curves. 
 

                                                           
7 After a default, the loss intensity will be lower if a high yield name is involved than if a low credit 
spread name defaults. The Markov property of the aggregate loss process might be preserved provided 
that we deal with large portfolios, since random thinning (see Giesecke and Goldberg (2005)) could be 
seen as a sampling scheme with replacement. For standard tranches, this might be an acceptable 
approximation but further theoretical and empirical researches should be considered before one could 
validate the approach. 
8 See Laurent, Cousin and Fermanian (2007). 
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Figure 5. Dynamics of the base correlation curve with respect to the number of defaults. 

Detachment points on the x –axis. Base correlations on the y –axis.   
 
 
The deltas associated with the Markov chain model correspond to the “sticky implied 
tree model” deltas of Derman (1999). These are suitable in a regime of fear, 
corresponding to systemic credit shifts. The 2007 credit crisis shows empirical 
evidence of such co-movements of correlation and credit spreads reflecting the 
likelihood of future defaults. Figure 6 shows the dynamics of the five year iTraxx 
credit spread and of the implied correlation of the equity tranche. Over this period the 
linear correlation between the two series was equal to 91%. This clearly favours the 
contagion model and suggests a flaw in current market practice. 
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Figure 6. Credit spreads on the five years iTraxx index (Series 7) in bps on the left axis. 

Implied correlation on the equity tranche on the right axis. 
 
Dealing with contagion effects is not specific to the Markov chain model. 
Schönbucher and Schubert (2001) have shown that copula models exhibit some 
contagion effects and relate jumps of credit spreads at default times to the partial 
derivatives of the copula. This is also the framework used by Bielecki, Jeanblanc and 
Rutkowski (2007) to address the hedging issue. They firstly consider the hedging of a 
first to default swap and subsequently use a recursive approach for the hedging of 
more general basket credit derivatives. On theoretical grounds, there are no significant 
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differences with the approach of Frey and Backhaus (2007a) or Laurent, Cousin and 
Fermanian (2007). In any case, the arrival of defaults is the only driver of the 
dynamics of the loss and credit spread processes. Between two default dates, credit 
spreads of the survival names are deterministic. However, in copula models, the loss 
process is usually not Markovian and the dynamics of the credit spreads depends on 
the complete history of default dates and not only on the number of defaults as in the 
Markov chain approach. This should lead to extra-numerical complexity, but this is 
still to be assessed. 
 
Eventually, the deltas with respect to credit default swaps computed in the Markov 
chain model are associated with the arrival of defaults which are rare events9. Market 
participants thus favour hedging exposures of trading books to daily changes in credit 
spreads. Though this is not anymore related to a replicating strategy, it is possible to 
use the Markov chain model as a pricing tool and compute sensitivities with respect to 
market inputs such as credit default swap index spreads as discussed in Section I or 
liquid tranche quotes as discussed in Section II. Fortunately enough, as can be seen 
from Table 4, the resulting deltas are quite close to the theoretical default deltas 
shown in Table 3. 
 
Tranches [0-3%] [3-6%] [6-9%] [9-12%] [12-22%]
Delta Bump Intensities 21.64 5.01 1.55 0.80 0.51  

Table 4. Deltas obtained by bumping the loss intensities. 
 
 
 
IV) Paths for the future 
 
We describe here some ideas and techniques that are still in progress but may prove to 
be fruitful for practitioners in a near future. 
 
IV.1) Using credit default swaps of different maturities 
 
A clear weakness of the approach described in Section III is that credit spreads are 
deterministic between two default dates. It is therefore desirable to consider models 
that account both for default and credit spread risks. Since there is an extra-source of 
risk, one either needs to cope with market incompleteness or introduce more hedging 
instruments. A simple idea is to use single name credit default swaps of two maturities 
in order to be hedged both against the arrival of defaults and against changes in credit 
spreads between the arrival of defaults. Bielecki, Jeanblanc and Rutkowski (2007) 
provide the mathematical foundation for the replication of CDO tranches in such a 
framework. Becherer and Schweizer (2005) tackle the problem from a slightly 
different perspective. However, the practical implementation of such ideas remains to 
be done. It is yet unclear what would be the balance between long and short term 
default swaps in the resulting hedging strategy. Since both defaults and credit spreads 

                                                           
9 Let us stress that the exposure at default as computed in the Markov chain model is not equal to the 
usual “value on default” or iOmega. In the Markov chain, the arrival of default is associated with a shift 
in credit spreads and in base correlations due to contagion effects, while the value on default is usually 
computed under the assumption of constant spreads and correlations. 
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drive the expected loss on the underlying portfolio, it may well be that these two risks 
are rather “parallel”. If this would be true, one could at the same time hedge credit 
spread and default risks, thus the use of credit default swaps of different maturities 
would only slightly increase the hedging efficiency. Clearly, it is too early to give a 
definitive answer and further research should be conducted to assess the practical 
improvements due to the use of a more realistic model.  
 
IV.2) Local hedging approaches 
 
Due to the complexity of the building of replicating strategies when dealing both with 
credit spread and default risks, one could think of using local risk minimization 
techniques as in Frey and Backhaus (2007b). Elouerkhaoui (2006) uses similar 
techniques though the pricing framework is quite different. In the latter approach, the 
dependence between defaults is due to the occurrence of simultaneous defaults. We 
also refer to Bielecki, Jeanblanc and Rutkowski (2004a, 2004b, 2006), Petrelli, Siu, 
Zhang and Kapoor (2006) for further discussion on this topic. 
 
IV.3) Asymptotic hedging 
 
This approach also aims at solving the default and credit spread hedging issue. It is 
noticeable that market participants focus on the day to day hedging of credit spread 
risks and tend to neglect default risks. Let us however remark that the direct effect of 
a default event on the value of an iTraxx or CDX portfolio is quite small due to the 
number of names involved compared for example with daily changes in stock indices. 
In other words, there is a diversification effect of default risk at the portfolio level. For 
an infinitely granular portfolio, losses would be only driven by changes in credit 
spreads. Such a diversification of default risk will actually occur for large portfolios 
provided that defaults do not lead to shifts in credit spreads of the survival names. 
This corresponds to the assumption of conditional independence of default events 
upon the default intensities, or equivalently to the multivariate Cox process 
framework. This is illustrated for instance by the affine modelling of Eckner (2007) 
discussed above. In this framework, defaults are non informative or stated otherwise 
there are no contagion effects contrary to the Markov chain model. Laurent (2006) has 
investigated such a framework and shown that one could consider the dynamic 
hedging of credit spread risks only, while keeping the hedging error under control. 
Default risk is managed on its own at the underlying portfolio level. Thus the 
approach mixes techniques from modern mathematical finance such as dynamic 
hedging and older ideas related to the management of insurance risks. Greenberg, 
O’Kane and Schloegl (2004) compute credit spread sensitivities using a large 
portfolio approximation in a copula framework. Since the copula setting is not 
associated with multivariate Cox processes, the resulting computations should be 
viewed as a quick and efficient way to compute sensitivities as discussed in Section I 
and are not related to replication ideas. 
 
Conclusion 
 
Up to now, mainstream research in the CDO field was focused on pricing models. 
While still a lot of work remains to be done in that direction, we think that the market 



 14

calls for improvements with respect to risk management issues. This is a hard but 
challenging task both for academics and quantitative analysts. Preliminary results 
hopefully show that hedging approaches based on different models might eventually 
lead to oddly similar empirical hedging strategies. While this needs to be confirmed, it 
suggests that there is actually room to construct efficient risk mitigating strategies, 
which is eventually the reasonable target. 
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