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Abstract

In this paper, we consider the hedging of portfolio loss derivatives using single-name credit
default swaps as hedging instruments. The hedging issue is investigated in a general pure jump
dynamic setting where default times are assumed to admit a joint density. In a first step, we
compute default intensities adapted to the global filtration of defaults. In particular, we stress
the impact of a default event on the price dynamics of non-defaulted names. In a two defaults
setting, we also fully describe the hedging of a loss derivative with single name instruments. The
methodology can be applied recursively to the case of a multidefault setting. We completely
characterize the hedging strategies for general n-dimensional credit portfolios when default times
are assumed to be ordered. The computation of the hedging strategies does not require any
Markovian assumption.

Introduction

The hedging of loss derivatives such as CDO tranches or basket default swaps is a prominent
risk-management issue especially given the recent revision of the Basel II regulation on calcu-
lation of trading book capital requirement. Indeed, according to Basel Committee Guidelines
for computing capital for incremental risk in the trading book, July 2009, “for trading book risk
positions that are typically hedged via dynamic hedging strategies, a rebalancing of the hedge
within the liquidity horizon of the hedged position may be recognized as a risk mitigation.
Moreover, any residual risks resulting from dynamic hedging strategies must be reflected in the
capital charge.” As a result, the performance and efficiency of underlying hedging methods is
going to have a direct impact on the amount of capital required for loss derivatives. Cousin and
Laurent (2010) discuss various issues related to the use of models in designing hedging strategies
for CDO tranches and back-testing or assessing hedging performance.

In this paper, we consider the hedging of loss derivatives using single-name credit default
swaps as hedging instruments. The hedging issue is investigated in a general pure jump setting
where default times are assumed to admit a joint density which is the only input of the model –
so that our results can be considered as model independent – and we compute default intensities
adapted to the global filtration of defaults. We check that, if CDSs on each default are traded,
the market is complete. The hedging strategies can be found by identifying the terms associated
with the fundamental default martingales.

We extend some recent results by Laurent, Cousin and Fermanian (2007) and Cousin, Jean-
blanc and Laurent (2009). In particular, we stress the impact of a default event on the price
dynamics of non-defaulted names. Moreover, in a two defaults setting, we fully describe the
hedging of a loss derivative with single name instruments. The generalization to a multidefault
setting can be done following the same methodology. Furthermore, we are able to completely
characterize the hedging strategies in single-name CDS for general n-dimensional credit portfo-
lios when default times are assumed to be ordered. The computation of the hedging strategies
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does not require any Markovian assumption.

The paper is organized as follows. The first section aims at presenting the general setting
of the model and it recalls the predictable representation theorem. In the second section, we
investigate the case where only one name is considered. In particular, we exhibit the intensity
of the default time and the dynamics of CDS prices. Section three is devoted to the case where
the credit portfolio is composed of two names. The extension to a multivariate setting can be
done using a recursive procedure. In particular, we highlight the contagion effect occurring at
default time of one of the two names on the CDS price dynamics of the other name. We also
compute the dynamics of the hedging strategies at any time in all the possible default situations.
In section four, we consider the hedging of a loss derivatives written on a general n-dimensional
portfolio. We stress that when default times are assumed to be ordered, i.e., CDS are kth-to-
default swaps, the hedging strategies can be simply characterized as the solutions of a linear
system.

1 Mathematical tools: the general case

In what follows, we consider n default times τi, i = 1, . . . , n, that is, non-negative and finite
random variables constructed on the same probability space (Ω,G,P). For any i = 1, . . . , n, we
denote by (Hi

t = 1τi≤t, t ≥ 0) the i-th default process, and by Hit = σ(Hi
s, s ≤ t) the natural

filtration of Hi (after completion and regularization on right). We introduce H, the filtration
generated by the processes Hi, i = 1, . . . , n, defined as H = H1 ∨ . . . ∨Hn, i.e., Ht = ∨ni=1Hit.
We assume that G(t1, . . . , tn) := P(τ1 > t1, . . . , τn > tn) is twice differentiable with respect to
(t1, . . . , tn) and that G and its derivatives do not vanish. Then, as we shall prove in the next
section, for any i = 1, . . . , n, there exists a non-negative H-adapted process (λit, t ≥ 0) such that
the process

M i
t := Hi

t −
∫ t

0

λisds

is an H-martingale. The process λi is called the H-intensity of τi. This process vanishes after τi
(otherwise, after τi, the martingale M i would be continuous and decreasing) and can be written

λit = (1−Hi
t)λ̃

i
t for some H1 ∨ . . .∨Hi−1 ∨Hi+1 ∨ . . .∨Hn-adapted process λ̃i. In terms of the

process λ̃i, one has

M i
t = Hi

t −
∫ t∧τi

0

λ̃isds = Hi
t −

∫ t

0

(1−Hi
s)λ̃

i
sds .

In particular, denoting by τ(i) the ranked sequence of default times, the process λ̃1 is determinis-
tic on the time interval [O, τ(1)[, is a deterministic function of τ(1) on the time interval [τ(1), τ(2)[,
and a deterministic function of τ(j), j ≤ i on the time interval [τ(i), τ(i+1)[. In particular, the
value of the intensity depends not only of the number of default occurred in the past, but also
on the time where the default have take place, which is more realistic.

The following predictable representation theorem holds true (see Brémaud [5]).

Theorem 1.1 Let B ∈ HT be an integrable random variable. Then, there exists H-predictable
processes ϑi, i = 1, . . . , n such that

B = E(B) +

n∑
i=1

∫ T

0

ϑisdM
i
s ,

and
∫ T

0
|ϑis|λisds <∞, and these processes are unique.

Due to the integrability assumption and the predictable property of the ϑ’s, the processes∫ t
0
ϑisdM

i
s are H-martingales.

We shall in a first part present computations for the intensity in terms of the density of τ in
the case n = 1. Then, we shall study the case n = 2 and we determine the hedging strategy of
any payoff, when the hedging instruments are CDSs. The methodology can be easily extended
to other hedging instruments, as defaultable zero-coupons, digital CDSs. The multidefault case
can be studied along the same lines. For simplicity, we restrict our attention to the particular
situation of ranked times.
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2 The single default case

We present some well known results concerning the dynamics of a CDS written on a single
default, working in the filtration H1 (as we shall see in the next section, the dynamics of the
CDS with the same recovery) will be different in the filtration taking into account the knowledge
of other defaults).

2.1 Some important martingales

We recall some well known results (see Dellacherie [9] and Bielecki and Rutkowski [2]). Here,
τ is a non-negative random variable on the probability space (Ω,G,P) with survival function
G(t) := P(τ > t) = 1− P(τ ≤ t) = 1− F (t) where F is the cumulative distribution function of
τ . We assume that G(t) > 0, ∀t, and that G is differentiable, i.e., that τ admits a density f , so
that G′(t) = −f(t). The filtration is H = H1.

Proposition 2.1 For any (integrable) random variable X

1t<τEP(X|Ht) = 1t<τ
1

G(t)
EP(X1t<τ ) (1)

and for any Borelian (bounded) function h

EP(h(τ)|Ht) = 1τ≤th(τ)− 1t<τ
1

G(t)

∫ ∞
t

h(u)dG(u) .

The process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

f(s)

G(s)
ds = Ht −

∫ t

0

(1−Hs)
f(s)

G(s)
ds

is a (P,H)-martingale. In other terms, the H-intensity of τ is (1 − Ht)λ̃(t) where λ̃ is the

deterministic function λ̃(t) = f(t)
G(t)

.

Note that the survival probability G can be expressed in terms of the deterministic function λ̃:
indeed we have proved that

λ̃(t) = f(t)/G(t) = −G′(t)/G(t) .

Solving this ODE with initial condition G(0) = 1 leads to

G(t) = P(τ > t) = exp

(
−
∫ t

0

λ̃(u) du

)
.

Note that λ̃(t)dt = P(τ ∈ dt|τ > t). The default intensity can be interpreted as the instantaneous
conditional default probability given that default has not yet occurred.

2.2 Price of a traditional single-name CDS

We assume that the underlying market model is arbitrage-free, meaning that it admits a mar-
tingale measure Q (not necessarily unique) equivalent to the historical probability P. The
risk-neutral survival probability GQ is defined as

GQ(t) = Q(τ > t) =

∫ +∞

t

fQ(s)ds

and the (Q,H)-intensity is λQ
t = 1t<τf

Q(t)/GQ(t). We shall simply denote by G (resp. λ)
the survival function (resp. the intensity), and forget the superscript Q. The expectation E is
computed under the probability Q.

We denote by B the savings account, henceforth the price process of any tradeable security,
paying no coupons or dividends, is a (Q,H)-martingale, when discounted by B. The price of an
asset paying dividends is

BtE
(∫ T

t

B−1
s dDs|Ft

)
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where D represents the cumulative dividend. In that case, the discounted cum-dividend price

V cumt B−1
t = E

(∫ T

t

B−1
s dDs|Ft

)
+

∫ t

0

B−1
s dDs

is a martingale. As usual, B is given by

Bt = exp

(∫ t

0

ru du

)
, ∀ t ∈ R+,

where the short-term interest rate r is a stochastic process.

Let us recall that a credit default swaps is a bilateral contract involving a protection seller
and a protection buyer. We consider a CDS maturing at time T . If a default event occurs at
time τ < T , then the protection seller delivers to the protection buyer the unrecovered portion
of the loss δ(τ)1 where δ is a deterministic function. As for the premium leg, we assume for
simplicity that the fee is paid to the protection seller in continuous time, i.e., the amount κdt
is paid by the protection buyer during the time interval dt, till time τ ∧ T . The time-t market
value of a CDS with payment at default δ and with a contractual spread κ is equal to

Vt(κ) = Dt − κPt,

where Dt and Pt, the default leg and the premium leg, are given by

Dt = Bt E
(
B−1
τ δ(τ)1{t<τ≤T}

∣∣∣∣Ht)
Pt = BtE

(∫ T∧τ

t∧τ
B−1
u du

)
and the cum-dividend price is

V cum
t = BtE

(
B−1
τ δ(τ)1τ≤T − κ

∫ T∧τ

0

B−1
u du|Ht

)
.

In the case of a zero interest rate,

Vt = 1t<τE(δ(τ)1τ≤T − κ((T ∧ τ)− t)|Ht),
V cum
t = E(δ(τ)1τ≤T − κ(T ∧ τ)|Ht) .

It is worthwhile to note that the price dynamics is not a martingale under the risk-neutral
probability, despite the fact that the interest rate is null. However, the cum-dividend price is a
martingale, this will be useful latter on. In what follows, we restrict our attention to the case
of nil interest rate.

Proposition 2.2 The price at time t ∈ [0, T ] of a credit default swap with spread κ is

Vt(κ) = 1{t<τ}Ṽt(κ), ∀ t ∈ [0, T ],

where Ṽt(κ) is a deterministic function associated with the pre-default value of the CDS and
equals

Ṽt(κ) =
1

G(t)

(
−
∫ T

t

δ(u) dG(u)− κ
∫ T

t

G(u) du

)
.

Proof. From Proposition 2.1, we have, on the set {t < τ},

Vt(κ) = −
∫ T
t
δ(u) dG(u)

G(t)
− κ

(
−
∫ T
t
u dG(u) + TG(T )

G(t)
− t

)

=
1

G(t)

(
−
∫ T

t

δ(u) dG(u)− κ
(
TG(T )− tG(t)−

∫ T

t

u dG(u)

))
.

where, in the last equality, we have used an integration by parts to obtain∫ T

t

G(u) du = TG(T )− tG(t)−
∫ T

t

u dG(u).

�
1More precisely, the quantity δ(τ) is equal to the loss given default associated with the reference entity times the

CDS notional amount.



5

2.3 Dynamics of CDS Prices in a single default setting

Here, we compute the dynamics of the CDS’s price. It is useful (see [3]) to obtain the hedging
strategy of a defaultable claim based on CDS and savings account.

Proposition 2.3 The dynamics of the (ex-dividend) price Vt(κ) on [0, T ] are

dVt(κ) = −Vt−(κ) dMt + (1−Ht)(κ− δ(t)λ̃(t)) dt,

where the (Q,H)-martingale M is given in Proposition 2.1.

Proof. It suffices to note that
Vt(κ) = (1−Ht)Ṽt(κ)

with Ṽ given in Proposition 2.2, so that, using integration by parts formula,

dVt(κ) = (1−Ht) dṼt(κ)− Ṽt−(κ) dHt.

Using the explicit expression of Ṽt, we find easily that we have

dṼt(κ) = λ̃(t)Ṽt(κ) dt+ (κ− δ(t)λ̃(t)) dt.

The SDE for V follows. �

Comment 2.1 It is well known that the risk neutral dynamics of a dividend paying asset is
dSt = dmt − δtdt, where m is a martingale and δ is the dividend rate. Here, the premium κ is
similar to a dividend to be paid up to time t, hence the quantity κ(1−Ht)dt appears. The δ(t)

can be interpreted as a dividend to be received, at time t, with probability λ̃(t)dt. At default
time, the price jumps from Vτ− to 0, as can be seen in the right-hand side of the dynamics.

Corollary 2.1 The dynamics of the cum-dividend price V cum on [0, T ] are

dV cum
t = (δ(t)− Vt−) dMt. (2)

Proof. The cumdividend price is

V cum
t = Vt + 1t<τδ(τ)− κ(t ∧ τ) = Vt +

∫ t

0

δ(s)dHs − κt(1−Ht)−
∫ t

0

κsdHs

THe result follows. �

3 Two default times

Let us first study the case with two random times τ1, τ2. For i = 1, 2, we denote by (Hi
t , t ≥ 0)

the default process associated with τi. The filtration generated by the process Hi is denoted Hi

and the filtration generated by the two processes H1, H2 is H = H1 ∨H2.

Note that an H1
t ∨H2

t -measurable random variable is

• a constant on the set t < τ1 ∧ τ2,

• a σ(τ1 ∧ τ2)-measurable random variable on the set τ1 ∧ τ2 ≤ t < τ1 ∨ τ2, i.e., a σ(τ1)-
measurable random variable on the set τ1 ≤ t < τ2, and a σ(τ2)-measurable random
variable on the set τ2 ≤ t < τ1. We recall that a σ(τ1)-measurable random variable is a
Borel function of τ1.

• a σ(τ1, τ2)-measurable random variable (i.e., a Borel function h(τ1, τ2)) on the set τ1∨τ2 ≤
t.

To summarize, for fixed t, any H1
t ∨H2

t -measurable random variable Z admits a representation
as

Z = h1t<τ1∧τ2 + h1(τ1)1τ1≤t<τ2 + h2(τ2)1τ2≤t<τ1 + h(τ1, τ2)1τ1∨τ2≤t.

We denote by G(t, s) = Q(τ1 > t, τ2 > s) the survival probability of the pair (τ1, τ2) and we
assume that this function is twice differentiable. We denote by ∂iG, the partial derivative of G
with respect to the i-th variable, i = 1, 2 and by ∂1,2G, the second order partial derivative of
G. The density of the pair (τ1, τ2) is denoted by f . Simultaneous defaults are precluded in this
framework, i.e., Q(τ1 = τ2) = 0.

Even if the case of two default times is more involved, closed form expressions for the
intensities are available. It is important to take into account that the choice of the filtration is
very important. Indeed, in general, an H1–martingale is not an H1 ∨ H2–martingale. We shall
illustrate this important fact below.
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3.1 Intensities

We present the computation of martingales associated with default times τi, i = 1, 2, in different
filtrations. In particular, we shall obtain the computation of the intensities in various filtrations.

3.1.1 Filtration Hi

We study, for any fixed i, the Doob-Meyer decomposition of the sub-martingale Hi in the
filtration Hi. In other terms, we compute the Hi-compensator of Hi. From Proposition 2.1, the
process

M
(i)
t := Hi

t −
∫ t∧τi

0

fi(s)

Gi(s)
ds (3)

is an Hi-martingale. Here, 1 − Gi(s) = Fi(s) = Q(τi ≤ s) =
∫ s

0
fi(u)du. Hence, the process

(1−Hi
t)
fi(t)
Gi(t)

is the Hi-intensity of τ i.

Note that, thanks to Theorem 1.1, any Hi-martingale can be written as a stochastic integral
with respect to M (i).

3.1.2 Filtration H

We recall a result proved in Bielecki et al. [4].

Proposition 3.1 The process M1 defined as

M1
t := H1

t −
∫ t∧τ1∧τ2

0

∂1G(s, s)

G(s, s)
ds−

∫ t∧τ1

t∧τ1∧τ2

∂1,2G(s, τ2)

∂2G(s, τ2)
ds

is an H-martingale.

Proof. The proof relies on some Itô’s calculus to obtain the Doob-Meyer decomposition of
Q(τ1 > t|H2

t ). We refer the reader to [4] for details. �

This means that the H-intensity of τ1 takes into account the knowledge of τ2 and is equal to
the deterministic function − ∂1G(t,t)

G(t,t)
on the set t < τ1 ∧ τ2 and to the random quantity ϕ(t, τ2)

where ϕ(t, s) = − ∂1,2G(t,s)

∂2G(t,s)
on the set τ2 ≤ t < τ1.

In a closed form, the processes Hi
t −

∫ t
0
λisds, i = 1, 2, are H-martingales, where

λ1
t = (1−H1

t )

(
(1−H2

t )
−∂1G(t, t)

G(t, t)
−H2

t
∂1,2G(t, τ2)

∂2G(t, τ2)

)
= (1−H1

t )(1−H2
t )λ̃1

t + (1−H1
t )H2

t λ̃
1|2(τ2),

λ2
t = (1−H2

t )

(
(1−H1

t )
−∂2G(t, t)

G(t, t)
−H1

t
∂1,2G(τ1, t)

∂1G(τ1, t)

)
= (1−H1

t )(1−H2
t )λ̃2

t +H1
t (1−H2

t )λ̃
2|1
t (τ1).

Here

λ̃it = − ∂iG(t, t)

G(t, t)
, (4)

λ̃
1|2
t (s) = −∂1,2G(t, s)

∂2G(t, s)
= − f(t, s)

∂2G(t, s)
, λ̃

2|1
t (s) = −∂1,2G(s, t)

∂1G(s, t)
= − f(s, t)

∂1G(s, t)
. (5)

Note that the minus signs in the value of the intensity are due to the fact that G is decreasing
with respect to its components, hence the first derivatives are non-positive and the second order
derivative ∂1,2G – equal to the density of the pair (τ1, τ2) – is non-negative. The quantity λ̃1

tdt
is equal to Q(τ1 ∈ dt|τ1 ∧ τ2 > t), that is the probability that τ1 occurs in the time interval
[t, t+ dt], knowing that neither τ1 nor τ2 have occurred before t.

The quantity λ̃
1|2
t (s) = − f(t,s)

∂2G(t,s)
evaluated at s = τ2, represents the value of the default inten-

sity process of τ1 with respect to the filtration H on the event {τ2 < t}. This quantity λ̃
1|2
t (s)dt

is also the probability that τ1 occurs in the time interval [t, t + dt], knowing that τ1 has not
occurred before t and that s = τ2.
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Since we are working in the same filtration2, the compensated martingale of the counting
process Ht = H1

t +H2
t =

∑2
i=1 1τi≤t is Mt := Ht −

∫ t
0
λsds where

λt = λ1
t + λ2

t

= (1−H1
t )(1−H2

t )

(
−∂1G(t, t) + ∂2G(t, t)

G(t, t)

)
− (1−H1

t )H2
t
∂1,2G(t, τ2)

∂2G(t, τ2)
− (1−H2

t )H1
t
∂1,2G(τ1, t)

∂2G(τ1, t)
.

3.2 Dynamics of prices of default contingent claims

In this section, our aim is to find the dynamics of the price of a contingent claim with payoff
h(τ1, τ2). This contains in particular the case of first or second to default claim, with payoff
associated with h(u, v) = 1u<vϕ(u) or h(u, v) = 1u<v<Tψ(v). The goal is to find the dynamics
of Zt := E(h(τ1, τ2)|Ht).

A first step is to prove

Zt = h(τ1, τ2)H1
tH

2
t + ψ1,0(τ1, t)H

1
t (1−H2

t ) + ψ0,1(t, τ2)H2
t (1−H1

t ) + (1−H1
t )(1−H2

t )ψ0,0(t)

with

ψ1,0(u, t) :=
−1

∂1G(u, t)

∫ ∞
t

h(u, v)f(u, v)dv,

ψ0,1(t, v) :=
−1

∂2G(t, v)

∫ ∞
t

h(u, v)f(u, v)du,

ψ0,0(t) :=
1

G(t, t)

∫ ∞
t

du

∫ ∞
t

dvh(u, v)f(u, v).

The proof follows from iterative conditioning and use of Proposition 2.1. We leave the details
to the reader.

One note that, on the one hand, for any function φ,

H1
tH

2
t φ(τ1, τ2) =

∫ t

0

dH1
u

∫ t

0

dH2
vφ(u, v),

H1
t φ(τ1, t) =

∫ t

0

φ(u, t)dH1
u,

so that, using integration by parts formula and re-arranging the terms

dZt =

((
h(t, τ2)− ψ0,1(t, τ2)

)
H2
t +

(
ψ1,0(t, t)− ψ0,0(t)

)
(1−H2

t )

)
dH1

t

+

((
h(τ1, t)− ψ1,0(τ1, t)

)
H1
t +

(
ψ0,1(t, t)− ψ0,0(t)

)
(1−H1

t )

)
dH2

t

+

(
(1−H2

t )

∫ t

0

∂2ψ1,0(u, t)dH1
u + (1−H1

t )

∫ t

0

∂1ψ0,1(t, v)dH2
v

+(1−H1
t )(1−H2

t )
d

dt
ψ0,0(t)

)
dt.

On the other hand, one checks that, with easy computation, that

∂1ψ0,1(t, v) = λ1|2(t, v) (ψ0,1(t, v)− h(t, v)),

∂2ψ1,0(u, t)) = λ2|1(u, t) (ψ1,0(u, t)− h(u, t)),

d

dt
ψ0,0(t) = (λ̃1(t) + λ̃2(t))ψ0,0(t) +

1

G(t, t)
(∂1G(t, t)ψ1,0(t, t) + ∂2G(t, t)ψ0,1(t, t)).

It follows that

dZt =

((
h(t, τ2)− ψ0,1(t, τ2)

)
H2
t +

(
ψ1,0(t, t)− ψ0,0(t)

)
(1−H2

t )

)
dM1

t

+

((
h(τ1, t)− ψ1,0(τ1, t)

)
H1
t +

(
ψ0,1(t, t)− ψ0,0(t)

)
(1−H1

t )

)
dM2

t .

2The sum of two martingales in the same filtration is a martingale.
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3.3 Dynamics of CDS prices

Let us now examine the valuation of a single-name CDS written on the default τ1. Our aim
is to show that the dynamics of this CDS will be affected by the information on τ2: when τ2
occurs, the intensity of τ1 changes, and this will change the parameters of the price dynamics.
We reproduce some results appearing in Bielecki et al. [4].

We consider a CDS

• with a constant spread κ

• which delivers δ(τ1) at time τ1 if τ1 < T , where δ is a deterministic function.

The value of the CDS takes the form

Vt(κ) = Ṽt(κ)1t<τ1∧τ2 + V̂t(κ)1τ1∧τ2≤t<τ1 .

First, we restrict our attention to the case t < τ1 ∧ τ2.

Proposition 3.2 On the set {t < τ1 ∧ τ2}, the value of the CDS is

Ṽt(κ) =
1

G(t, t)

(
−
∫ T

t

δ(u)∂1G(u, t) du− κ
∫ T

t

G(u, t) du

)
.

Proof. The value V (κ) of this CDS, computed in the filtration H, i.e., taking care on the
information on the second default contained in that filtration, is

Vt(κ) = 1t<τ1E (δ(τ1)1τ1≤T − κ((T ∧ τ1)− t)|Ht)

Let us denote by τ = τ1 ∧ τ2 the first default time. Then, 1{t<τ}Vt(κ) = 1{t<τ}Ṽt(κ), where

Ṽt(κ) =
1

Q(τ > t)
E (δ(τ1)1τ1≤T1t<τ − κ((T ∧ τ1)− t)1t<τ )

=
1

G(t, t)
E (δ(τ1)1τ1≤T1t<τ − κ((T ∧ τ1)− t)1t<τ )

=
1

G(t, t)

(∫ T

t

δ(u)Q(τ1 ∈ du, τ2 > t)

−κ
∫ T

t

(u− t)Q(τ1 ∈ du, τ2 > t)− (T − t)κ
∫ ∞
T

Q(τ1 ∈ du, τ2 > t)

)
.

In other terms, using integration by parts formula, we end up with

Ṽt(κ) =
1

G(t, t)

(
−
∫ T

t

δ(u)∂1G(u, t) du− κ
∫ T

t

G(u, t) du

)
.

�

Proposition 3.3 On the event {τ2 ≤ t < τ1}, the CDS price equals

Vt(κ) = V̂t(κ) = E (δ(τ1)1τ1≤T − κ((T ∧ τ1)− t)|σ(τ2))

=
1

∂2G(t, τ2)

(
−
∫ T

t

δ(u)f(u, τ2) du− κ
∫ T

t

∂2G(u, τ2) du

)
:= V

1|2
t (τ2)

where

V
1|2
t (s) =

1

∂2G(t, s)

(
−
∫ T

t

δ(u)f(u, s) du− κ
∫ T

t

∂2G(u, s) du

)
.

In the financial interpretation, V
1|2
t (s) is the market price at time t of a CDS on the first credit

name, under the assumption that the default τ2 occurs at time s and the first name has not
yet defaulted (recall that simultaneous defaults are excluded, since we have assumed that G is
differentiable).

The price of a CDS is Vt = Ṽt1t<τ2∧τ1+V̂t1τ2∧τ1≤t<τ1 . Differentiating the deterministic function
which gives the value of the CDS, we obtain

dṼt(κ) =
((
λ̃1(t) + λ̃2(t)

)
Ṽt(κ) + κ− λ̃1(t)δ(t)− λ̃2(t)V

1|2
t (t)

)
dt,

where for i = 1, 2 the function λ̃i(t) is the (deterministic) pre-default intensity of τi given in (4)
and

dV̂t(κ) =
(
λ̃

1|2
t (τ2)

(
V̂t(κ)− δ(t)

)
+ κ
)
dt

where λ̃
1|2
t (u) is given in (5).
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Proposition 3.4 The price of a CDS follows

dVt = (1−H1
t )(1−H2

t )(κ− δ(t)λ̃1(t))dt+ (1−H1
t )H2

t (κ− δ(t)λ̃1|2
t (τ2))dt

−Vt−dM1
t + (1−H1

t )(V
1|2
t (t)− Vt−)dM2

t . (6)

Proof. Differentiating Vt = Ṽt(1−H1
t )(1−H2

t ) + V̂t(1−H1
t )H2

t one obtains

dVt = (1−H1
t )(1−H2

t )dṼt + (1−H1
t )H2

t dV̂t − Vt−dH1
t

+(1−H1
t )(V

1|2
t (t)− Ṽt)dH2

t ,

which leads to the result after light computations. �

Comment 3.1 As for a single name CDS, the quantity −δ(t)λ̃1(t) corresponds to the dividend

δ to be paid at time t with probability λ̃1(t)dt on the set t < τ1 ∧ τ2 and −δ(t)λ̃1|2
t corresponds

to the dividend δ to be paid at time t with probability λ̃
1|2
t dt on the set τ2 < t < τ1. The

quantity V
1|2
t (t) − Ṽt represents the jump in the value of the CDS, when default τ2 occurs at

time t.

The cumulative price of the CDS is

V cum
t = E(δ(τ1)1τ1≤T − κ(T ∧ τ1)|Ht).

It follows that
dV cum

t = dVt + δ(t)dH1
t − κ(1−H1

t )dt,

hence, since the cumulative price is a martingale

dVt = dmt − δ(t)λ1
tdt+ κ(1−H1

t )dt,

where dmt = dV cum
t − δ(t)dM1

t . This is an easy way to obtain the drift term in Equation (6).
It turns out that the cum-dividend CDS price process has the following dynamics

dV cum
t = (1−H1

t )(1−H2
t )(κ− δ(t)λ̃1(t))dt+ (1−H1

t )H2
t (κ− δ(t)λ̃1|2

t )dt

−Vt−dM1
t + (1−H1

t )(V
1|2
t (t)− Vt−)dM2

t + δ(t)dH1
t − κ(1−H1

t )dt

= (δ(t)− Vt−)dM1
t + (1−H1

t )(V
1|2
t (t)− Vt−)dM2

t .

3.4 CDSs as hedging assets

Assume now that a CDS written on τ2 is also traded in the market. We denote by δi, i = 1, 2
the recovery (assumes to be deterministic) and V i, i = 1, 2 the prices of the two CDSs. Since
the CDS are paying dividends, a self financing strategy consisting in ϑi shares of CDS’s has
value Xt = ϑ1

tV
1
t + ϑ2

tV
2
t and dynamics

dXt = ϑ1
tdV

1,cum
t + ϑ2

tdV
2,cum
t

= ϑ1
t

(
(δ1(t)− V 1

t−)dM1
t + (1−H1

t )(V
1|2
t (t)− Ṽ 1

t )dM2
t

)
+ϑ2

t

(
(δ2(t)− V 2

t−)dM2
t + (1−H2

t )(V
2|1
t (t)− Ṽ 2

t )dM1
t

)
=

(
ϑ1
t (δ

1(t)− V 1
t−) + ϑ2

t (1−H2
t )(V

2|1
t (t)− Ṽ 2

t

)
dM1

t

+
(
ϑ1
t (1−H1

t )(V
1|2
t (t)− Ṽ 1

t ) + ϑ2
t (δ

2(t)− V 2
t−)
)
dM2

t

Let A ∈ HT be a terminal payoff with price At = E(A | Ht), then from Theorem 1.1 there exists
predictable processes π1 and π2 such that

At = E(A) +

∫ t

0

π1
sdM

1
s +

∫ t

0

π2
sdM

2
s .

In order to hedge that claim, it remains to solve the linear system

ϑ1
t (δ

1(t)− V 1
t−) + ϑ2

t (1−H2
t )(V

2|1
t (t)− Ṽ 2

t ) = π1
t ,

ϑ1
t (1−H1

t )(V
1|2
t (t)− Ṽ 1

t ) + ϑ2
t (δ

2(t)− V 2
t−) = π2

t .
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Hence, on the set t < τ1 ∧ τ2, noting that V it = Ṽ it on that set,

ϑ1
t =

π1
t (δ2(t)− Ṽ 2

t )− π2
t (V

2|1
t (t)− Ṽ 2

t )

(δ1(t)− Ṽ 1
t )(δ2(t)− Ṽ 2

t )− (V
1|2
t − Ṽ 1

t )(V
2|1
t − Ṽ 2

t )
,

ϑ2
t =

π2
t (δ1(t)− Ṽ 1

t )− π1
t (V

1|2
t − Ṽ 1

t )

(δ1(t)− Ṽ 1
t )(δ2(t)− Ṽ 2

t )− (V
1|2
t − Ṽ 1

t )(V
2|1
t (t)− Ṽ 2

t )
.

On the set τ1 < t < τ2

ϑ1
t =

π1
t (δ2(t)− V 2

t )− π2
t (V

2|1
t − V 2

t )

(δ1(t)− V 1
t )(δ2(t)− V 2

t )
, ϑ2

t =
π2
t

δ2(t)− V 2
t

.

On the set τ2 < t < τ1

ϑ1
t = − π1

t

δ1(t)− V 1
t

, ϑ2
t =

π2
t (δ1(t)− V 1

t )− π1
t (V

1|2
t − V 2

t )

(δ1(t)− V 1
t )(δ2(t)− V 2

t )
.

On the set τ1 ∨ τ2 < t

ϑ1
t =

π1
t

δ1(t)− V 1
t

, ϑ2
t =

π2
t

δ2(t)− V 2
t

.

As we saw above, for the case A = h(τ1, τ2), one has a closed form for the coefficients π:

π1
t =

(
h(t, τ2)− ψ0,1(t, τ2)

)
H2
t +

(
ψ1,0(t, t)− ψ0,0(t)

)
(1−H2

t ),

π2
t =

(
h(τ1, t)− ψ1,0(τ1, t)

)
H1
t +

(
ψ0,1(t, t)− ψ0,0(t)

)
(1−H1

t ).

3.5 Multidefault setting

The same methodology can be applied in a multidefault setting. The only difficulty is that
one has to rank the defaults and to distinguish the various possibilities. For example, for three
defaults, the dynamics of the cumdividend price of the CDS written on the default τ1 is

dV cum
t = (δ1(t)− Vt−)dM1

t + (1−H1
t )
(

(1−H3
t )V

1|2
t (t) +H3

t V
1|32
t (t, τ3)− Vt−

)
dM2

t

+(1−H1
t )
(

(1−H2
t )V

1|3
t (t) +H2

t V
1|23
t (τ2, t)− Vt−

)
dM3

t ,

where Vt is the (ex-dividend) price of the CDS at time t, V
1|2
t (u) is the price of the CDS on the

set {τ2 = u} for u < t < τ3, V
1|3
t (v) is the price of the CDS on the set {τ3 = v} for v < t < τ2,

V
1|23
t (u, v) is the price of the CDS, on the set {τ2 = u, τ3 = v} for u < v < t and V

1|32
t (u, v) is

the price of the CDS, on the set {τ2 = u, τ3 = v} for v < u < t.

4 Particular case: ordered defaults

In this section, we consider the particular case where default times are ordered. In this situation,
single-name CDS can be viewed as kth-to-default swaps. We first consider a setting with two
names only, then we investigate the hedging of loss derivatives written on a multivariate n-
dimensional credit portfolio.

4.1 Dynamics of CDS prices in a two defaults setting

Let us now assume that τ1 < τ2, a.s. In that case, G(t, s) = G(t, t) for s ≤ t, hence the
martingale M1 defined in Proposition 3.1 simplifies:

M1
t = H1

t −
∫ t∧τ1

0

∂1G(s, s)

G(s, s)
ds = H1

t −
∫ t∧τ1

0

f1(s)

G1(s)
ds

where

G1(s) = Q(τ1 > s) = G(s, s) =

∫ ∞
s

f1(u)du =

∫ ∞
s

∂1G(u, u)du .
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The process M1 is H1-adapted, hence is an H1-martingale and it follows from Theorem 1.1 that
any H1-martingale is a H-martingale. Furthermore, the intensity of τ2 vanishes on the set t < τ1
and

M2
t = H2

t −
∫ t∧τ2

t∨τ1

f(τ1, s)

∂1G(τ1, s)
ds = H2

t −
∫ t

0

1τ1<s<τ2
f(τ1, s)

∂1G(τ1, s)
ds .

Proposition 4.1 Let V i, i = 1, 2 be the price of a CDS on τi, with contractual spread κi and
payment at default given by a deterministic function δi. The H-dynamics of V 1 is

dV 1
t = −V 1

t−dM
1
t + (1−H1

t )(κ1 − δ1(t)λ̃1(t))dt (7)

with λ̃1(t) = f1(t)
G1(t)

. The H-dynamics of V 2 is

dV 2
t = −V 2

t−dM
2
t + (1−H2

t )κ2dt− (1−H2
t )H1

t δ2(t)λ̃
2|1
t (τ1)dt+ (V

2|1
t (t)− V 2

t−)dM1
t . (8)

Proof. Apply Proposition 2.3 or (6) to obtain (7), and (6) to obtain (8). �

4.2 Multidefault setting

Let G be the survival function of the joint defaults, assumed to be differentiable

G(t1, . . . , tn) = Q(τ1 > t1, . . . , τn > tn)

and

Gj(t1, . . . , tj) = Q(τ1 > t1, . . . , τj > tj) .

We shall denote by f the density of the n-uple (τi, i ≤ n) and by fj the density of the j-uple
(τi, i ≤ j). Since the defaults are ordered, setting t1j = t1, . . . , tj one has

Gj(t
1
j ) := Q(τ1 > t1, . . . , τj > tj)

= Q(τ1 > t1, . . . , τj > tj , τj+1 > tj , . . . , τn > tj) = G(t1j , tj , . . . , tj)

The fundamental martingales are

M j
t = Hj

t −
∫ t∧τj

t∨τj−1

λ̃j|j−1
s (τ1, . . . , τj−1)ds

where

λ̃
j|j−1
t (t1j−1) = −

∂1,jGj(t
1
j−1, t)

∂1,j−1Gj(t1j−1, t)

and ∂1,j = ∂1 . . . ∂j .

Proposition 4.2 If V i is the price process of a CDS with maturity T , written on the i-th
default, with spread κi and payment at default given by a deterministic function δi, then

dV it = −V it−dM i
t − (1−Hi

t)H
i−1
t δi(t)λ̃

i|i−1
t (τ1, . . . , τi−1)dt

+

i−1∑
j=1

(V
i|j
t (τ1, . . . , τj)− V it−)dM j

t + (1−Hi
t)κidt, (9)

where

V
i|j
t (t1j ) =

−
∫ T
t
δi(u)fj+1(t1j , u) du− κi

∫ T
t
∂1,jGj+1(t1j , u) du

∂1,jGj(t1j )
.

4.3 Hedging of a loss

In order to hedge the payoff B, one proceeds in two steps. The first step is to compute the
martingale representation of E(B|Ht), i.e., identify the predictable processes π such that

E(B|Ht) = E(B) +

n∑
j=1

∫ t

0

πjsdM
j
s .
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We denote by Di the dividend part associated with the CDS written on τi. A self-financing
strategy with value

Vt = ϑ0
t +

n∑
i=1

ϑitV
i
t

satisfies

dVt =

n∑
i=1

ϑit(dV
i
t + dDi

t) =

n∑
i=1

ϑit

(
(δi(t)− V it−)dM i

t +

i−1∑
j=1

(V
i|j
t − V it−)dM j

t

)

=

n∑
j=1

dM j
t

n∑
i=j

ϑit(V
i|j
t − V it−) (10)

where we set V
i|i
t = δi(t). It remains to solve the linear system (with unknown ϑ)

n∑
i=j

ϑit(V
i|j
t − V it−) = πjt , j = 1, . . . , n .

As an example, we now compute the conditional law of the loss, i.e., E(f(LT )|Ht) where
LT =

∑n
k=1 1τk≤T . Let Bkt (T ) = E(1T<τk |Ht) (or simply Bkt ) be the price of a defaultable

zero-coupon written on the k-th default, with maturity T .

E(f(LT )|Ht) =

n∑
k=1

f(k)
(
Bk+1
t −Bkt

)
= f(n) +

n∑
k=1

Bkt (f(k − 1)− f(k))

Obviously, setting τ0 = 0

Bkt =

k∑
j=1

1τj−1≤t<τj E(1T<τk |Ht) =

k∑
j=1

1τj−1≤t<τj

Q(T < τk, t < τj |Hj−1
t )

Q(t < τj |Hj−1
t )

Now, on the set τj−1 ≤ t

Q(T < τk, t < τj |Hj−1
t ) = Φk,j−1(τ1, . . . , τj−1, t, T )

where, for j ≤ k − 1

Φk,j−1(t1, . . . , tj−1, t, T ) =
Q(t < τj , T < τk, τ1 ∈ dt1, . . . , τj−1 ∈ dtj−1)

Q(τ1 ∈ dt1, . . . , τj−1 ∈ dtj−1)

=
∂1,j−1Gk(t1j−1, t, . . . , t, T )

∂1,j−1Gk(t1j−1, . . . , tj−1)
.

On the set τk−1 ≤ t (for j = k)

Q(T < τk, t < τk|Hk−1
t )

Q(t < τk|Hk−1
t )

=
Q(T < τk|Hk−1

t )

Q(t < τk|Hk−1
t )

=
∂1,k−1Gk(t1k−1, T )

∂1,k−1Gk(t1k−1, t)
.

Since

dBkt = −Bkt−dMk
t +

k−1∑
j=1

νj,kt dM j
t =

k∑
j=1

νj,kt dM j
t (11)

where, for j < k, we have set νj,kt =
Φk,j(τ1,...,τj−1,t,t,T )

Φk,j(τ1,...,τj−1,t,t,t)
− Φk,j−1(τ1,...,τj−1,t,T )

Φk,j−1(τ1,...,τj−1,t,t)
and νk,kt = −Bkt−.

It follows that, setting Xt = E(f(LT )|Ht),

dXt =

n∑
j=1

dM j
t

n∑
k=j

(f(k − 1)− f(k))νi,kt

and the hedging strategy for the contingent claim f(LT ) is the solution ϑ of the triangular
system

n∑
i=j

ϑit(V
i|j
t − V it−) =

n∑
k=j

(f(k − 1)− f(k))νj,kt , j = 1, . . . , n.
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Conclusion

We investigate a quite general pure jump setting where the density of joint default is known. We
compute the default intensities in the filtration of all the default times. In particular, at each
instant when a default event occurs, default intensities of non-defaulted names are dynamically
updated. This leads to a dependence structure among default times which is regularly updated
as defaults arrive. We have seen that the hedging of loss derivatives such as CDO tranches or
basket default swaps can be fully described in this framework with no Markovian assumption.
The hedging strategies with respect to single-name CDS can be derived analytically in a two-
defaults setting. Even if similar ideas can be exploited in higher dimension, the construction
of dynamic hedging strategies would involve very cumbersome computations if one wants to
consider all possible default scenarios. Interestingly, in the particular case of ranked default
times, the hedging issue can be solved explicitly.
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