Comparison results for exchangeable credit risk portfolios

Areski COUSIN

Postdoctoral fellow at Université d'Evry Val d'Essonne, member of the CRIS consortium

Second International Financial Research Forum - 19 March 2009 Joint work with Jean-Paul Laurent, ISFA, Université de Lyon

De Finetti theorem and factor representation Stochastic orders Main results

CRIS

Contents

- De Finetti theorem and factor representation
- Stochastic orders
- Main results

2 Application to several popular CDO pricing models

- Factor copula approaches
- Structural model
- Multivariate Poisson model

De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

 Homogeneity assumption: default indicators D₁,..., D_n form an exchangeable Bernoulli random vector

Definition (Exchangeability)

A random vector (D_1, \ldots, D_n) is exchangeable if its distribution function is invariant for every permutations of its coordinates: $\forall \sigma \in S_n$

$$(D_1,\ldots,D_n)\stackrel{d}{=}(D_{\sigma(1)},\ldots,D_{\sigma(n)})$$

Same marginals

De Finetti theorem and factor representation Stochastic orders Main results

De Finetti theorem and factor representation

- Assume that D_1, \ldots, D_n, \ldots is an exchangeable sequence of Bernoulli random variables
- Thanks to de Finetti's theorem, there exists a unique random factor p
 such that
- D_1,\ldots,D_n are conditionally independent given \widetilde{p}
- Denote by $F_{\tilde{p}}$ the distribution function of \tilde{p} , then:

$$P(D_1 = d_1, \ldots, D_n = d_n) = \int_0^1 p^{\sum_i d_i} (1-p)^{n-\sum_i d_i} F_{\tilde{p}}(dp)$$

p̃ is characterized by:

$$\frac{1}{n}\sum_{i=1}^n D_i \stackrel{\text{a.s.}}{\longrightarrow} \tilde{p} \quad \text{as} \ n \to \infty$$

p
 is exactly the loss of the infinitely granular portfolio (Basel 2 terminology)

De Finetti theorem and factor representation Stochastic orders Main results

CRIS

Stochastic orders

- The convex order compares the dispersion level of two random variables
- Convex order: $X \leq_{cx} Y$ if $E[f(X)] \leq E[f(Y)]$ for all convex functions f
- Stop-loss order: $X \leq_{sl} Y$ if $E[(X K)^+] \leq E[(Y K)^+]$ for all $K \in \mathbb{R}$
 - $X \leq_{sl} Y$ and $E[X] = E[Y] \Leftrightarrow X \leq_{cx} Y$

De Finetti theorem and factor representation Stochastic orders Main results

Supermodular order

- The supermodular order captures the dependence level among coordinates of a random vector
- $(X_1, \ldots, X_n) \leq_{sm} (Y_1, \ldots, Y_n)$ if $E[f(X_1, \ldots, X_n)] \leq E[f(Y_1, \ldots, Y_n)]$ for all supermodular functions f

Definition (Supermodular function)

A function $f : \mathbb{R}^n \to \mathbb{R}$ is supermodular if for all $x \in \mathbb{R}^n$, $1 \le i < j \le n$ and $\varepsilon, \delta > 0$ holds

$$f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i+\varepsilon,\ldots,x_j,\ldots,x_n)$$

$$\geq f(x_1,\ldots,x_i,\ldots,x_j+\delta,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)$$

ㅣ Müller(1997)

Stop-loss order for portfolios of dependent risks

$$(D_1,\ldots,D_n)\leq_{sm}(D_1^*,\ldots,D_n^*)\Rightarrow\sum_{i=1}^nM_iD_i\leq_{sl}\sum_{i=1}^nM_iD_i^*$$

Comparison results Application to several popular CDO pricing models Conclusion

CRIS

Main results

- Let us compare two credit portfolios with aggregate loss $L_t = \sum_{i=1}^n M_i D_i$ and $L_t^* = \sum_{i=1}^n M_i D_i^*$
- Let D₁,..., D_n be exchangeable Bernoulli random variables associated with the mixing probability p̃
- Let D^{*}₁,..., D^{*}_n exchangeable Bernoulli random variables associated with the mixing probability p^{*}

Theorem

$$\tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

• In particular, if $\tilde{p} \leq_{cx} \tilde{p}^*$, then:

•
$$E[(L_t - a)^+] \le E[(L_t^* - a)^+]$$
 for all $a > 0$.

• $ho(L_t) \leq
ho(L_t^*)$ for all convex risk measures ho

Main results

- Let D₁,..., D_n,... be exchangeable Bernoulli random variables associated with the mixing probability p̃
- Let D^{*}₁,..., D^{*}_n,... be exchangeable Bernoulli random variables associated with the mixing probability p^{*}

Theorem (reverse implication)

$$(D_1,\ldots,D_n)\leq_{sm} (D_1^*,\ldots,D_n^*), \forall n\in\mathbb{N}\Rightarrow \tilde{p}\leq_{cx} \tilde{p}^*.$$

Factor copula approaches Structural model Multivariate Poisson model

Contents

Comparison results

- De Finetti theorem and factor representation
- Stochastic orders
- Main results

2 Application to several popular CDO pricing models

- Factor copula approaches
- Structural model
- Multivariate Poisson model

Factor copula approaches Structural model Multivariate Poisson model

Ordering of CDO tranche premiums

- Analysis of the dependence structure in several popular CDO pricing models
- An increase of the dependence parameter leads to:
 - a decrease of [0%, b] equity tranche premiums (which guaranties the uniqueness of the market base correlation)
 - an increase of [a, 100%] senior tranche premiums

Factor copula approaches Structural model Multivariate Poisson model

Additive factor copula approaches

• The dependence structure of default times is described by some latent variables V_1, \ldots, V_n such that:

•
$$V_i = \rho V + \sqrt{1 - \rho^2} \bar{V}_i, \ i = 1 \dots n$$

• $V, \bar{V}_i, i = 1 \dots n$ independent

•
$$\tau_i = G^{-1}(H_{\rho}(V_i)), \ i = 1 \dots n$$

- G: distribution function of τ_i
- H_{ρ} : distribution function of V_i
- D_i = 1_{{τi}≤t}</sub>, i = 1...n are conditionally independent given V

•
$$\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V) = \tilde{p}$$

Factor copula approaches Structural model Multivariate Poisson model

Additive factor copula approaches

Theorem

For any fixed time horizon t, denote by $D_i = 1_{\{\tau_i \leq t\}}$, $i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq t\}}$, $i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

$$\rho \leq \rho^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

- This framework includes popular factor copula models:
 - One factor Gaussian copula the industry standard for the pricing of CDO tranches
 - Double t: Hull and White(2004)
 - NIG, double NIG: Guegan and Houdain(2005), Kalemanova, Schmid and Werner(2007)
 - Double Variance Gamma: Moosbrucker(2006)

Archimedean copula

- Schönbucher and Schubert(2001), Gregory and Laurent(2003), Madan *et al.*(2004), Friend and Rogge(2005)
 - ullet V is a positive random variable with Laplace transform $arphi^{-1}$
 - U_1,\ldots,U_n are independent Uniform random variables independent of V

•
$$V_i = \varphi^{-1}\left(-\frac{\ln U_i}{V}\right), i = 1...n$$
 (Marshall and Olkin (1988))

• (V_1,\ldots,V_n) follows a arphi-archimedean copula

•
$$P(V_1 \leq v_1, \ldots, V_n \leq v_n) = \varphi^{-1}(\varphi(v_1) + \ldots + \varphi(v_n))$$

•
$$\tau_i = G^{-1}(V_i)$$

- G: distribution function of τ_i
- $D_i = 1_{\{\tau_i \leq t\}}, i = 1 \dots n$ independent knowing V

•
$$\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid V] = P(\tau_i \leq t \mid V)$$

Archimedean copula

• Conditional default probability: $\tilde{p} = \exp \{-\varphi(G(t)V)\}$

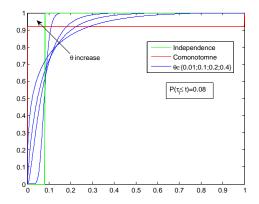
Copula	Generator $arphi$	Parameter
Clayton	$t^{- heta}-1$	$ heta \geq 0$
Gumbel	$(-\ln(t))^{ heta}$	$ heta \geq 1$
Franck	$-\ln\left[(1-e^{- heta t})/(1-e^{- heta}) ight]$	$\theta \in I\!\!R^*$

Theorem

$$\theta \leq \theta^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$

Factor copula approaches Structural model Multivariate Poisson model

Archimedean copula



- Clayton copula
- Mixture distributions are ordered with respect to the convex oder

CRIS

Structural model

📄 Hull, Predescu and White(2005)

- Consider *n* firms
- Let $V_{i,t}, i = 1 \dots n$ be their asset dynamics

$$V_{i,t} = \rho V_t + \sqrt{1 - \rho^2} \overline{V}_{i,t}, \quad i = 1 \dots n$$

- V, $\bar{V}_i, i = 1 \dots n$ are independent standard Wiener processes
- Default times as first passage times:

 $\tau_i = \inf \{ t \in \mathbf{R}^+ | V_{i,t} \le f(t) \}, \ i = 1 \dots n, \ f : \mathbf{R} \to \mathbf{R} \text{ continuous}$

• $D_i = 1_{\{\tau_i \leq \tau\}}$, $i = 1 \dots n$ are conditionally independent given $\sigma(V_t, t \in [0, T])$

Factor copula approaches Structural model Multivariate Poisson model

Structural model

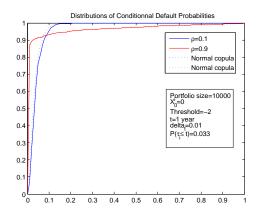
Theorem

For any fixed time horizon T, denote by $D_i = 1_{\{\tau_i < \tau\}}, i = 1 \dots n$ and $D_i^* = 1_{\{\tau_i^* \leq T\}}, i = 1 \dots n$ the default indicators corresponding to (resp.) ρ and ρ^* , then:

 $\rho < \rho^* \Rightarrow (D_1, \ldots, D_n) <_{sm} (D_1^*, \ldots, D_n^*)$

Factor copula approaches Structural model Multivariate Poisson model

Structural model



• $\frac{1}{n}\sum_{i=1}^{n}D_{i} \xrightarrow{a.s} \tilde{p}$

•
$$\frac{1}{n} \sum_{i=1}^{n} D_i^* \xrightarrow{a.s} \tilde{p}^*$$

 Empirically, mixture probabilities are ordered with respect to the convex order: *p* <_{cx} *p*^{*}

CRIS

Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Duffie(1998), Lindskog and McNeil(2003), Elouerkhaoui(2006)

- $ar{N_t^i}$ Poisson with parameter $ar{\lambda}$: idiosyncratic risk
- N_t Poisson with parameter λ : systematic risk
- $(B_i^i)_{i,j}$ Bernoulli random variable with parameter p
- All sources of risk are independent

•
$$N_t^i = \bar{N}_t^i + \sum_{j=1}^{N_t} B_j^i, \ i = 1 \dots n$$

•
$$\tau_i = \inf\{t > 0 | N_t^i > 0\}, \ i = 1 \dots n$$

Multivariate Poisson model

- Dependence structure of (au_1,\ldots, au_n) is the Marshall-Olkin copula
- $\tau_i \sim Exp(\bar{\lambda} + p\lambda)$
- D_i = 1_{τi≤t}, i = 1...n are conditionally independent given N_t
- $\frac{1}{n}\sum_{i=1}^{n}D_i \xrightarrow{a.s} E[D_i \mid N_t] = P(\tau_i \leq t \mid N_t)$
- Conditional default probability:

$$\tilde{p} = 1 - (1 - p)^{N_t} \exp(-\bar{\lambda}t)$$

Multivariate Poisson model

- Comparison of two multivariate Poisson models with parameter sets $(\bar{\lambda},\lambda,p)$ and $(\bar{\lambda}^*,\lambda^*,p^*)$
- Supermodular order comparison requires equality of marginals: $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda^*$
- 3 comparison directions:

•
$$p = p^*$$
: $\overline{\lambda}$ v.s λ
• $\lambda = \lambda^*$: $\overline{\lambda}$ v.s p
• $\overline{\lambda} = \overline{\lambda}^*$: λ v.s p

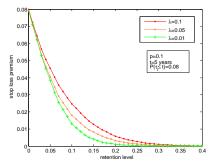
Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(p = p^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p\lambda^*$, then:

$$\lambda \leq \lambda^*, \ \bar{\lambda} \geq \bar{\lambda}^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



- Computation of E[(L_t a)⁺]:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When λ increases, the aggregate loss increases with respect to stop-loss order

CRIS

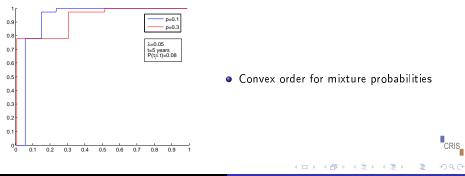
Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow \widetilde{p} \leq_{cx} \widetilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



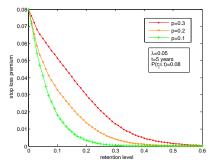
Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(\lambda = \lambda^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $\bar{\lambda} + p\lambda = \bar{\lambda}^* + p^*\lambda$, then:

$$p \leq p^*, \ ar{\lambda} \geq ar{\lambda}^* \Rightarrow ar{p} \leq_{cx} ar{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



- Computation of $E[(L_t K)^+]$:
 - 30 names
 - $M_i = 1, i = 1 \dots n$
- When p increases, the aggregate loss increases with respect to stop-loss order

CRIS

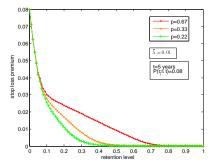
Factor copula approaches Structural model Multivariate Poisson model

Multivariate Poisson model

Theorem $(\bar{\lambda} = \bar{\lambda}^*)$

Let parameter sets $(\bar{\lambda}, \lambda, p)$ and $(\bar{\lambda}^*, \lambda^*, p^*)$ be such that $p\lambda = p^*\lambda^*$, then:

$$p \leq p^*, \ \lambda \geq \lambda^* \Rightarrow \tilde{p} \leq_{cx} \tilde{p}^* \Rightarrow (D_1, \dots, D_n) \leq_{sm} (D_1^*, \dots, D_n^*)$$



- Computation of $E[(L_t K)^+]$:
 - 30 names

•
$$M_i = 1, \ i = 1 \dots n$$

 When p increases, the aggregate loss increases with respect to stop-loss order

Conclusion

- When considering an exchangeable vector of default indicators, the conditional independence assumption is not restrictive thanks to de Finetti's theorem
- The mixing probability (the factor) can be viewed as the loss of an infinitely granular portfolio
- We completely characterize the supermodular order between exchangeable default indicator vectors in term of the convex ordering of corresponding mixing probabilities
- We show that the mixing probability is the key input to study the impact of dependence on CDO tranche premiums
- Comparison analysis can be performed with the same method within a large class of CDO pricing models

Exchangeability: how realistic is a homogeneous assumption?

- Homogeneity of default marginals is an issue when considering the pricing and the hedging of CDO tranches
 - ex: Sudden surge of GMAC spreads in the CDX index in May, 2005
 - This event dramatically impacts the equity tranche compared to others tranches
- But composition of standard indices are updated every semester, resulting in an increase of portfolio homogeneity
- It may be reasonable to split a credit portfolio in several homogeneous sub-portfolios (by economic sectors for example)
 - Then, for each sub-portfolio, we can find a specific factor and apply the previous comparison analysis
 - The initial credit portfolio can thus be associated with a vector of factors (one by sector)
 - Is it possible to relate comparison between global aggregate losses to comparison between vectors of random factors?

Areski COUSIN and Jean-Paul LAURENT

Are comparisons in a static framework restrictive?

- Are comparisons among aggregate losses at fixed horizons too restrictive?
- Computation of CDO tranche premiums only requires marginal loss distributions at several horizons
 - Comparison among aggregate losses at different dates is sufficient
- However, comparison of more complex products such as options on tranche or forward started CDOs are not possible in this framework
- Building a framework in which one can compare directly aggregate loss processes is a subject of future research