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Introduction

Empirical studies on contagion mechanisms

Das and al. (2007) or Azizpour and Giesecke (2008) : Conditional
independence assumption with no contagion effect is rejected by historical
default data. The conditional independence assumption is not enough to
capture historical default dependency

Boissay (2006), Jorion and Zhang (2007, 2009) analyze the mechanism of
default propagation and provide financial evidence of chain reactions or
dominos effects

Need for a dynamic model with defaults dependencies and contagion

Eventual underlying macro-economic factors

Contagion mechanisms

Chain reactions and evolution over time
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Literature

Some contagion models in the credit risk field

Intensities depending on defaults : Jarrow and Yu (2001), Yu (2007)

Markov chain models : Schönbucher (2006), Frey and Backhaus (2007),
Herbertsson (2007), Laurent, Cousin and Fermanian (2007)

Copula : Schönbucher and Schubert (2001)

Incomplete information models : Giesecke (2004), Frey and
Runggaldier (2008), Fontana and Runggaldier (2009)

In the spirit of Davis and Lo’s contagion model

First models : Davis and Lo (2001)

Extensions : Sakata, Hisakado and Mori (2007), Egloff, Leippold and
Vanini (2007), Rösch, Winterfeldt (2008)

We propose a multiperiod extension of Davis and Lo’s contagion model.
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Davis and Lo’s contagion model

Modeling of credit contagion for a pool of defaultable entities

One-period model

Credit references may default either directly or as a consequence of a
contagion effect

Example : Portfolio with 5 credit references over one period

No direct default (X1=0)

Contagion (Y23=1)

No contagion (Y24=0)

Direct default (X2=1)
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Davis and Lo’s contagion model

One-period contagion model

n : number of credit references,

Xi : direct default indicator of name i (i.e. Xi = 1 if i defaults directly,
Xi = 0 otherwise),

Yji = 1 if the contagion link is activated from name j to name i , Yji = 0
otherwise.

Ci : indirect default indicator of name i ,

Zi : global default indicator (direct or indirect) such that :

Zi = Xi + (1− Xi )Ci

where :

Ci = 1at least one XjYji =1, j=1,...,n

= 1−
∏
j 6=i

(1− XjYji )
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Davis and Lo’s contagion model

N =
∑n

i=1 Zi : total number of defaults

Distribution of total number of defaults (Davis and Lo)

P [N = k] = C k
n

k∑
i=1

C i
kp

i (1− p)n−i (1− (1− q)i )k−i (1− q)i(n−k).

Under the assumptions :

Direct defaults Xi , i = 1, . . . , n : iid Bernoulli with parameter p

Contagion links Yij , i , j = 1, . . . , n : iid Bernoulli with parameter q

One contagion link alone may trigger an indirect default

Infected entities cannot contaminate others (no chain-reaction effect)
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Extension of Davis and Lo’s contagion model
Dominos Effect

The model becomes a multiperiod model
One can choose the set of entities likely to contaminate others
some iid assumptions are released

t=0 t=1 t=2

etc.
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Extension of Davis and Lo’s contagion model
Contagion incidence on indirect default

One can change the number of contagion links required to cause a default
(here two contaminations required)

t=0 t=1 t=2

etc.
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Extension of Davis and Lo’s contagion model

Multi-period contagion model : t = 0, 1, 2, . . . , T , in period [t, t + 1] :

n : number of credit references,

X i
t : direct default indicator of entity i ,

Y ji
t : contagion links are Bernoulli random variables such that Y ji

t = 1 if entity j
may infect entity i ,

Z i
t : global default indicator (direct or indirect) such that :

Z i
t = Z i

t−1 + (1− Z i
t−1)[X i

t + (1− X i
t )C i

t ]

C i
t = f

(∑
j∈Ft

Y ji
t

)
: indirect default indicator of name i ,

Ft is the set of names that are likely to infect other names between t and t + 1

f is a contamination trigger function, for example f = 1x≥1 (Davis and Lo) or
f = 1x≥2
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Extension of Davis and Lo’s contagion model

Nt =
∑n

i=1 Z i
t : total number of defaults at time t

Main result

P [Nt = r ] =
r∑

k=0

P [Nt−1 = k]C r−k
n−k

r−k∑
γ=0

Cγ
r−k

·
n−k−γ∑
α=0

Cα
n−k−γµγ+α, t

n−r∑
j=0

C j
n−r (−1)j+αξj+r−k−γ,t(γ).

Under the assumptions :

Direct defaults X i
t , i = 1, . . . , n are conditionally independent Bernoulli

r.v. with the same marginal distribution and Xt = (X 1
t , ...,X n

t ),
t = 1, . . . ,T are independent vectors.

Contagion links Y ji
t , i , j = 1, . . . , n are conditionally independent Bernoulli

r.v. with the same marginal distribution and Yt = (Y ji
t )1≤i,j≤n,

t = 1, . . . ,T are independent vectors.

(Xt)t=1,...,T and (Yt)t=1,...,T are independent.
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Extension of Davis and Lo’s contagion model

Similar kind of formulas hold when we have :

finite-exchangeability

Direct defaults may be finite-exchangeable (does not imply conditional
independence as infinite exchangeability, De Finetti’s Theorem does not
apply here).

non stationarity

Joint law for Direct defaults and for Contagion links may change over
time.

heterogeneity (with higher complexity)

Direct defaults may be dependent and heterogeneous, in a monoperiodic
framework.

Direct defaults may be dependent and heterogeneous, in a multiperiodic
framework, but with an exponential complexity (need to consider all
possible sets of remaining entities at time t).
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Probabilistic tools

Waring’s Formula - special case of Schuette-Nesbitt Formula

If B1, ...,Bn are n dependent Bernoulli r.v. and Γ ⊂ {1, . . . , n} with cardinal m,

P

[∑
i∈Γ

B i = k

]
= 1k≤mC k

m

m−k∑
j=0

C j
m−k(−1)jµj+k(Γ).

with µk(Γ) =
1

C k
m

∑
j1<j2<..<jk
j1,...,jk∈Γ

P
[
B j1 = 1 ∩ ... ∩ B jk = 1

]
, k ≥ 1,

coefficients µk may be simplified :
if independence (without requiring iid) : products
if exchangeability : the sum vanishes

Here we are looking for :
Directs defaults :

∑
j∈Γ X j

t as a function of some coefficients µk,t(Γ),

Contagion links :
∑

j∈Ft
Y σ(j)

t as a function of some coefficients λk,t ,

Indirects defaults :
∑

j=1...k C j
t as a function of some coefficients ξk,t ,
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Calibration on 5-years iTraxx tranche quotes
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Cash-flows of CDO tranches driven by the aggregate loss process (in %)

Lt =
1
n

n∑
i=1

(1− Ri )Z i
t

where Ri is the recovery rate associated with name i .
if Ri = R for any i = 1, . . . , n

Lt =
1
n

(1− R) · Nt
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Calibration on 5-years iTraxx tranche quotes

We restrict ourselves to the case where for all t :

Direct defaults X i
t ∼ Bernoulli(Θ) where Θ ∼ Beta, E [Θ] = p and

Var(Θ) = σ2, i = 1, . . . , n

Contagion links Y ij
t are iid Y ij

t ∼ Bernoulli(q), i , j = 1, . . . , n

Only one default is required to trigger a default by contagion

Moreover

n = 125, r = 3% (short-term interest rate)

Recovery rate R = 40%

Computation of CDO tranche price only requires marginal loss
distributions at several time horizons
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Calibration on 5-years iTraxx tranche quotes

Least square calibration procedure : Find α∗ = (p∗, σ∗, q∗) which minimizes :

RMSE(α) =

√√√√1
6

6∑
i=1

(
s̃i − si (α)

s̃i

)2

.

where

0%-3% 3%-6% 6%-9% 9%-12% 12%-20% index
Market prices s̃1 s̃2 s̃3 s̃4 s̃5 s̃0
model prices s1(α) s2(α) s3(α) s4(α) s5(α) s0(α)
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Calibration on 5-years iTraxx tranche quotes

Four calibration procedures :

Calibration 1 : All available market spreads are included in the fitting

Calibration 2 : The equity [0%-3%] tranche spread is excluded

Calibration 3 : Both equity [0%-3%] tranche and CDS index spreads are
excluded

Calibration 4 : All tranche spreads are excluded except equity tranche and
CDS index spreads.

Two calibration dates before and during the credit crisis :

31 August 2005

31 March 2008
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Calibration on 5-years iTraxx tranche quotes

31 August 2005

0%-3% 3%-6% 6%-9% 9%-12% 12%-20% index
Market quotes 24 81 27 15 9 36
Calibration 1 20 114 7 1 1 29
Calibration 2 - 62 32 18 6 8
Calibration 3 - 55 29 18 7 -
Calibration 4 24 - - - - 36

Annual scaled optimal parameters

p∗ σ∗ q∗

Calibration 1 0.0016 0.0015 0.0626
Calibration 2 0.0007 0.0133 0.0400
Calibration 3 0.0001 0.0025 0.3044
Calibration 4 0.0014 0.002 0.1090
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Calibration on 5-years iTraxx tranche quotes

31 March 2008

0%-3% 3%-6% 6%-9% 9%-12% 12%-20% index
Market quotes 40 480 309 215 109 123
Calibration 1 28 607 361 228 95 75
Calibration 2 - 505 330 228 112 68
Calibration 3 - 478 309 215 109 -
Calibration 4 40 - - - - 123

Annual scaled optimal parameters

p∗ σ∗ q∗

Calibration 1 0.0124 0.0886 0
Calibration 2 0.0056 0.0518 0.0400
Calibration 3 0.0012 0.012 0.2688
Calibration 4 0.0081 0.0516 0.0589
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To improve the results we consider :
One additional external contagious entity
Calibrated recovery rate

0%-3% 3%-6% 6%-9% 9%-12% 12%-20% index RMSE
31 Jan 2008
Market spreads 31 317 212 140 74 77 -
Model spreads 32 328 204 142 77 64 7.5
1st Mar 2007
Market spreads 10 46 13 6 2 23 -
Model spreads 10 37 14 6 2 21 9.2

Tab.: iTraxx Europe main market and model spreads (in bp) and the
corresponding root mean square errors. The [0%-3%] spread is quoted in %. All
maturities are for five years.
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corresponding optimal parameters (on quarterly periods)
p∗ σ∗

X q∗ R∗

31 Jan 2008 0.0012 0.0151 0.0007 0.1964
1st Mar 2007 0.0001 0.0026 0.0005 0.1346

Tab.: Optimal parameters α∗ = (p∗, σ∗X , q
∗,R∗).
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Conclusion

We propose a multi-period extension of Davis and Lo’s contagion model that
accounts for

possibly dominos or chain reaction effect

flexible contagion mechanism (ex : more than one default required to
trigger a contamination)

explicitly model business interdependencies

We provide a recursive formula for the distribution of the number of defaults at
different time horizons

especially when direct defaults and contagion events are conditionally
independent

The multi-period setting is required to price synthetic CDO tranches

The contagion parameter has a significant impact on the model ability to
fit CDO tranche quotes
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I thank you for your attention.
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Appendix I - probabilistic tools
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Appendix I - Probabilistic tools

Infinite- exchangeability

A1,A2, . . . sequence of exchangeable r.v. if for all n and for any permutation σ

A1, . . . ,An
D
= Aσ(1), . . . ,Aσ(n) ,

De Finetti’s Theorem

A1,A2, . . . is a sequence of infinite-exchangeable Bernoulli r.v.
iff there exist a r.v. Θ ∈ [0, 1] such that, conditionally to Θ
A1,A2, . . . is an iid sequence of Bernoulli r.v. with parameter Θ

Here, calculations given Θ but difficulties to simplify

De Finetti’s Theorem does not apply for finite-exchangeability

Need for other tools
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Appendix I - Probabilistic tools

If N is a number of fulfilled events Bi , i ∈ Ω,
A linear combination of P [N = k] will be written :

Schuette-Nesbitt formula

∑
k∈Ω

P [N = k]f (k) =
∑
k∈Ω

Sk∆k f (0)

avec Sk =
∑

j1<..<jk

P
[
Bj1 ∩ · · · ∩ Bjk

]
∆f (k) = f (k + 1)− f (k), difference operator

events of kind [N = k] given coefficients Sk .

Sk can be simplified with independence, without requiring i.i.d.

Sk can be simplified with exchangeability

events of kind [N = k] as simple as [N = 0] or [N > 1]
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Appendix I - Probabilistic tools

In the particular case where f (j) = 1j=k , j ∈ Ω,

Waring’s formula

If X 1
t , ...,X n

t are n dependent Bernoulli r.v. and Γ ⊂ Ω with cardinal m,

P

[∑
i∈Γ

X i
t = k

]
= 1k≤mC k

m

m−k∑
j=0

C j
m−k(−1)jµj+k, t(Γ).

with

µk, t(Γ) =
1

C k
card(Γ)

∑
j1<j2<..<jk
j1,...,jk∈Γ

P
[
X j1

t = 1 ∩ ... ∩ X jk
t = 1

]
, k ≥ 1,

µ0, t(Γ) = 1 (even if Γ = ∅).
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Appendix I - Probabilistic tools

Interest in life-insurance framework :

independence assumptions

but different ages and non identically distributed lifetimes

Interest for Davis and Lo extension :

one would like P [N = k]

on can change more easily iid assumptions

is simplified with exchangeability assumptions
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Appendix I - Probabilistic tools

Idea from so-called Waring’s formula

for non iid Bernoulli r.v. A1, . . . ,An, one can get the law of
∑

j Aj as a function
of coefficients of kind

P [A1 = 1 ∩ · · · ∩ Ai = 1] .

If independence : these coefficients become products

If exchangeability : these coefficients does only depend on the number of
considered r.v.

Here we are looking for :

Directs defaults :
∑

j∈Γ X j
t as a function of coefficients µk,t(Γ),

Contagion links :
∑

j∈Ft
Y σ(j)

t as a function of coefficients λk,t ,

Indirects defaults :
∑

j=1...k C j
t as a function of coefficients ξk,t ,

ISFA, University of Lyon loss derivatives in an infectious model 28/21



Appendix II - Basic numerical illustration
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Appendix II - Basic numerical illustration

we consider here that for all t,

X i
t are exchangeables, Bernoulli with hidden parameter ΘX ,

E [ΘX ] = p = 0.1, V [ΘX ] is given

Y ij
t are exchangeables, Bernoulli with hidden parameter ΘY ,

E [ΘY ] = q = 0.2, V [ΘY ] is given

hidden parameters are Beta distributed

We consider

10 entities (n = 10),

10 temporal units (T = 10),

average direct default probability p = 0.1,

average contagion link probability q = 0.2.
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Appendix II - Basic numerical illustration

We define 4 models with common parameters :
1 model 1 : σX = 0, σY = 0, f (x) = 1x>1

(i.i.d. case, one contagion link required).
2 model 2 : σX = 0, σY = 0, f (x) = 1x>2

(i.i.d. case, two contagion links required).
3 model 3 : σX = 0.2, σY = 0.2, f (x) = 1x>1

(exchangeable case, one contagion link required).
4 model 4 : σX = 0.2, σY = 0.2, f (x) = 1x>2

(exchangeable case, two contagion link required).
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Appendix II - Basic numerical illustration
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Appendix II - Basic numerical illustration
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Appendix II - Basic numerical illustration
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Appendix II - Basic numerical illustration
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Appendix III - Some remarks
specificity of the model

try to capture explicit microstructure of contagion

contagion acts directly on random variables, not on probabilities

one can say with certainty if default of entity i is due to entity j

acts in a complete graph

some limits of the model
default rate depends on the number n of entities

contagions only within the considered portofolio

numerical issues for large number n of entities

some perspectives
recursions to manage numerical issues

contagions from outside the portofolio

behavior when time tends to zero and n becomes large

asymptotic results - larger interconnected component

recovery effects

Heterogeneity via a small number of groups
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