An extension of Davis and Lo's contagion model

Areski Cousin, Didier Rullière and Diana Dorobantu ISFA, University of Lyon

MAF 2010 Fourth International Conference

Ravello, Italy, 9 April 2010

- Wednesday presentation by Sheri Markose illustrates the usefulness of network models to better understand systemic risk and default contagion amongst financial institutions
- Das et al. (2007) or Azizpour and Giesecke (2008) : Conditional independence assumption with no contagion effect is rejected by historical default data
- Boissay (2006), Jorion and Zhang (2007), Jorion and Zhang (2007) analyze the mechanism of default propagation and provide financial evidence of chain reactions or dominos effects
- We present a multi-period extension of Davis and Lo's contagion model

In the spirit of Davis and Lo's contagion model :

- First models : Davis and Lo (2001) and Jarrow and Yu (2001)
- Extensions : Yu (2007), Egloff, Leippold and Vanini (2007), Rösch, Winterfeldt (2008), Sakata, Hisakado and Mori (2007)

Other contagion models in the credit risk field :

- Copula : Schönbucher and Schubert (2001)
- Interacting particle system : Giesecke and Weber (2004)
- Incomplete information models : Frey and Runggaldier (2008), Fontana and Runggaldier (2009)
- Markov chain models : Schönbucher (2006), Frey and Backhaus (2007), Herbertsson (2007), Laurent, Cousin and Fermanian (2007)

化压力 化压力

Davis and Lo's contagion model

Modeling of credit contagion for a pool of defaultable entities

- One-period model
- Credit references may default either directly or as a consequence of a contagion effect

Example : Portfolio with 3 credit references

End of the period : direct default

æ

End of the period : default by contagion (one possibility)

э

End of the period : default by contagion (another possibility)

э

Davis and Lo's contagion model

One-period contagion model

- *n* : number of credit references
- X_i : direct default indicator of name i.
- C_i : indirect default indicator of name i.
- D_i : default indicator (direct or indirect) such that :

$$D_i = X_i + (1 - X_i)C_i$$

where :

$$C_i = 1 - \prod_{j \neq i} (1 - X_j Y_{ji}) \text{ i.e.,}$$

$$C_i = \mathbb{1}_{\text{at least one } x_j Y_{ji} = 1, j = 1,...,n}$$

- Y_{ji} , i, j = 1, ..., n are Bernoulli random variables
- $Y_{ji} = 1$ if the contagion link is activated from name j to name i.

 $N = \sum_{i=1}^{n} D_i$: total number of defaults

Distribution of total number of defaults (Davis and Lo)

$$P[N = k] = C_n^k p^k (1-p)^{n-k} (1-q)^{k(n-k)} + C_n^k \sum_{i=1}^{k-1} C_k^i p^i (1-p)^{n-i} (1-(1-q)^i)^{k-i} (1-q)^{i(n-k)}.$$

Under the assumptions :

- X_i , i = 1, ..., n: iid Bernoulli with parameter p
- Y_{ij} , i, j = 1, ..., n: iid Bernoulli with parameter q
- One default alone may trigger a contamination effect
- A name that has been infected cannot contaminate other names (no chain-reaction effect)

Extension of Davis and Lo's contagion model

Dominos Effect

Two defaults required to trigger a contagion effect

Extension of Davis and Lo's contagion model

Multi-period contagion model $t = 0, 1, 2, \dots, T$, in period [t, t + 1]:

- n number of credit references
- Xⁱ_t : direct default indicator of name i
- C_t^i : indirect default indicator of name *i*
- D_t^i : default indicator (direct or indirect) such that :

$$D_t^i = D_{t-1}^i + (1 - D_{t-1}^i)[X_t^i + (1 - X_t^i)C_t^i]$$

where

$$C_t^i = f\left(\sum_{j \in F_t} Y_t^{ji}\right)$$

- Y_t^{ji} , i, j = 1, ..., n are Bernoulli random variables such that $Y_t^{ji} = 1$ if name j may infect name i between t and t + 1
- F_t is the set of names that are likely to infect other names between t and t + 1
- f is a contamination trigger function, for example $f = \mathbb{1}_{x \ge 1}$ (Davis and Lo) or $f = \mathbb{1}_{x \ge 2}$

э.

Extension of Davis and Lo's contagion model

 $N_t = \sum_{i=1}^n D_t^i$: total number of defaults at time t

Main result

$$P[N_{t} = r] = \sum_{k=0}^{r} P[N_{t-1} = k] C_{n-k}^{r-k} \sum_{\gamma=0}^{r-k} C_{r-k}^{\gamma} \\ \cdot \sum_{\alpha=0}^{n-k-\gamma} C_{n-k-\gamma}^{\alpha} \mu_{\gamma+\alpha, t} \sum_{j=0}^{n-r} C_{n-r}^{j} (-1)^{j+\alpha} \xi_{j+r-k-\gamma, t}(\gamma).$$

Under the assumptions :

- X_t^i , i = 1, ..., n are conditionally independent Bernoulli random variables with the same marginal distribution and $\mathbf{X}_t = (X_t^1, ..., X_t^n)$, t = 1, ..., T are independent vectors
- $Y_t^{j,i}$, i, j = 1, ..., n are conditionally independent Bernoulli random variables with the same marginal distribution and $\mathbf{Y}_t = (Y_t^{j,i})_{1 \le i,j \le n}$, t = 1, ..., T are independent vectors
- $(X_t)_{t=1,...,T}$ and $(Y_t)_{t=1,...,T}$ are independent

Calibration on 5-years iTraxx tranche quotes

• Cash-flows of CDO tranches driven by the aggregate loss process

$$L_t = \sum_{i=1}^n (1-R_i) D_t^i$$

where R_i is the recovery rate associated with name *i*.

э

Calibration on 5-years iTraxx tranche quotes

We restrict ourselves to the case where for all t:

- $X_t^i \sim \text{Bernoulli}(\Theta)$ where $\Theta \sim \text{Beta}$, $E[\Theta] = p$ and $Var(\Theta) = \sigma^2$, i = 1, ..., n
- Y_t^{ij} are iid Bernoulli random variables with mean q, i.e., $Y_t^{ij} \sim \text{Bernoulli}(q), i, j = 1, ..., n$
- Only one default is required to trigger a default by contagion

Morover

- n = 125, r = 3% (short-term interest rate)
- $R_i = R = 40\%$ for any i = 1, ..., n

$$L_t = (1 - R)N_t$$

 Computation of CDO tranche price only requires marginal loss distributions at several time horizons

Calibration on 5-years iTraxx tranche quotes

Least square calibration procedure : Find $\alpha^* = (p^*, \sigma^*, q^*)$ which minimizes :

$$RMSE(\alpha) = \sqrt{\frac{1}{6}\sum_{i=1}^{6}\left(\frac{\tilde{s}_i - s_i(\alpha)}{\tilde{s}_i}\right)^2}.$$

where

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market prices	ŝ ₁	ŝ ₂	Ĩ3	ŝ4	\tilde{s}_5	ŝ ₀
model prices	$s_1(\alpha)$	$s_2(\alpha)$	$s_3(\alpha)$	$s_4(lpha)$	$s_5(\alpha)$	$s_0(\alpha)$

Four calibration procedures :

- Calibration 1 : All available market spreads are included in the fitting
- Calibration 2 : The equity [0%-3%] tranche spread is excluded
- Calibration 3 : Both equity [0%-3%] tranche and CDS index spreads are excluded
- Calibration 4 : All tranche spreads are excluded except equity tranche and CDS index spreads.

Two calibration dates before and during the credit crisis :

- 31 August 2005
- 31 March 2008

31 August 2005

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market quotes	24	81	27	15	9	36
Calibration 1	20	114	7	1	1	29
Calibration 2	-	62	32	18	6	8
Calibration 3	-	55	29	18	7	-
Calibration 4	24	-	-	-	-	36

Annual scaled optimal parameters

	<i>p</i> *	σ^*	<i>q</i> *
Calibration 1	0.0016	0.0015	0.0626
Calibration 2	0.0007	0.0133	0.0400
Calibration 3	0.0001	0.0025	0.3044
Calibration 4	0.0014	0.002	0.1090

æ

31 March 2008

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market quotes	40	480	309	215	109	123
Calibration 1	28	607	361	228	95	75
Calibration 2	-	505	330	228	112	68
Calibration 3	-	478	309	215	109	-
Calibration 4	40	-	-	-	-	123

Annual scaled optimal parameters

	<i>p</i> *	σ^*	<i>q</i> *
Calibration 1	0.0124	0.0886	0
Calibration 2	0.0056	0.0518	0.0400
Calibration 3	0.0012	0.012	0.2688
Calibration 4	0.0081	0.0516	0.0589

æ

We propose a multi-period extension of Davis and Lo's contagion model that accounts for

- possibly dominos or chain reaction effect
- flexible contagion mechanism (ex : more than one default required to trigger a contamination)

We provide a recursive formula for the distribution of the number of defaults at different time horizons

• When direct defaults and contagion events are conditionally independent

The multi-period setting is required to price synthetic CDO tranches

• The contagion parameter has a significant impact on the model ability to fit CDO tranche quotes