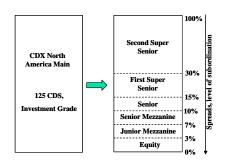
Delta-Hedging Correlation Risk?

Areski Cousin ISFA, Université Lyon 1

AFFI Spring 2010 International Meeting

St Malo, 11 May 2010



Rama Cont, Areski Cousin, Stéphane Crépey and Yu Hang Kan (2010) Delta-Hedging Correlation Risk?

- Performance analysis of alternative hedging strategies developed for the correlation market
- CDO tranches on standard Index such as CDX North America Investment Grade Index

Several risks at hand which may sometimes overlap:

- Default risk of reference entities
 - Cash-flows of synthetic CDO tranches are driven by the evolution of the portfolio loss

$$L_t = \frac{1}{n} \sum_{i=1}^{n} (1 - R_i) \mathbf{1}_{\{\tau_i \le t\}}$$

- Correlation risk
- Credit spread risk or Market risk
 - Evolution of market prices after inception
- Contagion risk
 - Dynamic combination of credit spread risk and default risk

- Credit crisis has deeply affected the market of CDS index tranches
 - Series 10 of CDX.NA.IG suffers defaults of Fannie Mae, Freddie Mac and Lehman Brothers
 - High level of credit spreads and volatility
- Recent revision of Basel II regulation concerns risk-management of credit derivatives
 - Residual risks resulting from dynamic hedging strategies must be reflected in the capital charge
- Performance and efficiency of underlying hedging methods is a topical issue

Generally speaking, ...

Hedging derivative instruments consists in taking opposite positions in some primary liquid instruments whose market values are sensitive to the same underlying risks

- The aim is to minimize the overall exposure to market price evolution
- Composition of the hedging portfolio need to be regularly updated over time
- Require a pricing device to compute hedging strategies

In this study, ...

- Hedging of a buy or sell protection position on an index CDO tranche
- Hedging portfolio composed of two instruments:
 - CDS Index
 - Savings account

Performance analysis of alternative hedging methods:

- ullet $\Delta^{\rm Gauss}$: delta of the tranche computed within the one-factor Gaussian copula model (standard quotation device)
- \bullet Δ^{lo} : delta of the tranche computed within the local intensity model (two specifications of model parameters)

Gauss delta:

$$\Delta_t^{\mathsf{Gauss}} = \frac{\mathcal{V}(t, S_t + \varepsilon, \rho_t) - \mathcal{V}(t, S_t, \rho_t)}{\mathcal{V}^I(t, S_t + \varepsilon) - \mathcal{V}^I(t, S_t)}$$

- ullet ${\cal V}$: price of the tranche computed in the Gaussian copula model
- ullet \mathcal{V}^I : price of the CDX index computed in the Gaussian copula model
- ullet S_t : credit spread of the CDS index at time t
- $\varepsilon = 1 \text{ bp}$
- ullet ho_t : implied correlation parameter of the tranche at time t

Gauss delta = Sensitivity with respect to the CDS Index spread using the industry standard quotation device

Local intensity delta:

$$\Delta_{t}^{\text{lo}} = \frac{V\left(t, N_{t}+1\right) - V\left(t, N_{t}\right)}{V^{I}\left(t, N_{t}+1\right) - V^{I}\left(t, N_{t}\right)}.$$

- ullet V: price of the tranche computed in the local intensity model
- ullet V^I : price of the CDX index computed in the local intensity model
- N_t : current number of defaults

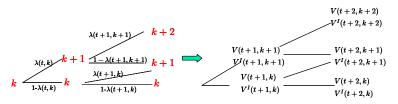
Local intensity delta = Jump-to-Default delta computed using the local intensity model

Local intensity model

ullet N_t is a continuous-time Markov chain (pure birth process) with intensity matrix:

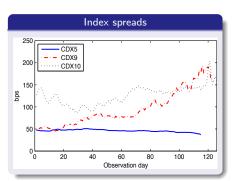
$$\Lambda(t) = \left(\begin{array}{cccc} -\lambda(t,0) & \lambda(t,0) & 0 & 0 \\ 0 & -\lambda(t,1) & \lambda(t,1) & 0 \\ & \ddots & \ddots & \\ 0 & & & -\lambda(t,n-1) & \lambda(t,n-1) \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

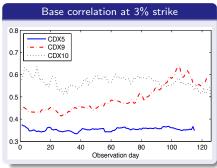
- Model involves as many parameters as the number of names
- This parallels the Dupire's local volatility approach developed for the equity derivative market



Local intensity model

Binomial tree: discrete version of the local intensity model


$$\Delta(t) = \begin{pmatrix} -\lambda(t,0) & \lambda(t,0) & 0 & & & 0 \\ 0 & -\lambda(t,1) & \lambda(t,1) & & & 0 \\ & & \ddots & & \ddots & \\ 0 & & & -\lambda(t,n-1) & \lambda(t,n-1) \\ 0 & 0 & 0 & & 0 \end{pmatrix} \qquad \begin{array}{c} \lambda(t+1,k+1) & k+2 \\ \\ \lambda(t,k) & k+1 & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k+1) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k+1) & \underline{1-\lambda(t+1,k+1)} & \underline{$$


ullet Given some loss intensities $\lambda(t,k)$, CDO tranches and index prices computed by backward induction:

Data set

- 5-year CDX NA IG Series 5 from 20 September 2005 to 20 March 2006
- 5-year CDX NA IG Series 9 from 20 September 2007 to 20 March 2008
- 5-year CDX NA IG Series 10 from 21 March 2008 to 20 September 2008

Calibration results of model parameters in the three approaches:

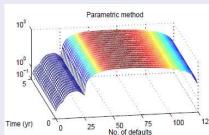
- Gauss: Gaussian copula model with one implied correlation parameter per standard tranche (base correlation approach)
- Para: Local intensity model parametric specification of local itensities

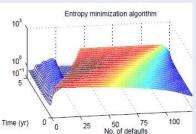
$$\lambda(t,k) = \lambda(k) = (n-k) \sum_{i=0}^{k} b_i$$

(Herbertsson (2008))

ullet EM: Local intensity model – local itensities $\lambda(t,k)$ obtained by minimizing a relative entropy distance with respect to a prior distribution

$$\inf_{\mathbb{Q}\in\Lambda}\mathbb{E}^{\mathbb{Q}_0}\left[\frac{d\mathbb{Q}}{d\mathbb{Q}_0}\ln\left(\frac{d\mathbb{Q}}{d\mathbb{Q}_0}\right)\right]$$


(Cont and Minca (2008))



Root mean squared calibration errors	(in percentage):
--------------------------------------	------------------

		CDX5		CDX9			CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
Index	0.04	5.15	5.14	0.03	4.40	4.81	0.02	6.73	6.77
0%-3%	0.01	2.35	2.36	0.00	1.31	1.32	0.01	1.69	1.68
3%-7%	0.00	0.51	0.69	0.00	0.61	0.86	0.00	1.04	1.03
7%-10%	0.00	0.08	1.32	0.00	0.24	0.91	0.00	0.43	0.39
10%-15%	0.00	0.06	1.77	0.00	0.24	1.15	0.00	0.40	0.36
15%-30%	0.00	0.29	1.97	0.01	1.19	1.74	0.01	1.80	1.68

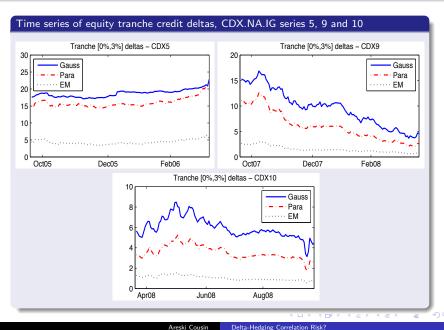
Comparison of three alternative hedging methods

 Gauss delta: index Spread sensitivity computed in a one-factor Gaussian copula model

$$\Delta_t^{\mathsf{Gauss}} = \frac{\mathcal{V}(t, S_t + \varepsilon, \rho_t) - \mathcal{V}(t, S_t, \rho_t)}{\mathcal{V}^I(t, S_t + \varepsilon) - \mathcal{V}^I(t, S_t)}$$

where $\mathcal V$ and $\mathcal V^I$ are the Gaussian copula pricing function associated with (resp.) the tranche and the CDS index.

Local intensity delta:


$$\Delta_t^{\mathsf{lo}} = \frac{V(t, N_t + 1) - V(t, N_t)}{V^I(t, N_t + 1) - V^I(t, N_t)}.$$

with both Parametric (Para) and Entropy Minimisation (EM) calibration methods

Credit deltas on 20 September 2007 (normalized to tranche notional)

Tranche	Gauss	Para	EM
0%-3%	15.29	11.05	2.64
3%-7%	5.03	4.59	2.70
7%-10%	1.94	2.26	2.29
10%-15%	1.10	1.47	1.99
15%-30%	0.60	1.01	1.74

Hedging performance

Back-testing hedging experiments on series 5, 9 and 10

- Hedging portfolio rebalanced everyday (dt=1) or every 5 days (dt=5)
- P&L (Profit-and-Loss) increment of hedged position:

$$\delta P \& L(t) = \delta V_m(t) - \Delta_t \cdot \delta V_m^I(t)$$

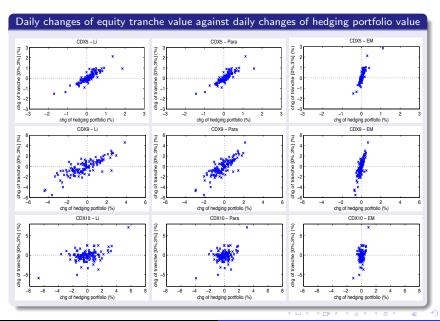
- $\delta V_m(t) = V_m(t+dt) V_m(t)$: Increment of tranche market value
- • $\delta V_m^I(t) = V_m^I(t+dt) - V_m^I(t)$: Increment of index market value
- Δ_t : One of the previous hedging ratios computed at time t
- P&L increments evaluated in the same frequency as rebalancing

Hedging performance

Two metrics to compare the hedging strategies:

$$\begin{array}{ll} \textbf{Residual volatility} & = & \frac{\text{P\&L increment volatility of the hedged position}}{\text{P\&L increment volatility of the unhedged position}} \\ & = & \frac{\text{Volatility of } \delta P \& L(t)}{\text{Volatility of } \delta V_m(t)} \\ \end{array}$$

Hedging performance for 1-day rebalancing


Relative hedging errors (in percentage)

	CDX5				CDX9		CDX10		
Tranche	Li	Para	EM	Li	Para	EM	Li	Para	EM
0%-3%	4	5	73	80	10	72	33	55	90
3%-7%	1	3	35	0.4	19	59	48	49	75
7%-10%	10	10	43	15	13	37	49	25	44
10%-15%	7	27	131	27	18	14	139	181	208
15%-30%	0.54	61	324	3	32	89	172	269	396

Residual volatilities (in percentage)

	CDX5				CDX9		CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
0%-3%	45	47	79	59	59	87	105	91	93
3%-7%	70	72	68	58	47	64	85	74	78
7%-10%	90	101	120	53	50	46	83	79	70
10%-15%	90	107	188	61	63	60	91	93	86
15%-30%	93	110	256	37	49	77	84	99	127

Detailed results for the [0–3%]-equity tranche

Hedging performance for 5-day rebalancing

Relative hedging errors (in percentage)

	CDX5				CDX9		CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
0%-3%	6	10	77	59	2	73	24	48	88
3%-7%	16	16	51	2	18	58	48	43	72
7%-10%	19	1	15	11	12	36	50	15	41
10%-15%	22	8	75	13	5	5	141	198	209
15%-30%	21	30	207	1	35	86	127	227	382

Residual volatilities (in percentage)

	CDX5				CDX9		CDX10		
Tranche	Gauss	Para	EM	Gauss	Para	EM	Gauss	Para	EM
0%-3%	42	46	83	50	56	86	71	72	89
3%-7%	75	75	66	73	65	71	43	40	64
7%-10%	99	118	135	57	56	54	40	38	44
10%-15%	82	110	202	94	98	95	42	44	40
15%-30%	77	108	298	46	69	108	31	33	54

Conclusion

- All model specifications perfectly fit CDO tranche quotes
- However, for the local intensity model, the two introduced specifications give strikingly different deltas and dramatically different hedging performances
- Hedging based on local intensity model with Entropy Minimisation calibration gives poor performance
- No clear evidence to distinguish the performance of hedging based on the Gaussian copula model and on the parametric local intensity model