Pricing and Hedging Loss Derivatives in a Markovian Bottom-Up Model with Simultaneous Defaults

> Areski Cousin ISFA, Université Lyon 1

> > Séminaire Bachelier

Paris, 29 Avril 2011

Tom Bielecki, Areski Cousin, Stéphane Crépey and Alexander Herbertsson Pricing and Hedging Portfolio Credit Derivatives in a Bottom-up Model with Simultaneous Defaults

3 N

Introduction

Main issue: hedging of portfolio credit derivatives

• Cash-flows driven by the realized path of the aggregate loss process

$$L_{t} = \frac{1}{n} \sum_{i=1}^{n} (1 - R_{i}) H_{t}^{i}$$

where R_i is the recovery rate and H_t^i is the default indicator of obligor i

Hedging using the one-factor Gaussian copula model?

Advantages:

- Bottom-up model: account for dispersion of default risk among names in the portfolio
- Copula construction of default times: Calibration of marginal default distributions and dependence parameters can be made using two separate numerical procedures
- Factor model: fast algorithms to compute marginal distributions of the loss process and hedging sensitivities

Drawbacks:

- Static model
- Base correlation approach unable to describe consistently the dependence structure of default times

In this paper, we construct a bottom-up Markovian model consisting of

- $\mathbf{X} = (X^1, \dots, X^n)$ a vector of factor processes
- $\mathbf{H} = (H^1, \dots, H^n)$ a vector of default indicator processes $(H^i_t = 1 \text{ iif } default of name i occurs before time t)$
- $\mathcal{F}_t = \mathcal{F}_t^{\mathbf{X},\mathbf{H}}$

and with the following key features

- \bullet P1: $({\bf X}, {\bf H})$ is a Markov process with respect to ${\cal F}$
- P2: Each pair (X^i, H^i) is a Markov process with respect to ${\cal F}$
- P3: Obligors are likely to default simultaneously
- P4: Computation of both marginal loss distributions and dynamic hedging strategies can be achieved by fast numerical procedure

Simultaneous default model

• Defaults are the consequence of triggering-events affecting simultaneously pre-specified groups of obligors

Example: n = 5 and $\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}.$

- $\{1,\ldots,n\}$ set of credit references
- $\mathcal{Y} = \{\{1\}, \ldots, \{n\}, I_1, \ldots, I_m\}$ pre-specified groups of obligors
- $\lambda_Y = \lambda_Y(t)$ deterministic intensity function of the triggering-event associated with group $Y \in \mathcal{Y}$
- H_t = (H¹_t,..., Hⁿ_t) defined as multivariate continuous-time Markov chain in {0,1}ⁿ such that for k, m ∈ {0,1}ⁿ:

$$\mathbb{P}(\mathbf{H}_{t+dt} = \mathbf{m} \mid \mathbf{H}_t = \mathbf{k}) = \sum_{Y \in \mathcal{Y}} \lambda_Y(t) \mathbf{1}_{\{\mathbf{k}^Y = \mathbf{m}\}} dt$$

where \mathbf{k}^{Y} is obtained from $\mathbf{k} = (k_1, \dots, k_n)$ by replacing the components k_j , $j \in Y$, by number one. ex: $(0, 1, 0, 0)^{\{1, 2, 4\}} = (1, 1, 0, 1)$

• $\mathcal{F}_t = \sigma(\mathbf{H}_u, u \leq t)$ natural filtration of \mathbf{H}

向下 イヨト イヨト

Example: n = 2, $\mathcal{Y} = \{\{1\}, \{2\}, \{1, 2\}\}$. $\mathbf{H}_t = (H_t^1, H_t^2)$ is a multivariate continuous-time Markov chain with space set $\{(0, 0), (1, 0), (0, 1), (1, 1)\}$ and generator matrix

$$\begin{array}{ccccc} (0,0) & (1,0) & (0,1) & (1,1) \\ (0,0) & \begin{pmatrix} - & \lambda_{\{1\}} & \lambda_{\{2\}} & \lambda_{\{1,2\}} \\ 0 & - & 0 & \lambda_{\{2\}} + \lambda_{\{1,2\}} \\ 0 & 0 & - & \lambda_{\{1\}} + \lambda_{\{1,2\}} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- $\bullet~$ Obligor 1 defaults with intensity $\lambda_{\{1\}}+\lambda_{\{1,2\}}$ regardless of the state of the pool
- $\bullet\,$ Obligor 2 defaults with intensity $\lambda_{\{2\}}+\lambda_{\{1,2\}}$ regardless of the state of the pool

General case: Obligor *i* defaults with intensity $\eta_i(t) = \sum_{Y \in \mathcal{Y}} \lambda_Y(t) \mathbf{1}_{\{i \in Y\}}$

$$\mathbb{P}(H_{t+dt}^{i} - H_{t}^{i} = 1 \mid \mathcal{F}_{t}) = \mathbb{P}(H_{t+dt}^{i} - H_{t}^{i} = 1 \mid H_{t}^{i}) = (1 - H_{t}^{i})\eta_{i}(t)dt$$

- Each default indicator H^i , i = 1, ..., n is a Markov process with respect to \mathcal{F} (Property P2 is then satisfied)
- No contagion effect : Past defaults do not have any effect on intensities of surviving names

The latter construction can be extended to the case of stochastic intensity functions:

$$\lambda_Y = \lambda_Y(t, \mathbf{X}_t) \,, \ Y \in \mathcal{Y}$$

where $\mathbf{X}_t = (X_t^1, \dots, X_t^n)$ is a multivariate diffusion process:

$$dX_t^i = b_i(t, X_t^i) dt + \sigma_i(t, X_t^i) dW_t^i, \ i = 1, \dots, n$$

- $\mathbf{W} = (W_t^1, \dots, W_t^n)$: *n*-dimensional Brownian motion with correlation matrix $\varrho(t) = (\rho_{i,j}(t))_{1 \le i,j \le n}$
- b_i, σ_i are suitable drift and variance function-coefficients

医子宫医子宫下

Markov property of the model

Let $\mathcal{F}=\mathcal{F}^{\mathbf{X},\mathbf{H}}$ be the natural filtration of $(\mathbf{X},\mathbf{H}).$ The process (\mathbf{X},\mathbf{H}) is an $\mathcal{F}\text{-Markov}$ process with generator $\mathcal A$ given by

$$\mathcal{A}_{t}u(t, \mathbf{x}, \mathbf{k}) = \sum_{1 \leq i \leq n} \left(b_{i}(t, x_{i})\partial_{x_{i}}u(t, \mathbf{x}, \mathbf{k}) + \frac{1}{2}\sigma_{i}^{2}(t, x_{i})\partial_{x_{i}^{2}}^{2}u(t, \mathbf{x}, \mathbf{k}) \right)$$
$$+ \sum_{1 \leq i < j \leq n} \varrho_{i,j}(t)\sigma_{i}(t, x_{i})\sigma_{j}(t, x_{j})\partial_{x_{i}, x_{j}}^{2}u(t, \mathbf{x}, \mathbf{k})$$
$$+ \sum_{Y \in \mathcal{Y}} \lambda_{Y}(t, \mathbf{x}) \left(u(t, \mathbf{x}, \mathbf{k}^{Y}) - u(t, \mathbf{x}, \mathbf{k}) \right)$$

The intensity of a jump of H^i from $H^i_{t-} = 0$ to 1 is given by:

$$\eta_i(t, \mathbf{X}_t) = \lambda_{\{i\}}(t, \mathbf{X}_t) + \sum_{k=1}^m \lambda_{I_k}(t, \mathbf{X}_t) \mathbf{1}_{\{i \in I_k\}}$$

Markov copula property

Under the following conditions

- $\lambda_{\{i\}}(t,\mathbf{x})$ only depends on $\mathbf{x}=(x_1,\ldots,x_n)$ through $x_i,\,i=1,\ldots,n$
- $\lambda_{I_k}(t, \mathbf{x})$ does not depend on $\mathbf{x}, k = 1, \dots, m$

for every $i = 1, \ldots, n$, the process (X^i, H^i) is an \mathcal{F} -Markov process admitting the following generator

$$\begin{aligned} \mathcal{A}_{t}^{i}u_{i}(t,x_{i},k_{i}) &= b_{i}(t,x_{i})\partial_{x_{i}}u_{i}(t,x_{i},k_{i}) + \frac{1}{2}\sigma_{i}^{2}(t,x_{i})\partial_{x_{i}^{2}}^{2}u_{i}(t,x_{i},k_{i}) \\ &+ \eta_{i}(t,x_{i})\big(u_{i}(t,x_{i},1) - u_{i}(t,x_{i},k_{i})\big) \end{aligned}$$

Practical implication: two-steps calibration procedure of single-name and multi-name products

Set of fundamental martingales (jump components)

- H_t^Z is the indicator process of simultaneous default of names in the set Z, for every subset Z of $\{1, \ldots, n\}$
- $Y_t = Y \cap \text{supp}^c(\mathbf{H}_{t-})$ stands for the set of survivors of set Y right before t, for every pre-specified group $Y \in \mathcal{Y}$

Set of fundamental martingales

The process ${\cal M}^Z$ defined by

$$dM_t^Z := dH_t^Z - \ell_Z(t, \mathbf{X}_t, \mathbf{H}_{t-})dt$$

is a martingale with respect to ${\cal F},$ where the intensity function $\ell_Z(t,{\bf x},{\bf k})$ is such that

$$\ell_Z(t, \mathbf{X}_t, \mathbf{H}_{t-}) = \sum_{Y \in \mathcal{Y}; Y_t = Z} \lambda_Y(t, \mathbf{X}_t)$$

Itô formula

Given a "regular enough" function $u = u(t, \mathbf{x}, \mathbf{k})$, one has, for $t \in [0, T]$,

$$du(t, \mathbf{X}_t, \mathbf{H}_t) = \left(\partial_t + \mathcal{A}_t\right) u(t, \mathbf{X}_t, \mathbf{H}_t) dt + \nabla u(t, \mathbf{X}_t, \mathbf{H}_t) \sigma(t, \mathbf{X}_t) d\mathbf{W}_t + \sum_{Z \in \mathcal{Z}_t} \delta u^Z(t, \mathbf{X}_t, \mathbf{H}_{t-}) dM_t^Z$$

where

• $\sigma(t, \mathbf{x})$: diagonal matrix with diagonal $(\sigma_i(t, x_i))_{1 \le i \le n}$

•
$$\nabla u(t, \mathbf{x}, \mathbf{k}) = (\partial_{x_1} u(t, \mathbf{x}, \mathbf{k}), \dots, \partial_{x_n} u(t, \mathbf{x}, \mathbf{k}))$$

•
$$\delta u^Z(t, \mathbf{x}, \mathbf{k}) = u(t, \mathbf{x}, \mathbf{k}^Z) - u(t, \mathbf{x}, \mathbf{k})$$

• $Z_t = \{Y_t; Y \in \mathcal{Y}\} \setminus \emptyset$: set of all non-empty sets of survivors of sets Y in \mathcal{Y} right before time t

Martingale dimension: $n + 2^n$

Price dynamics for single-name CDS-s (buy-protection position)

- T: contract maturity
- S_i : T-year contractual CDS-spread of obligor i
- t₁ < · · · < t_p = T: premium payment dates, h = t_j − t_{j−1} length between two premium payment dates (typically a quarter)
- R_i : recovery rate of obligor i

In the rest of the presentation, we will assume zero interest rates except for numerical results

伺い イラト イラト

Price dynamics for single-name CDS i

The price P^i and the cumulative value \hat{P}^i at time $t\in[0,T]$ of a single-name CDS on obligor i are given by

$$P_{t}^{i} = \mathbf{1}_{\{\tau_{i} > t\}} v_{i}(t, X_{t}^{i})$$

$$d\hat{P}_{t}^{i} = \mathbf{1}_{\{\tau_{i} > t\}} \partial_{x_{i}} v_{i}(t, X_{t}^{i}) \sigma_{i}(t, X_{t}^{i}) dW_{t}^{i}$$

$$+ \sum_{Z \in \mathcal{Z}_{t}} \mathbf{1}_{\{i \in Z\}} \left(1 - R_{i} - v_{i}(t, X_{t}^{i})\right) dM_{t}^{Z}$$

for a pre-default pricing function $v_i(t, x_i)$ such that

$$\mathbf{1}_{\{\tau_i > t\}} v_i(t, X_t^i) = \mathbb{E}[(1 - R_i) \mathbf{1}_{\{t < \tau_i \le T\}} - S_i h \sum_{t < t_j \le T} \mathbf{1}_{\{\tau_i > t_j\}} |\mathcal{F}_t]$$

Price dynamics for CDO tranche [a, b] (buy-protection position)

- T: contract maturity
- a: attachement point, b: detachement point, $0 \le a < b \le 1$
- $S^{a,b}$: T-year contractual spread of CDO tranche [a,b]
- t₁ < · · · < t_p = T: premium payment dates, h = t_j − t_{j−1} length between two premium payment dates (typically a quarter)
- CDO tranche cash-flows are driven by the tranche loss process

$$L_t^{a,b} = L_{a,b}(\mathbf{H}_t) = (L_t - a)^+ - (L_t - b)^+$$

where

$$L_t = L_t(\mathbf{H}_t) = \frac{1}{n} \sum_{i=1}^n (1 - R_i) \mathbf{1}_{\{\tau_i \le t\}}$$

is the credit loss process for the underlying portfolio

伺い イラト イラト

Price dynamics for CDO tranche [a, b]

The price Π and the cumulative value $\widehat{\Pi}$ at time $t\in[0,T]$ of a CDO-tranche [a,b] are given by

$$\begin{aligned} \Pi_t &= u(t, \mathbf{X}_t, \mathbf{H}_t) \\ d\widehat{\Pi}_t &= \nabla u(t, \mathbf{X}_t, \mathbf{H}_t) \sigma(t, \mathbf{X}_t) d\mathbf{W}_t \\ &+ \sum_{Z \in \mathcal{Z}_t} \left(L_{a,b}(\mathbf{H}_{t-}^Z) - L_{a,b}(\mathbf{H}_{t-}) + \delta u^Z(t, \mathbf{X}_t, \mathbf{H}_{t-}) \right) dM_t^Z \end{aligned}$$

for a pricing function $u(t, \mathbf{x}, \mathbf{k})$ such that

$$u(t, \mathbf{X}_t, \mathbf{H}_t) = \mathbb{E} \Big[L_T^{a,b} - L_t^{a,b} - S^{a,b} h \sum_{t < t_j \le T} \left(b - a - L_{t_j}^{a,b} \right) \Big| \mathcal{F}_t \Big]$$

The pricing function $u(t,\mathbf{x},\mathbf{k})$ solves a very large system of Kolmogorov pde

Hedging portfolio: first d single-name CDS-s and the savings account

The vector of cumulative values $\widehat{\mathbf{P}} = (\widehat{P}^1, \dots, \widehat{P}^d)^{\mathsf{T}}$ associated with the first d CDS-s has the following dynamics:

$$d\widehat{\mathbf{P}}_t = \nabla \mathbf{v}(t, \mathbf{X}_t, \mathbf{H}_t) \sigma(t, \mathbf{X}_t) d\mathbf{W}_t + \sum_{Z \in \mathcal{Z}_t} \Delta \mathbf{v}^Z(t, \mathbf{X}_t, \mathbf{H}_{t-}) dM_t^Z$$

where

• $\nabla \mathbf{v}$ is a $d \times n$ -matrix such that $\nabla \mathbf{v}(t, \mathbf{x}, \mathbf{k})_i^j = \mathbf{1}_{\{k_j=0\}} \partial_{x_j} v_i(t, x_i)$, for every $1 \le i \le d$ and $1 \le j \le n$

• $\Delta \mathbf{v}^{Z}(t, \mathbf{x}, \mathbf{k})$ is a *d*-dimensional column vector equal to

 $(\mathbf{1}_{\{1 \in Z, k_1=0\}} ((1-R_1) - v_1(t, x_1)), \dots, \mathbf{1}_{\{d \in Z, k_d=0\}} ((1-R_d) - v_d(t, x_d)))^{\mathsf{T}}$

Tracking error: Process (e_t) such that $e_0 = 0$ and for $t \in [0, T]$:

$$de_{t} = d\widehat{\Pi}_{t} - \zeta_{t} d\widehat{\mathbf{P}}_{t}$$

= $\left(\nabla u(t, \mathbf{X}_{t}, \mathbf{H}_{t}) - \zeta_{t} \nabla \mathbf{v}(t, \mathbf{X}_{t}, \mathbf{H}_{t})\right) \sigma(t, \mathbf{X}_{t}) d\mathbf{W}_{t}$
+ $\sum_{Z \in \mathcal{Z}_{t}} \left(\Delta u^{Z}(t, \mathbf{X}_{t}, \mathbf{H}_{t-}) - \zeta_{t} \Delta \mathbf{v}^{Z}(t, \mathbf{X}_{t}, \mathbf{H}_{t-})\right) dM_{t}^{Z}$

where

• $\zeta_t = (\zeta_t^1, \dots, \zeta_t^d)$ gives the positions held at time t in CDS $1, \dots, d$

•
$$\nabla u(t, \mathbf{x}, \mathbf{k}) = (\partial_{x_1} u(t, \mathbf{x}, \mathbf{k}), \dots, \partial_{x_n} u(t, \mathbf{x}, \mathbf{k}))$$

•
$$\Delta u^Z(t, \mathbf{x}, \mathbf{k}) = \delta^Z u(t, \mathbf{x}, \mathbf{k}) + L_{a,b}(\mathbf{k}^Z) - L_{a,b}(\mathbf{k})$$

The min-variance hedging strategy ζ for the CDO-tranche [a, b] is

$$\zeta_t = \frac{d\langle \widehat{\Pi}, \widehat{\mathbf{P}} \rangle_t}{dt} \left(\frac{d\langle \widehat{\mathbf{P}} \rangle_t}{dt} \right)^{-1} = \zeta(t, \mathbf{X}_t, \mathbf{H}_{t-})$$

where $\zeta = (u, \mathbf{v})(\mathbf{v}, \mathbf{v})^{-1}$, with

$$(u, \mathbf{v}) = (\nabla u)\sigma^{2}(\nabla \mathbf{v})^{\mathsf{T}} + \sum_{Y \in \mathcal{Y}} \lambda_{Y} \Delta u^{Y} (\Delta \mathbf{v}^{Y})^{\mathsf{T}}$$
$$(\mathbf{v}, \mathbf{v}) = (\nabla \mathbf{v})\sigma^{2}(\nabla \mathbf{v})^{\mathsf{T}} + \sum_{Y \in \mathcal{Y}} \lambda_{Y} \Delta \mathbf{v}^{Y} (\Delta \mathbf{v}^{Y})^{\mathsf{T}}$$

Example: n = 5 and $\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}.$

General case: In the common-shock model, individual default indicators are such that

$$\widehat{H}_t^i := \max\left\{\widehat{H}_t^Y, \, Y \in \mathcal{Y}, \, i \in Y\right\}$$

where \widehat{H}_t^Y , $Y \in \mathcal{Y}$ are independent $\{0,1\}$ -point processes with intensity λ_Y

In the rest of the presentation, we consider no spread risk $\mathcal{F}_t = \mathcal{F}_t^{\mathbf{H}}$

Main result

- $\hat{\tau}_i := \inf \left\{ t \ge 0 \mid \hat{H}_t^i = 1 \right\}$, $i = 1, \dots, n$: default times in the common-shock model
- $\tau_i := \inf \{ t \ge 0 \mid H_t^i = 1 \}$, $i = 1, \dots, n$: default times in the Markovian model

Proposition

For all $t_1, \ldots, t_n \ge 0$, the following relation holds

$$\mathbb{P}\left(\widehat{\tau}_1 > t_1, \dots, \widehat{\tau}_n > t_n\right) = \mathbb{P}\left(\tau_1 > t_1, \dots, \tau_n > t_n\right)$$

Main result (\mathcal{F}_t -conditional version)

- $supp(\mathbf{H}_t)$: set of all defaulted names at time t
- $\mathcal{Y}_t = \{Y \in \mathcal{Y}; Y \nsubseteq \mathsf{supp}(\mathbf{H}_t)\}$: set of pre-specified groups that contain at least one alive obligor
- $\widehat{H}_t^i := \max\left\{\widehat{H}_t^Y, Y \in \mathcal{Y}_t, i \in Y\right\}$: individual default processes in the \mathcal{F}_t -related common-shock model
- $\widehat{\tau}_i(t) := \inf \left\{ \theta \ge t \mid \widehat{H}_{\theta}^i = 1 \right\}$, $i \in \operatorname{supp}^c(\mathbf{H}_t)$: default times of surviving names in the \mathcal{F}_t -related common-shock model
- $\tau_i := \inf \{ \theta \ge t \mid H_{\theta}^i = 1 \}$, $i \in \operatorname{supp}^c(\mathbf{H}_t)$: default times of surviving names in the \mathcal{F}_t -conditional Markovian model

Proposition

Let Z be a subset of $\{1, \ldots, n\}$. For every $t_1, \ldots, t_n \ge t$, one has on the set $\{Z = \mathsf{supp}^c(\mathbf{H}_t)\}$

 $\mathbb{P}\left(\widehat{\tau}_{i}(t) > t_{i}, i \in Z\right) = \mathbb{P}\left(\tau_{i} > t_{i}, i \in \mathsf{supp}^{c}(\mathbf{H}_{t}) \mid \mathcal{F}_{t}\right)$

伺い イヨン イヨン

Calibration of marginal default intensities on single-name CDS-s

- Individual shocks + Common shocks: $\mathcal{Y} = \{\{1\}, \dots, \{n\}, I_1, \dots, I_m\}$
- Price at time t = 0 of CDS i can be expressed as a function of $\mathbb{E} \left[H_t^i \right]$, $t = 0, \dots, T$

$$\mathbb{E}\left[H_t^i\right] = \mathbb{P}(\tau_i > t) = 1 - \exp\left(-\int_0^t \eta_i(u) du\right)$$

where

$$\eta_i(u) = \lambda_{\{i\}}(u) + \sum_{k=1}^m \lambda_{I_k}(u) \mathbf{1}_{\{i \in I_k\}}$$

 Marginal default intensities η_i, i = 1,..., n, can be calibrated on single-name CDS curves using a bootstrap procedure

Calibration of common-shocks intensities on CDO tranches

- Pricing of CDO tranches only involves marginal loss distributions
- Thanks to the common-shock model interpretation:

$$L_t = \frac{1}{n} \sum_{i=1}^n (1 - R_i) H_t^i \stackrel{d}{=} \frac{1}{n} \sum_{i=1}^n (1 - R_i) \widehat{H}_t^i$$

• Conditionally on $(\hat{H}_t^{I_1}, \dots, \hat{H}_t^{I_m})$, $\hat{H}_t^1, \dots, \hat{H}_t^n$ are independent Bernoulli's with random parameters

$$p_t^i = \begin{cases} 1 & i \in \cup_{k=1}^m \{I_k \ ; \ \widehat{H}_t^{I_k} = 1\} \\ 1 - \exp\left(-\int_0^t \lambda_{\{i\}}(u) du\right) & \text{else} \end{cases}$$

where

$$\lambda_{\{i\}}(u) = \eta_i(u) - \sum_{k=1}^m \lambda_{I_k}(u) \mathbf{1}_{\{i \in I_k\}} \ge 0$$

Fast convolution-recursion procedure for computing loss distribution

• Let
$$N_t^{(k)} = \sum_{i=1}^k \widehat{H}_t^i$$
, $k = 1, \dots, n$

- Let $q_t^{(k)}(i) = \mathbb{P}\left(N_t^{(k)} = i \mid \widehat{H}_t^{I_1}, \dots, \widehat{H}_t^{I_m}\right)$, $i = 0, \dots, k$
- The following recursion procedure can be used to compute the conditional loss distribution starting from k=0 and $q_t^{(0)}(0)=1$

$$\begin{cases} q_t^{(k+1)}(0) = (1 - p_t^{k+1}) \cdot q_t^{(k)}(0) \\ q_t^{(k+1)}(i) = p_t^{k+1} \cdot q_t^{(k)}(i-1) + (1 - p_t^{k+1}) \cdot q_t^{(k)}(i), & i = 1, \dots, k \\ q_t^{(k+1)}(k+1) = p_t^{k+1} \cdot q_t^{(k)}(k) \end{cases}$$

• This gives the time-t conditional distribution $q_t^{(n)}$ of the total number of defaults $N_t := N_t^{(n)} = \sum_{i=1}^n \widehat{H}_t^i$

Fast convolution-recursion procedure for computing loss distribution

- The computation of the unconditional loss distribution involves a summation over 2^m terms, i.e., as many terms as possible states of the vector $(\hat{H}_t^{I_1}, \ldots, \hat{H}_t^{I_m})$
- In the case where the groups are nested, i.e., I₁ ⊂ ··· ⊂ I_m, the collection of events (A^k_t)_{k=0,...,m} defined by

$$\begin{cases} A_t^0 = \left\{ \widehat{H}_t^{I_1} = 0, \dots, \widehat{H}_t^{I_m} = 0 \right\} \\ A_t^k = \left\{ \widehat{H}_t^{I_k} = 1, \widehat{H}_t^{I_{k+1}} = 0, \dots, \widehat{H}_t^{I_m} = 0 \right\}, \quad k = 1, \dots, m-1 \\ A_t^m = \left\{ \widehat{H}_t^{I_m} = 1 \right\} \end{cases}$$

forms a partition of Ω .

Fast convolution-recursion procedure for computing loss distribution

• Since
$$A_t^k$$
, $k = 0, \ldots, m$ are disjoint events:

$$\mathbb{P}(N_t = i) = \sum_{k=1}^{m} \mathbb{P}(N_t = i \mid A_t^k) \mathbb{P}(A_t^k), \ i = 0, \dots, n$$

- $\mathbb{P}(N_t = i \mid A_t^k)$ can be computed thanks to the previous recursion procedure using the fact that $\hat{H}_t^1, \ldots, \hat{H}_t^n$ are conditionally independent Bernoulli's given A_t^k , for every $k = 0, \ldots, m$
- As $\hat{H}_t^{I_1},\ldots,\hat{H}_t^{I_m}$ are independent rv, the probability of the event A_t^k satisfies

$$\mathbb{P}(A_t^k) = \left(1 - \exp\left(-\int_0^t \lambda_{I_k}(u) du\right)\right) \prod_{j=k+1}^m \exp\left(-\int_0^t \lambda_{I_j}(u) du\right)$$

Calibration on CDX index

Data set: 5-year CDX North-America IG index on 20 December 2007

- Quoted spreads at different pillars of the n=125 index constituents
- Quoted spreads of standard tranches [0,3], [3,7], [7,10], [10,15], [15,30]

Model specification:

• Names are labelled with respect to decreasing level of spreads

- m = 5 groups $I_1 \subset \cdots \subset I_5$ such that $I_1 = \{1, \dots, 6\}, I_2 = \{1, \dots, 19\}, I_3 = \{1, \dots, 25\}, I_4 = \{1, \dots, 61\}, I_5 = \{1, \dots, 125\}$
- Piecewise-constant intensities $\lambda_{\{1\}}, \ldots, \lambda_{\{125\}}, \lambda_{I_1}, \ldots, \lambda_{I_5}$ with grid points corresponding to CDS pillars
- Homogeneous and constant recovery rates: 40%
- Constant short-term interest rate: 3%

Calibration on CDX index

Calibration results:

Tranche	[0,3]	[3,7]	[7,10]	[10,15]	[15,30]
Model spread in bps	48.0701	254.0000	124.0000	61.0000	38.9390
Market spread in bps	48.0700	254.0000	124.0000	61.0000	41.0000
Abs. Err. in bps	0.0001	0.0000	0.0000	0.0000	2.0610
% Rel. Err.	0.0001	0.0000	0.0000	0.0000	5.0269

• Names in the set $I_5 \setminus I_4$ are excluded from the calibration constraints (they can only default within the Armageddon shock I_5)

向下 イヨト イヨト

Calibration on CDX index

Implied 5-year loss distribution:

Thank you for your attention!

-

- BIELECKI, T.R., VIDOZZI, A. AND VIDOZZI, L.: A Markov Copulae Approach to Pricing and Hedging of Credit Index Derivatives and Ratings Triggered Step–Up Bonds, *J. of Credit Risk*, 2008.
- BRIGO, D., PALLAVICINI, A., TORRENTIAL, R.: Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model. *Working Paper*, 2006.
- ELOUERKHAOUI, Y.: Pricing and Hedging in a Dynamic Credit Model. International Journal of Theoretical and Applied Finance, Vol. 10, Issue 4, 703–731, 2007.
 - LINDSKOG, F. AND MCNEIL, A. J.: Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling. *ASTIN Bulletin*, 33(2), 209-238, 2003