An Extension of Davis and Lo’s Contagion Model

Areski Cousin
Joint work with Diana Dorobantu and Didier Rullière

ISFA, University of Lyon

1. This work has been funded by ANR Research Project ANR-08-BLAN-0314-01 and by Chaire BNP-Paribas Assurance "management de la modélisation"
Empirical studies on contagion mechanisms

- Das, Duffie, Kapadia, Saita (2007): Conditional independence assumption with no contagion effect is rejected by historical default data. The conditional independence assumption is not enough to fully capture the observed clustering in default events.

- Boissay (2006), Jorion and Zhang (2007, 2009) analyze the mechanism of default propagation and provide financial evidence of chain reactions or dominos effects.

Need for a dynamic model with defaults dependencies and contagion

- Default risks may be connected to underlying macro-economic factors
- Contagion mechanisms
- Chain reactions and evolution over time
Some contagion models in the credit risk field

- Intensities depending on defaults: Jarrow and Yu (2001), Yu (2007)
- Copula: Schönbucher and Schubert (2001)

In the spirit of Davis and Lo’s contagion model

- First models: Davis and Lo (2001)
- We propose a multiperiod extension of Davis and Lo’s contagion model.
Modeling of credit contagion for a pool of defaultable entities

- One-period model
- Credit references may default either directly or as a consequence of a contagion effect

Example: Portfolio with 5 credit references over one period

- No direct default ($X_1=0$)
- Direct default ($X_2=1$)
- Contagion ($Y_{23}=1$)
- No contagion ($Y_{24}=0$)
Davis and Lo’s contagion model

One-period contagion model

- \(n \) : number of credit references,
- \(X_i \): direct default indicator of name \(i \) (i.e. \(X_i = 1 \) if \(i \) defaults directly, \(X_i = 0 \) otherwise),
- \(Y_{ji} = 1 \) if the contagion link is activated from name \(j \) to name \(i \), \(Y_{ji} = 0 \) otherwise.
- \(C_i \): indirect default indicator of name \(i \),
- \(Z_i \): resulting default indicator (direct or indirect) such that :

\[
Z_i = X_i + (1 - X_i)C_i
\]

where :

\[
C_i = \prod \left\{ \begin{array}{l}
1 \\
\text{at least one } x_j Y_{ji}=1, j=1,...,n
\end{array} \right.
\]

\[
= 1 - \prod_{j \neq i} (1 - X_j Y_{ji})
\]
$N = \sum_{i=1}^{n} Z_i$: total number of defaults

Distribution of total number of defaults (Davis and Lo)

\[
P[N = k] = C_n^k p^k (1 - p)^{n-k} (1 - q)^{k(n-k)} + \\
C_n^k \sum_{i=1}^{k-1} C_i^k p^i (1 - p)^{n-i} (1 - (1 - q)^i)^{k-i} (1 - q)^{i(n-k)}.
\]

Under the assumptions :

- Direct defaults $X_i, i = 1, \ldots, n$: iid Bernoulli with parameter p
- Contagion links $Y_{ij}, i, j = 1, \ldots, n$: iid Bernoulli with parameter q
- One contagion link alone may trigger an indirect default
- Infected entities cannot contaminate others (no chain-reaction effect)
Extension of Davis and Lo’s contagion model

Dominos Effect

- The model becomes a multiperiod model
- One can choose the set of entities likely to contaminate others
- Some iid assumptions are released

![Diagram showing the Dominos Effect](image-url)
Contagion incidence on indirect default

- One can change the number of contagion links required to cause a default (here two contaminations required)
Multi-period contagion model: \(t = 1, 2, \ldots, T \), in period \([t - 1, t]\):

- \(n \): number of credit references,
- \(X_t^i \): direct default indicator of entity \(i \),
- \(Y_t^{ji} \): contagion links are Bernoulli random variables such that \(Y_t^{ji} = 1 \) if entity \(j \) may infect entity \(i \),
- \(Z_t^i \): resulting default indicator (direct or indirect) such that:
 \[
 Z_t^i = Z_{t-1}^i + (1 - Z_{t-1}^i)[X_t^i + (1 - X_t^i)C_t^i]
 \]
- \(C_t^i = f \left(\sum_{j \in F_t} Y_t^{ji} \right) \): indirect default indicator of name \(i \),
- \(F_t \) is the set of names that are likely to infect other names between \(t \) and \(t + 1 \)
- \(f \) is a contamination trigger function, for example \(f = \mathbb{1}_{x \geq 1} \) (Davis and Lo) or \(f = \mathbb{1}_{x \geq 2} \)
Extension of Davis and Lo’s contagion model

\[N_t = \sum_{i=1}^{n} Z_t^i : \text{total number of defaults at time } t \]

Main result

\[
P[N_t = r] = \sum_{k=0}^{r} P[N_{t-1} = k] C_{r-k}^{r-k} \sum_{\gamma=0}^{n-k-\gamma} C_{\gamma}^{\gamma} \cdot \sum_{\alpha=0}^{n-k-\gamma} C_{n-k-\gamma+\alpha}^{\alpha} \mu \gamma + \alpha, t \sum_{j=0}^{n-r} C_{n-r}^{j} (-1)^{j+\alpha} \xi_j + r - k - \gamma, t(\gamma).
\]

Under the assumptions:

- Direct defaults \(X_t^i, i = 1, \ldots, n\) are conditionally independent Bernoulli r.v. with the same marginal distribution and \(X_t = (X_t^1, \ldots, X_t^n)\), \(t = 1, \ldots, T\) are independent vectors.

- Contagion links \(Y_t^{ji}, i, j = 1, \ldots, n\) are conditionally independent Bernoulli r.v. with the same marginal distribution and \(Y_t = (Y_t^{ji})_{1 \leq i, j \leq n}\), \(t = 1, \ldots, T\) are independent vectors.

- \((X_t)_{t=1, \ldots, T}\) and \((Y_t)_{t=1, \ldots, T}\) are independent.
Calibration on 5-years iTraxx tranche quotes

- Cash-flows of CDO tranches driven by the aggregate loss process (in %)

\[L_t = \frac{1}{n} \sum_{i=1}^{n} (1 - R_i)Z_t^i \]

where \(R_i \) is the recovery rate associated with name \(i \).

- if \(R_i = R \) for any \(i = 1, \ldots, n \)

\[L_t = \frac{1}{n} (1 - R) \cdot N_t \]
We restrict ourselves to the case where for all t:

- Direct defaults $X_t^i \sim \text{Bernoulli}(\Theta)$ where $\Theta \sim \text{Beta}$, $\mathbb{E}[\Theta] = p$ and $\text{Var}(\Theta) = \sigma^2$, $i = 1, \ldots, n$
- Contagion links Y_{t}^{ij} are iid $Y_{t}^{ij} \sim \text{Bernoulli}(q)$, $i, j = 1, \ldots, n$
- Only one default is required to trigger a default by contagion

Moreover

- $n = 125$, $r = 3\%$ (short-term interest rate)
- Recovery rate $R = 40\%$
- Computation of CDO tranche price only requires marginal loss distributions at several time horizons
Least square calibration procedure: Find $\alpha^* = (p^*, \sigma^*, q^*, R^*)$ which minimizes:

$$RMSE(\alpha) = \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(\frac{\tilde{s}_i - s_i(\alpha)}{\tilde{s}_i} \right)^2}.$$

where

<table>
<thead>
<tr>
<th>Market prices</th>
<th>\tilde{s}_1</th>
<th>\tilde{s}_2</th>
<th>\tilde{s}_3</th>
<th>\tilde{s}_4</th>
<th>\tilde{s}_5</th>
<th>\tilde{s}_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model prices</td>
<td>$s_1(\alpha)$</td>
<td>$s_2(\alpha)$</td>
<td>$s_3(\alpha)$</td>
<td>$s_4(\alpha)$</td>
<td>$s_5(\alpha)$</td>
<td>$s_0(\alpha)$</td>
</tr>
</tbody>
</table>
To improve the results we consider:

- One additional external contagious entity

<table>
<thead>
<tr>
<th>Date</th>
<th>0%-3%</th>
<th>3%-6%</th>
<th>6%-9%</th>
<th>9%-12%</th>
<th>12%-20%</th>
<th>Index</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Jan 2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>31</td>
<td>317</td>
<td>212</td>
<td>140</td>
<td>74</td>
<td>77</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>32</td>
<td>328</td>
<td>204</td>
<td>142</td>
<td>77</td>
<td>64</td>
<td>7.5</td>
</tr>
<tr>
<td>1st Mar 2007</td>
<td>10</td>
<td>46</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>Market</td>
<td>10</td>
<td>37</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td>9.2</td>
</tr>
<tr>
<td>Model</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: iTraxx Europe main market and model spreads (in bp) and the corresponding root mean square errors. The [0%-3%] spread is quoted in %. All maturities are for five years.
corresponding optimal parameters (on quarterly periods)

<table>
<thead>
<tr>
<th>Date</th>
<th>p^*</th>
<th>σ_X^*</th>
<th>q^*</th>
<th>R^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 Jan 2008</td>
<td>0.0012</td>
<td>0.0151</td>
<td>0.0007</td>
<td>0.1964</td>
</tr>
<tr>
<td>1st Mar 2007</td>
<td>0.0001</td>
<td>0.0026</td>
<td>0.0005</td>
<td>0.1346</td>
</tr>
</tbody>
</table>

Table: Optimal parameters $\alpha^* = (p^*, \sigma_X^*, q^*, R^*)$.
Conclusion

We propose a multi-period extension of Davis and Lo’s contagion model that accounts for

- possibly dominos or chain reaction effect
- flexible contagion mechanism (ex: more than one default required to trigger a contamination)

We provide a recursive formula for the distribution of the number of defaults at different time horizons

- especially when direct defaults and contagion events are conditionally independent

The multi-period setting is required to price synthetic CDO tranches

- The contagion parameter has a significant impact on the model ability to fit CDO tranche quotes
Thank you for your attention.
Similar kind of formulas hold when we have:

finite-exchangeability
- Direct defaults may be finite-exchangeable (does not imply conditional independence as infinite exchangeability, De Finetti’s Theorem does not apply here).

non stationarity
- Joint law for Direct defaults and for Contagion links may change over time.

heterogeneity (with higher complexity)
- Direct defaults may be dependent and heterogeneous, in a monoperiodic framework.
- Direct defaults may be dependent and heterogeneous, in a multiperiodic framework, but with an exponential complexity (need to consider all possible sets of remaining entities at time t).
Waring’s Formula - special case of Schuette-Nesbitt Formula

If B^1, \ldots, B^n are n dependent Bernoulli r.v. and $\Gamma \subset \{1, \ldots, n\}$ with cardinal m, then

$$P \left[\sum_{i \in \Gamma} B^i = k \right] = \mathbb{1}_{k \leq m} C_m^k \sum_{j=0}^{m-k} C_{m-k}^j (-1)^j \mu_{j+k}(\Gamma).$$

with $\mu_k(\Gamma) = \frac{1}{C_m^k} \sum_{j_1<j_2<\ldots<j_k \atop j_1, \ldots, j_k \in \Gamma} P \left[B^{j_1} = 1 \cap \ldots \cap B^{j_k} = 1 \right]$, $k \geq 1$,

coefficients μ_k may be simplified:

- if independence (without requiring iid): products
- if exchangeability: the sum vanishes

Here we are looking for:

- Directs defaults: $\sum_{j \in \Gamma} X^j_t$ as a function of some coefficients $\mu_{k,t}(\Gamma)$,
- Contagion links: $\sum_{j \in F_t} Y^{\sigma(j)}_t$ as a function of some coefficients $\lambda_{k,t}$,
- Indirects defaults: $\sum_{j=1}^{k} C^j_t$ as a function of some coefficients $\xi_{k,t}$,
Appendix I - probabilistic tools
Infinite- exchangeability

A₁, A₂, ... sequence of exchangeable r.v. if for all n and for any permutation σ

\[A_1, \ldots, A_n \overset{D}{=} A_{\sigma(1)}, \ldots, A_{\sigma(n)}, \]

De Finetti’s Theorem

A₁, A₂, ... is a sequence of infinite-exchangeable Bernoulli r.v. iff there exist a r.v. \(\Theta \in [0, 1] \) such that, conditionally to \(\Theta \)

- A₁, A₂, ... is an iid sequence of Bernoulli r.v. with parameter \(\Theta \)
- Here, calculations given \(\Theta \) but difficulties to simplify
- De Finetti’s Theorem does not apply for finite-exchangeability
- Need for other tools
Appendix I - Probabilistic tools

If N is a number of fulfilled events B_i, $i \in \Omega$,
A linear combination of $P[N = k]$ will be written:

Schuette-Nesbitt formula

$$\sum_{k \in \Omega} P[N = k]f(k) = \sum_{k \in \Omega} S_k \Delta^k f(0)$$

avec $S_k = \sum_{j_1 < \cdots < j_k} P[B_{j_1} \cap \cdots \cap B_{j_k}]$

$$\Delta f(k) = f(k + 1) - f(k), \text{ difference operator}$$

- events of kind $[N = k]$ given coefficients S_k.
- S_k can be simplified with independence, without requiring i.i.d.
- S_k can be simplified with exchangeability
- events of kind $[N = k]$ as simple as $[N = 0]$ or $[N \geq 1]$
Appendix I - Probabilistic tools

In the particular case where \(f(j) = \mathbb{1}_{j \equiv k}, j \in \Omega, \)

\[Waring's\ formula \]

If \(X_1^t, \ldots, X_n^t \) are \(n \) dependent Bernoulli r.v. and \(\Gamma \subset \Omega \) with cardinal \(m, \)

\[
P \left[\sum_{i \in \Gamma} X_i^t = k \right] = \mathbb{1}_{k \leq m} C_m^k \sum_{j=0}^{m-k} C_{m-k}^j (-1)^j \mu_{j+k, t}(\Gamma).\]

with

\[
\mu_{k, t}(\Gamma) = \frac{1}{C_{\text{card}(\Gamma)}^k} \sum_{j_1 < j_2 < \ldots < j_k} \sum_{j_1, \ldots, j_k \in \Gamma} P \left[X_{j_1}^t = 1 \cap \ldots \cap X_{j_k}^t = 1 \right], \quad k \geq 1,
\]

\[
\mu_{0, t}(\Gamma) = 1 \text{ (even if } \Gamma = \emptyset).\]
Interest in life-insurance framework:
- independence assumptions
- but different ages and non identically distributed lifetimes

Interest for Davis and Lo extension:
- one would like $P[N = k]$
- on can change more easily iid assumptions
- is simplified with exchangeability assumptions
Appendix I - Probabilistic tools

Idea from so-called Waring’s formula

for non i.i.d. Bernoulli r.v. A_1, \ldots, A_n, one can get the law of $\sum_j A_j$ as a function of coefficients of kind

$$P [A_1 = 1 \cap \cdots \cap A_i = 1].$$

- If independence: these coefficients become products
- If exchangeability: these coefficients does only depend on the number of considered r.v.

Here we are looking for:

- **Directs defaults**: $\sum_{j \in \Gamma} X_t^j$ as a function of coefficients $\mu_{k,t}(\Gamma)$,
- **Contagion links**: $\sum_{j \in F_t} Y_t^{\sigma(j)}$ as a function of coefficients $\lambda_{k,t}$,
- **Indirects defaults**: $\sum_{j=1}^{k} C_t^j$ as a function of coefficients $\xi_{k,t}$,
Appendix II - Basic numerical illustration
we consider here that for all t,
- X_t^i are exchangeables, Bernoulli with hidden parameter Θ_X, $E[\Theta_X] = p = 0.1$, $V[\Theta_X]$ is given
- Y_t^{ij} are exchangeables, Bernoulli with hidden parameter Θ_Y, $E[\Theta_Y] = q = 0.2$, $V[\Theta_Y]$ is given
- hidden parameters are Beta distributed

We consider
- 10 entities ($n = 10$),
- 10 temporal units ($T = 10$),
- average direct default probability $p = 0.1$,
- average contagion link probability $q = 0.2$.
We define 4 models with common parameters:

1. **model 1**: $\sigma_X = 0$, $\sigma_Y = 0$, $f(x) = \mathbb{1}_{x \geq 1}$ (i.i.d. case, one contagion link required).

2. **model 2**: $\sigma_X = 0$, $\sigma_Y = 0$, $f(x) = \mathbb{1}_{x \geq 2}$ (i.i.d. case, two contagion links required).

3. **model 3**: $\sigma_X = 0.2$, $\sigma_Y = 0.2$, $f(x) = \mathbb{1}_{x \geq 1}$ (exchangeable case, one contagion link required).

4. **model 4**: $\sigma_X = 0.2$, $\sigma_Y = 0.2$, $f(x) = \mathbb{1}_{x \geq 2}$ (exchangeable case, two contagion link required).
Evolution of $E[N_t]$ as a function of t. i.i.d. case dotted.
Evolution of $V[N_t]$ as a function of t. i.i.d. case dotted.
Evolution of $P[N_t \geq 6]$ as a function of t. i.i.d. case dotted.
Evolution of $P[N_t \geq 10]$ as a function of t. i.i.d. case dotted.
Appendix III - Some remarks

specificity of the model
- try to capture explicit microstructure of contagion
- contagion acts directly on random variables, not on probabilities
- one can say with certainty if default of entity i is due to entity j
- acts in a complete graph

some limits of the model
- default rate depends on the number n of entities
- contagions only within the considered portofolio
- numerical issues for large number n of entities

some perspectives
- recursions to manage numerical issues
- contagions from outside the portofolio
- behavior when time tends to zero and n becomes large
- asymptotic results – larger interconnected component
- recovery effects
- Heterogeneity via a small number of groups