### Delta-Hedging Correlation Risk?

Areski Cousin ISFA, Université Lyon 1

International Finance Conference 6 - Tunisia

Hammamet, 10-12 March 2011





### Introduction

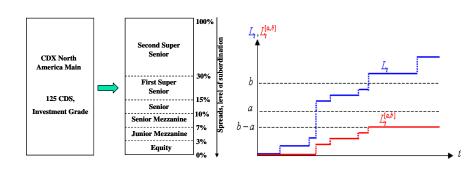


Areski Cousin, Stéphane Crépey and Yu Hang Kan (2010)

Delta-Hedging Correlation Risk?

### Introduction

- Performance analysis of alternative hedging strategies developed for the correlation market
- CDO tranches on standard Index such as CDX North America Investment Grade index



### Introduction

#### Several risks at hand which may sometimes overlap:

- Default risk of reference entities
  - Cash-flows of synthetic CDO tranches are driven by the evolution of the portfolio loss

$$L_t = \frac{1}{n} \sum_{i=1}^{n} (1 - R_i) \mathbf{1}_{\{\tau_i \le t\}}$$

- Correlation risk
- Credit spread risk or Market risk
  - Evolution of market prices after inception
- Contagion risk
  - Dynamic combination of credit spread risk and default risk



## Hedging loss derivatives

#### In this study, ...

- We want to hedge of a buy protection position on an index CDO tranche
- Hedging instruments are :
  - CDS Index
  - Savings account

#### Performance analysis of alternative hedging methods:

- ullet  $\Delta^{\rm Gauss}$ : delta of the tranche computed within the one-factor Gaussian copula model (industry-standard quotation device)
- ullet  $\Delta^{\text{lo}}$ : delta of the tranche computed within the local intensity model (two specifications of model parameters)

## Hedging loss derivatives

#### Gauss delta:

$$\Delta_t^{\mathsf{Gauss}} = \frac{\mathcal{V}(t, S_t + \varepsilon, \textcolor{red}{\rho_t}) - \mathcal{V}(t, S_t, \textcolor{red}{\rho_t})}{\mathcal{V}^I(t, S_t + \varepsilon) - \mathcal{V}^I(t, S_t)}$$

- ullet  ${\cal V}$ : price of the tranche computed in the Gaussian copula model
- ullet  $\mathcal{V}^I$ : price of the CDX index computed in the Gaussian copula model
- ullet  $S_t$ : credit spread of the CDS index at time t
- $\varepsilon = 1 \text{ bp}$
- ullet  $ho_t$ : implied correlation parameter of the tranche at time t

Gauss delta = Sensitivity with respect to the CDS Index spread using the industry standard quotation device



## Hedging loss derivatives

#### Local intensity delta:

$$\Delta_{t}^{\text{lo}} = \frac{V\left(t, N_{t}+1\right) - V\left(t, N_{t}\right)}{V^{I}\left(t, N_{t}+1\right) - V^{I}\left(t, N_{t}\right)}.$$

- ullet V: price of the tranche computed in the local intensity model
- ullet  $V^I$ : price of the CDX index computed in the local intensity model
- $N_t$ : current number of defaults

Local intensity delta = Jump-to-Default delta computed using the local intensity model



## Local intensity model

- Parallels the Dupire's local volatility approach developed for the equity derivative market
- The number of defaults  $N_t$  is modeled as a continuous-time Markov chain (pure birth process) with generator matrix:

$$\Lambda(t) = \left( \begin{array}{cccc} -\lambda(t,0) & \lambda(t,0) & 0 & 0 \\ 0 & -\lambda(t,1) & \lambda(t,1) & 0 \\ & & \ddots & \ddots \\ 0 & & & -\lambda(t,n-1) & \lambda(t,n-1) \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

- $\lambda(t,k)$ ,  $k=0,\ldots,n-1$  : state-dependent default intensities
- Model involves as many parameters as the number of names

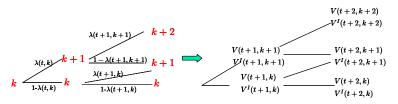


### Local intensity model

Binomial tree: discrete version of the local intensity model

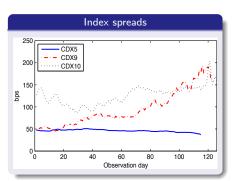
$$\Delta(t) = \begin{pmatrix} -\lambda(t,0) & \lambda(t,0) & 0 & & & 0 \\ 0 & -\lambda(t,1) & \lambda(t,1) & & & 0 \\ & & \ddots & & \ddots & \\ 0 & & & -\lambda(t,n-1) & \lambda(t,n-1) \\ 0 & 0 & 0 & & 0 \end{pmatrix} \qquad \begin{array}{c} \lambda(t+1,k+1) & k+2 \\ \\ \lambda(t,k) & k+1 & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k+1) & \underline{1-\lambda(t+1,k+1)} & k+1 \\ \\ \lambda(t+1,k+1) & \underline{1-\lambda(t+1,k+1)} & \underline{$$

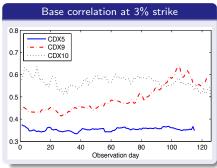
ullet Given some loss intensities  $\lambda(t,k)$ , CDO tranches and index prices computed by backward induction:



#### Data set

- 5-year CDX NA IG Series 5 from 20 September 2005 to 20 March 2006
- 5-year CDX NA IG Series 9 from 20 September 2007 to 20 March 2008
- 5-year CDX NA IG Series 10 from 21 March 2008 to 20 September 2008





# Model Specifications

- Gauss: Gaussian copula model with one implied correlation parameter per standard tranche (base correlation approach)
- Para: Local intensity model parametric specification of local itensities

$$\lambda(t,k) = \lambda(k) = (n-k) \sum_{i=0}^{k} b_i$$

(Herbertsson (2008))

ullet EM: Local intensity model – local itensities  $\lambda(t,k)$  obtained by minimizing a relative entropy distance with respect to a prior distribution

$$\inf_{\mathbb{Q}\in\Lambda}\mathbb{E}^{\mathbb{Q}_0}\left[\frac{d\mathbb{Q}}{d\mathbb{Q}_0}\ln\left(\frac{d\mathbb{Q}}{d\mathbb{Q}_0}\right)\right]$$

(Cont and Minca (2008))

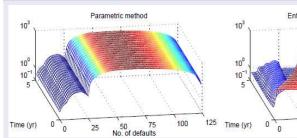


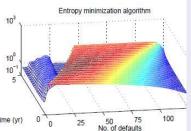
## Empirical results

| Root mean squared calibration errors | (in percentage): |
|--------------------------------------|------------------|
|--------------------------------------|------------------|

|         |       | CDX5 |      |       | CDX9 |      | (     | CDX10 |      |
|---------|-------|------|------|-------|------|------|-------|-------|------|
| Tranche | Gauss | Para | EM   | Gauss | Para | EM   | Gauss | Para  | EM   |
| Index   | 0.04  | 5.15 | 5.14 | 0.03  | 4.40 | 4.81 | 0.02  | 6.73  | 6.77 |
| 0%-3%   | 0.01  | 2.35 | 2.36 | 0.00  | 1.31 | 1.32 | 0.01  | 1.69  | 1.68 |
| 3%-7%   | 0.00  | 0.51 | 0.69 | 0.00  | 0.61 | 0.86 | 0.00  | 1.04  | 1.03 |
| 7%-10%  | 0.00  | 0.08 | 1.32 | 0.00  | 0.24 | 0.91 | 0.00  | 0.43  | 0.39 |
| 10%-15% | 0.00  | 0.06 | 1.77 | 0.00  | 0.24 | 1.15 | 0.00  | 0.40  | 0.36 |
| 15%-30% | 0.00  | 0.29 | 1.97 | 0.01  | 1.19 | 1.74 | 0.01  | 1.80  | 1.68 |







#### Calibration results

#### Comparison of three alternative hedging methods

 Gauss delta: index Spread sensitivity computed in a one-factor Gaussian copula model

$$\Delta_t^{\mathsf{Gauss}} = \frac{\mathcal{V}(t, S_t + \varepsilon, \rho_t) - \mathcal{V}(t, S_t, \rho_t)}{\mathcal{V}^I(t, S_t + \varepsilon) - \mathcal{V}^I(t, S_t)}$$

where  $\mathcal V$  and  $\mathcal V^I$  are the Gaussian copula pricing function associated with (resp.) the tranche and the CDS index.

Local intensity delta:

$$\Delta_t^{\mathsf{lo}} = \frac{V(t, N_t + 1) - V(t, N_t)}{V^I(t, N_t + 1) - V^I(t, N_t)}.$$

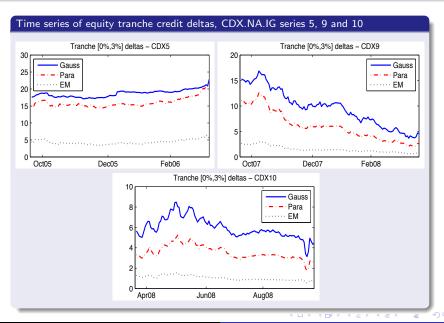
with both Parametric (Para) and Entropy Minimisation (EM) calibration methods

#### Credit deltas on 20 September 2007 (normalized to tranche notional)

| Tranche | Gauss | Para  | EM   |
|---------|-------|-------|------|
| 0%-3%   | 15.29 | 11.05 | 2.64 |
| 3%-7%   | 5.03  | 4.59  | 2.70 |
| 7%-10%  | 1.94  | 2.26  | 2.29 |
| 10%-15% | 1.10  | 1.47  | 1.99 |
| 15%-30% | 0.60  | 1.01  | 1.74 |



### Empirical results



## Hedging performance

#### Back-testing hedging experiments on series 5, 9 and 10

- Hedging portfolio rebalanced everyday (dt=1)
- P&L (Profit-and-Loss) increment of hedged position:

$$\delta P \& L(t) = \delta V_m(t) - \Delta_t \cdot \delta V_m^I(t)$$

- $\delta V_m(t) = V_m(t+dt) V_m(t)$ : realized increment of tranche price
- $\delta V_m^I(t) = V_m^I(t+dt) V_m^I(t) \! :$  realized increment of index price
- $\Delta_t$ : One of the previous hedging ratios computed at time t
- P&L increments evaluated in the same frequency as rebalancing



### Hedging performance

Two metrics to compare the hedging strategies:

$$\begin{array}{ll} \textbf{Residual volatility} & = & \frac{\text{P\&L increment volatility of the hedged position}}{\text{P\&L increment volatility of the unhedged position}} \\ & = & \frac{\text{Volatility of } \delta P \& L(t)}{\text{Volatility of } \delta V_m(t)} \\ \end{array}$$

# Hedging performance for 1-day rebalancing

#### Relative hedging errors (in percentage)

|         | CDX5 |      |     | CDX9 |      |    | CDX10 |      |     |
|---------|------|------|-----|------|------|----|-------|------|-----|
| Tranche | Li   | Para | EM  | Li   | Para | EM | Li    | Para | EM  |
| 0%-3%   | 4    | 5    | 73  | 80   | 10   | 72 | 33    | 55   | 90  |
| 3%-7%   | 1    | 3    | 35  | 0.4  | 19   | 59 | 48    | 49   | 75  |
| 7%-10%  | 10   | 10   | 43  | 15   | 13   | 37 | 49    | 25   | 44  |
| 10%-15% | 7    | 27   | 131 | 27   | 18   | 14 | 139   | 181  | 208 |
| 15%-30% | 0.54 | 61   | 324 | 3    | 32   | 89 | 172   | 269  | 396 |

#### Residual volatilities (in percentage)

|         | CDX5  |      |     | CDX9  |      |    | CDX10 |      |     |
|---------|-------|------|-----|-------|------|----|-------|------|-----|
| Tranche | Gauss | Para | EM  | Gauss | Para | EM | Gauss | Para | EM  |
| 0%-3%   | 45    | 47   | 79  | 59    | 59   | 87 | 105   | 91   | 93  |
| 3%-7%   | 70    | 72   | 68  | 58    | 47   | 64 | 85    | 74   | 78  |
| 7%-10%  | 90    | 101  | 120 | 53    | 50   | 46 | 83    | 79   | 70  |
| 10%-15% | 90    | 107  | 188 | 61    | 63   | 60 | 91    | 93   | 86  |
| 15%-30% | 93    | 110  | 256 | 37    | 49   | 77 | 84    | 99   | 127 |

### Conclusion

- All model specifications perfectly fit CDO tranche quotes
- However, for the local intensity model, the two introduced specifications give strikingly different deltas and dramatically different hedging performances
- Hedging based on local intensity model with Entropy Minimisation calibration gives poor performance
- Before the crisis (CDX5), Gauss delta outperforms local intensity deltas
- During the crisis (CDX9 & CDX10), no clear evidence to discriminate between Gauss delta and Para local intensity delta