Pricing and Hedging Loss Derivatives in a Markovian Bottom-Up Model

Areski Cousin ISFA, Université Lyon 1

IMS Gothenburg 2010 Conference

Gothenburg, 11 August 2010

Tom Bielecki, Areski Cousin, Stéphane Crépey and Alexander Herbertsson Pricing and Hedging Portfolio Credit Derivatives in a Bottom-up Model with Simultaneous Defaults

3 N

Introduction

Risk management of portfolio credit derivatives

• Cash-flows driven by the realized path of the aggregate loss process

$$L_{t} = \frac{1}{n} \sum_{i=1}^{n} (1 - R_{i}) N_{t}^{i}$$

where R_i is the recovery rate and N_t^i is the default indicator of obligor i

Markovian portfolio credit risk model

Simultaneous default model

• Defaults are the consequence of trigger events affecting simultaneously pre-specified groups of obligors

Example: n = 5 and $\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}.$

Markovian portfolio credit risk model

- $\{1, \ldots, n\}$: credit references
- $\mathcal{Y} = \{\{1\}, \dots, \{n\}, I_1, \dots, I_m\}$: pre-specified groups
- $\lambda_Y(\cdot)$ intensity function associated with group Y
- N_t^i default indicator process of name $i = 1, \ldots, n$
- $\mathbf{N}_t = (N_t^1, \dots, N_t^n)$ is a multivariate Markov chain in $\{0, 1\}^n$ such that for $\mathbf{k}, \mathbf{m} \in \{0, 1\}^n$:

$$\mathbb{P}\left(\mathbf{N}_{t+dt} = \mathbf{m} \mid \mathbf{N}_{t} = \mathbf{k}\right) = \sum_{Y \in \mathcal{Y}} \lambda_{Y}(t) \mathbf{1}_{\{\mathbf{k}^{Y} = \mathbf{m}\}} dt$$

where \mathbf{k}^{Y} is obtained from $\mathbf{k} = (k_1, \dots, k_n)$ by replacing the components k_j , $j \in Y$, by number one.

A 3 5 A 3 5 A

Markov copula condition

For any i = 1, ..., n, N^i is a one dimensional Markov process:

$$\mathbb{E}\left[\Phi(N_T^i) \mid N_t^1, \dots, N_t^n\right] = \mathbb{E}\left[\Phi(N_T^i) \mid N_t^i\right]$$

Independent pricing and calibration of single-name products

Hedging CDO tranches with single-name CDS

- Dynamics of CDO tranche prices and single-name CDS can be expressed in terms of some fundamental martingales
- Computation of min-variance hedging strategies
- Price of portfolio derivatives solves the Kolmogorov backward equations

Numerically intractable at least for large heterogeneous portfolios (n > 20)

Common Shocks Model Interpretation

Example: n = 5 and $\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}.$

• N_t^Y , $Y \in \mathcal{Y}$ are independent $\{0, 1\}$ -point processes with intensity λ_Y :

Common Shocks Model Interpretation

$$\left(\hat{N}_{t_1}^1,\ldots,\hat{N}_{t_n}^n\right) \stackrel{d}{=} \left(N_{t_1}^1,\ldots,N_{t_n}^n\right)$$

Common Shocks Model Interpretation

Calibration of individual intensities on single-name CDS

- Individual shocks + Common shocks: $\mathcal{Y} = \{\{1\}, \dots, \{n\}, I_1, \dots, I_m\}$
- Names are ordered with respect to riskiness

• Price of CDS i can be expressed as a function of $\mathbb{E}\left[N_t^i\right]$, $t=0,\ldots,T$

$$\mathbb{E}\left[N_t^i\right] = 1 - \exp\left(-\int_0^t \eta_i(u)dt\right)$$

where

$$\eta_i(u) = \lambda_{\{i\}}(u) + \sum_{k=1}^m \lambda_{I_k}(u) \mathbf{1}_{\{i \in I_k\}}$$

• η_i , $i = 1, \dots, n$ calibrated on individual CDS spreads by a bootstrap procedure

Common Shocks Model Interpretation

Calibration of common-shocks intensities on CDO tranches

- Pricing of CDO tranches only involves marginal loss distributions
- Thanks to the common-shock model interpretation:

$$L_t = \frac{1}{n} \sum_{i=1}^n (1 - R_i) N_t^i \stackrel{d}{=} \frac{1}{n} \sum_{i=1}^n (1 - R_i) \hat{N}_t^i$$

• Conditionally on $\left(N_t^{I_1}, \ldots, N_t^{I_m}\right)$, $\hat{N}^1, \ldots, \hat{N}^n$ are independent Bernoulli random variables with parameters

$$p_t^i = \begin{cases} 1 & i \in \cup_{k=1}^m \{I_k \ ; \ \hat{N}_t^{I_k} = 1\} \\ 1 - \exp\left(-\int_0^t \lambda_{\{i\}}(u) du\right) & \text{else} \end{cases}$$

where

$$\lambda_{\{i\}}(u) = \eta_i(u) - \sum_{k=1}^m \lambda_{I_k}(u) \mathbf{1}_{\{i \in I_k\}} \ge 0$$

Fast convolution-recursion procedure for computing loss distributions

Numerical Results

Data set: 5-years CDX North-America index on 20 December 2007

- Quoted spreads (at different pillars) of the 125 index constituents
- Quoted spreads of standard CDO tranches

Model specification:

- 5 groups $I_1 \subset \cdots \subset I_5$ such that $I_1 = \{1, \dots, 6\}, I_2 = \{1, \dots, 18\}, I_3 = \{1, \dots, 25\}, I_4 = \{1, \dots, 100\}, I_5 = \{1, \dots, 125\}$
- Piecewise constant intensities $\lambda_{\{1\}}, \ldots, \lambda_{\{125\}}, \lambda_{I_1}, \ldots, \lambda_{I_5}$ with grid points corresponding to CDS pillars
- Recovery rate: 40%
- Interest rate: 3%

Calibration results:

	0%-3%	3%-7%	7%-10%	10%-15%	15%-30%	index
Market quotes	54	265	125	62	43	81
Model outputs	48	254	124	61	41	78

通っ くちゃ くちゃ

Numerical Results

5-years calibrated loss distribution:

- Hedging CDO tranches with individual CDS
- Computation of min-variance hedging strategies
- Comparison with Gaussian copula spread-sensitivity deltas

- BIELECKI, T.R., VIDOZZI, A. AND VIDOZZI, L.: A Markov Copulae Approach to Pricing and Hedging of Credit Index Derivatives and Ratings Triggered Step–Up Bonds, *J. of Credit Risk*, 2008.
- BRIGO, D., PALLAVICINI, A., TORRENTIAL, R.: Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model. *Working Paper*, 2006.
- ELOUERKHAOUI, Y.: Pricing and Hedging in a Dynamic Credit Model. International Journal of Theoretical and Applied Finance, Vol. 10, Issue 4, 703–731, 2007.
 - LINDSKOG, F. AND MCNEIL, A. J.: Common Poisson Shock Models: Applications to Insurance and Credit Risk Modelling. *ASTIN Bulletin*, 33(2), 209-238, 2003