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Introduction

In this presentation, we address the hedging issue of CDO tranches in
a market model where pricing is connected to the cost of the hedge

In credit risk market, models that connect pricing to the cost of the
hedge have been studied quite lately

Discrepancies with the interest rate or the equity derivative market

Model to be presented is not new, require some stringent
assumptions, but the hedging can be fully described in a dynamical
way
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Introduction

Presentation related to the papers :

Hedging default risks of CDOs in Markovian contagion models (2008), to
appear in Quantitative Finance, with Jean-Paul Laurent and Jean-David
Fermanian

Hedging CDO tranches in a Markovian environment (2009), book chapter
with Monique Jeanblanc and Jean-Paul Laurent

Hedging portfolio loss derivatives with CDSs (2010), working paper with
Monique Jeanblanc

Delta-hedging correlation risk ? (2010), working paper with Rama Cont,
Stéphane Crépey and Yu Hang Kan

Dynamic hedging of synthetic CDO tranches : Bridging the gap between

theory and practice (2010), book chapter with Jean-Paul Laurent
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Default times

n credit references

τ1,. . . ,τn : default times de�ned on a probability space (Ω,G,P)

N i
t = 1{τi≤t}, i = 1, . . . , n : default indicator processes

Hi = (Hit)t≥0, Hit = σ(N i
s, s ≤ t), i = 1, . . . , n : natural �ltration

of N i

H = H1 ∨ · · · ∨Hn : global �ltration of default times
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Default times

No simultaneous defaults : P(τi = τj) = 0,∀i 6= j

Default times admit H-adapted default intensities

For any i = 1, . . . , n, there exists a non-negative H-adapted process
αi,P such that

M i,P
t := N i

t −
∫ t

0

αi,P
s ds

is a (P,H)-martingale.

αi,P
t = 0 on the set {t > τi}

M i,P, i = 1, . . . , n will be referred to as the fundamental martingales
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Market Assumption

Instantaneous digital CDS are traded on the names i = 1, . . . , n

Instantaneous digital CDS on name i at time t is a stylized bilateral
agreement

O�er credit protection on name i over the short period [t, t+ dt]
Buyer of protection receives 1 monetary unit at default of name i
In exchange for a fee equal to αi

tdt

0

1− αi
tdt : default of i between t and t+ dt

−αi
tdt : survival of name i

t t+ dt

Cash-�ow at time t+ dt (buy protection position) : dN i
t − αitdt

αit = 0 on the set {t > τi} (Contrat is worthless)
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Market Assumption

Credit spreads are driven by defaults : α1, . . . , αn are H-adapted
processes

Payo� of a self-�nanced strategy

V0e
rT +

n∑
i=1

∫ T

0

δise
r(T−s) (dN i

s − αisds
)︸ ︷︷ ︸

CDS cash-�ow

.

r : default-free interest rate

V0 : initial investment

δi, i = 1, . . . , n, H-predictable process
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Hedging and martingale representation theorem

Theorem (Predictable representation theorem)

Let A ∈ HT be a P-integrable random variable. Then, there exists

H-predictable processes θi, i = 1, . . . , n such that

A = EP[A] +
n∑
i=1

∫ T

0

θis
(
dN i

s − αi,Ps ds
)

= EP[A] +
n∑
i=1

∫ T

0

θisdM
i,P
s

and EP

(∫ T
0
|θis|αi,Ps ds

)
<∞.
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Hedging and martingale representation theorem

Theorem (Predictable representation theorem)

Let A ∈ HT be a Q-integrable random variable. Then, there exists

H-predictable processes θ̂i, i = 1, . . . , n such that

A = EQ[A] +
n∑
i=1

∫ T

0

θ̂is
(
dN i

s − αisds
)︸ ︷︷ ︸

CDS cash-�ow

= EQ[A] +
n∑
i=1

∫ T

0

θ̂isdM
i
s

and EQ

(∫ T
0
|θis|αi,Ps ds

)
<∞.
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Hedging and martingale representation theorem

Building a change of probability measure

Describe what happens to default intensities when the original
probability is changed to an equivalent one

From the PRT, any Radon-Nikodym density ζ (strictly positive
(P,H)-martingale with expectation equal to 1) can be written as

dζt = ζt−

n∑
i=1

πitdM
i,P
t , ζ0 = 1

where πi, i = 1, . . . , n are H-predictable processes
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Hedging and martingale representation theorem

Conversely, the (unique) solution of the latter SDE is a local
martingale (Doléans-Dade exponential)

ζt = exp

(
−

n∑
i=1

∫ t

0

πisα
i,P
s ds

)
n∏
i=1

(1 + πiτi
)N

i
t

The process ζ is non-negative if πi > −1, for i = 1, . . . , n

The process ζ is a true martingale if EP [ζt] = 1 for any t or if πi is
bounded, for i = 1, . . . , n
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Hedging and martingale representation theorem

Theorem (Change of probability measure)

De�ne the probability measure Q as

dQ|Ht = ζtdP|Ht .

where

ζt = exp

(
−

n∑
i=1

∫ t

0

πisα
i,P
s ds

)
n∏
i=1

(1 + πiτi
)N

i
t

Then, for any i = 1, . . . , n, the process

M i
t := M i,P

t −
∫ t

0

πisα
i,P
s ds = N i

t −
∫ t

0

(1 + πis)α
i,P
s ds

is a Q-martingale. In particular, the (Q,H)-intensity of τi is (1 + πit)α
i,P
t .
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Hedging and martingale representation theorem

From the absence of arbitrage opportunity{
αit > 0

} P−a.s.=
{
αi,Pt > 0

}
For any i = 1, . . . , n, the process π̂i de�ned by :

π̂it =

(
αit

αi,Pt
− 1

)
(1−N i

t−)

is an H-predictable process such that π̂i > −1
The process ζ de�ned with π1 = π̂1, . . . , πn = π̂n is an admissible
Radon-Nikodym density

Under Q, credit spreads α1, . . . , αn are exactly the intensities of
default times

Dynamic hedging of synthetic CDO tranches



Theoretical framework
Homogeneous Markovian contagion model

Empirical results

Hedging and martingale representation theorem

The predictable representation theorem also holds under Q
In particular, if A is an HT measurable payo�, then there exists
H-predictable processes θ̂i, i = 1, . . . , n such that

A = EQ [A | Ht] +
n∑
i=1

∫ T

t

θ̂is
(
dN i

s − αisds
)︸ ︷︷ ︸

CDS cash-�ow

.

Starting from t the claim A can be replicated using the self-�nanced
strategy with

the initial investment Vt = EQ

[
e−r(T−t)A | Ht

]
in the savings

account
the holding of δi

s = θ̂i
se
−r(T−s) for t ≤ s ≤ T and i = 1, . . . , n in the

instantaneous CDS

As there is no charge to enter a CDS, the replication price of A at
time t is Vt = EQ

[
e−r(T−t)A | Ht

]
Dynamic hedging of synthetic CDO tranches
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Hedging and martingale representation theorem

A depends on the default indicators of the names up to time T

includes the cash-�ows of CDO tranches or basket credit default
swaps, given deterministic recovery rates

The latter theoretical framework can be extended to the case where
actually traded CDS are considered as hedging instruments

See Cousin and Jeanblanc (2010) for an example with a portfolio
composed of 2 names or in a general n-dimensional setting when
default times are assumed to be ordered
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Hedging and martingale representation theorem

Risk-neutral measure can be explicitly constructed

We exhibit a continuous change of probability measure

Completeness of the credit market stems from a martingale
representation theorem

Perfect replication of claims which depend only upon the default
history with CDS on underlying names and default-free asset
Provide the replication price at time t

But does not provide any operational way of constructing hedging
strategies

Markovian assumption is required to e�ectively compute hedging
strategies
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Markovian contagion model

Pre-default intensities only depend on the current status of

defaults

αit = α̃i
(
t,N1

t , . . . , N
n
t

)
1t<τi

, i = 1, . . . , n

Ex : Herbertsson - Rootzén (2006)

α̃i
(
t,N1

t , . . . , N
n
t

)
= ai +

∑
j 6=i

bi,jN
j
t

Ex : Lopatin (2008)

α̃i (t,Nt) = ai(t) + bi(t)f(t,Nt)

Connection with continuous-time Markov chains(
N1

t , . . . , N
n
t

)
Markov chain with possibly 2n states

Default times follow a multivariate phase-type distribution
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Homogeneous Markovian contagion model

Pre-default intensities only depend on the current number of defaults

All names have the same pre-default intensities

αit = α̃ (t,Nt) 1t<τi
, i = 1, . . . , n

where

Nt =
n∑
i=1

N i
t

This model is also referred to as the local intensity model
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Homogeneous Markovian contagion model

No simultaneous default, the intensity of Nt is equal to

λ(t,Nt) = (n−Nt)α̃(t,Nt)

Nt is a continuous-time Markov chain (pure birth process) with
generator matrix :

Λ(t) =


−λ(t, 0) λ(t, 0) 0 0

0 −λ(t, 1) λ(t, 1) 0
. . .

. . .

0 −λ(t, n− 1) λ(t, n− 1)
0 0 0 0 0


Model involves as many parameters as the number of names
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Homogeneous Markovian contagion model

Replication price of a European type payo�

V (t, k) = EQ

[
e−r(T−t)Φ(NT ) | Nt = k

]

V (t, k), k = 0, . . . , n− 1 solve the backward Kolmogorov di�erential
equations :

δV (t, k)

δt
= rV (t, k)− λ(t, k) (V (t, k + 1)− V (t, k))

Approach also puts in practice by van der Voort (2006), Schönbucher
(2006), Herbersson (2007), Arnsdorf and Halperin (2007), Lopatin and
Misirpashaev (2007), Cont and Minca (2008), Cont and Kan (2008),
Cont, Deguest and Kan (2009)
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Homogeneous Markovian contagion model

Computation of credit deltas

V (t,Nt), price of a CDO tranche (European type payo�)

V I(t,Nt), price of the CDS index (European type payo�)

V (t,Nt) = EQ

[
e−r(T−t)Φ(NT ) | Nt

]
V I(t,Nt) = EQ

[
e−r(T−t)ΦI(NT ) | Nt

]
Using standard Itô's calculus

dV (t,Nt) =
(
V (t,Nt)− δI(t,Nt)V

I (t,Nt)
)
rdt+ δI(t,Nt)dV

I (t,Nt)

where

δI(t,Nt) =
V (t,Nt + 1)− V (t,Nt)

V I (t,Nt + 1)− V I (t,Nt)
.

Perfect replication with the index and the risk-free asset
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Pricing and hedging in a binomial tree

Binomial tree : discrete version of the homogeneous contagion model
 

Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)

Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)
kk

k + 1k + 1

kk

k + 2k + 2

k + 1k + 1

kk

λ(t, k)λ(t, k)

1-λ(t, k)1-λ(t, k)

λ(t+ 1, k + 1)λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)1− λ(t+ 1, k + 1)

λ(t+ 1, k)λ(t+ 1, k)

1-λ(t+ 1, k)1-λ(t+ 1, k)

Given some loss intensities λ(t, k), CDO tranches and index price
computed by backward induction :

k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)

V (t+ 1, k + 1)

V I(t+ 1, k + 1)

V I(t+ 1, k)

V (t+ 1, k)

V (t+ 2, k + 2)

V I(t+ 2, k + 2)

V (t+ 2, k + 1)

V I(t+ 2, k + 1)

V (t+ 2, k)

V I(t+ 2, k)

k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)
kk

k + 1k + 1

kk

k + 2k + 2

k + 1k + 1

kk

λ(t, k)λ(t, k)

1-λ(t, k)1-λ(t, k)

λ(t+ 1, k + 1)λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)1− λ(t+ 1, k + 1)

λ(t+ 1, k)λ(t+ 1, k)

1-λ(t+ 1, k)1-λ(t+ 1, k)

V (t+ 1, k + 1)V (t+ 1, k + 1)

V I(t+ 1, k + 1)V I(t+ 1, k + 1)

V I(t+ 1, k)V I(t+ 1, k)

V (t+ 1, k)V (t+ 1, k)

V (t+ 2, k + 2)V (t+ 2, k + 2)

V I(t+ 2, k + 2)V I(t+ 2, k + 2)

V (t+ 2, k + 1)V (t+ 2, k + 1)

V I(t+ 2, k + 1)V I(t+ 2, k + 1)

V (t+ 2, k)V (t+ 2, k)

V I(t+ 2, k)V I(t+ 2, k)
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Slice the credit portfolio into di�erent risk levels or CDO tranches

ex : CDO tranche on standardized Index such as CDX North America
Investment Grade
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Empirical results

5-year CDX NA IG Series 5 from 20 September 2005 to 20 March 2006

5-year CDX NA IG Series 9 from 20 September 2007 to 20 March 2008

5-year CDX NA IG Series 10 from 21 March 2008 to 20 September 2008
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Two di�erent calibration methods used to �t loss intensities

Parametric method : λ(t, k) = λ(k) = (n− k)
∑k

i=0 bi (Herbertsson (2008))

Entropy Minimisation algorithm calibration : inf
Q∈Λ

EQ0

[
dQ
dQ0

ln

(
dQ
dQ0

)]
subject

to the calibration constraints (Cont and Minca (2008))

Left : Cont, Cousin, Crépey and Kan (2010), Right : Cont and Minca (2008)
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Details of calibration results � 5-year CDX.NA.IG Series 9 on 20 September 2007
(bps excepted for the equity tranche quoted in percentage

Tranche Market Gauss Para EM
Index 50.38 50.36 47.58 47.58
0%-3% 35.55 35.55 36.35 36.35
3%-7% 131.44 131.44 132.04 132.07
7%-10% 45.51 45.51 45.54 45.56
10%-15% 25.28 25.28 25.30 25.31
15%-30% 15.24 15.24 15.36 15.36
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Comparison of three alternative hedging methods

Gauss delta : index Spread sensitivity computed in a one-factor Gaussian copula
model

∆Gauss
t =

V(t, St + ε, ρt)− V(t, St, ρt)

VI(t, St + ε)− VI(t, St)

where V and VI are the Gaussian copula pricing function associated with (resp.)
the tranche and the CDS index.

Local intensity delta :

δI(t,Nt) =
V (t,Nt + 1)− V (t,Nt)

V I (t,Nt + 1)− V I (t,Nt)
.

with both Parametric (Param) and Entropy Minimisation (EM) calibration
methods

Credit deltas on 20 September 2007 (normalized to tranche notional)

Tranche Gauss Para EM
0%-3% 15.29 11.05 2.64
3%-7% 5.03 4.59 2.70
7%-10% 1.94 2.26 2.29
10%-15% 1.10 1.47 1.99
15%-30% 0.60 1.01 1.74
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Dynamics of [0%, 3%]-equity tranche credit deltas, CDX.NA.IG series 5, 9 and 10
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Hedging performance for 1-day rebalancing

Back-testing hedging experiments on series 5, 9 and 10 (1-day rebalancing)

Relative hedging error =
∣∣∣ Average P&L of the hedged position

Average P&L of the unhedged position

∣∣∣,
Residual volatility =

P&L volatility of the hedged position

P&L volatility of the unhedged position
.

Relative hedging errors (in percentage) :

CDX5 CDX9 CDX10

Tranche Li Para EM Li Para EM Li Para EM

0%-3% 4.01 5.48 39.57 80.70 10.77 59.20 33.01 55.59 88.89

3%-7% 1.25 3.29 9.66 0.42 19.89 51.67 48.09 49.64 77.25

7%-10% 10.65 10.42 117.14 15.70 13.71 29.36 49.63 25.19 41.58

10%-15% 7.22 27.08 229.00 27.78 18.73 11.06 139.82 181.78 214.14

15%-30% 0.54 61.19 355.26 3.66 32.66 88.86 172.78 269.83 452.67
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Hedging performance for 1-day rebalancing

Residual volatilities (in percentage) :

CDX5 CDX9 CDX10

Tranche Gauss Para EM Gauss Para EM Gauss Para EM

0%-3% 45.85 47.70 66.80 59.62 59.70 79.03 105.01 91.06 89.50

3%-7% 70.76 72.25 77.54 58.20 47.54 55.21 85.02 74.40 72.97

7%-10% 90.86 101.72 164.36 53.19 50.88 44.55 83.30 79.67 69.74

10%-15% 90.52 107.63 254.57 61.01 63.20 62.57 91.83 93.81 89.26

15%-30% 93.86 110.95 271.44 37.42 49.02 73.01 84.39 99.97 131.12

Conclusion :

Hedging based on local intensity model with Entropy Minimisation
calibration gives poor performance

No clear evidence to distinguish the performance based on the Gaussian
copula model and the parametric local intensity model
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