Areski Cousin, Diana Dorobantu and Didier Rullière ISFA, University of Lyon

Credit Risk, Systemic Risk, and Large Portfolios

Venice, 30 September 2010 - 1 October 2010

Empirical studies on contagion mechanisms

- Das and al. (2007) or Azizpour and Giesecke (2008) : Conditional independence assumption with no contagion effect is rejected by historical default data. The conditional independence assumption is not enough to capture historical default dependency
- Boissay (2006), Jorion and Zhang (2007, 2009) analyze the mechanism of default propagation and provide financial evidence of chain reactions or dominos effects

Need for a dynamic model with defaults dependencies and contagion

- Eventual underlying macro-economic factors
- Contagion mechanisms
- Chain reactions and evolution over time

Literature

Some contagion models in the credit risk field

- Copula : Schönbucher and Schubert (2001)
- Markov chain models : Jarrow and Yu (2001), Yu (2007) Schönbucher (2006), Frey and Backhaus (2007), Herbertsson (2007), Laurent, Cousin and Fermanian (2007)
- Incomplete information models : Frey and Runggaldier (2008), Fontana and Runggaldier (2009)

In the spirit of Davis and Lo's contagion model

- First models : Davis and Lo (2001)
- Extensions : Sakata, Hisakado and Mori (2007), Egloff, Leippold and Vanini (2007), Rösch, Winterfeldt (2008)
- We propose a multiperiod extension of Davis and Lo's contagion model.

Davis and Lo's contagion model

Modeling of credit contagion for a pool of defaultable entities

- One-period model
- Credit references may default either directly or as a consequence of a contagion effect

Example : Portfolio with 5 credit references over one period

No direct default (X1=0)

Direct default (X2=1)

Davis and Lo's contagion model

One-period contagion model

- *n* : number of credit references,
- X_i : direct default indicator of name *i* (i.e. $X_i = 1$ if *i* defaults directly, $X_i = 0$ otherwise),
- $Y_{ji} = 1$ if the contagion link is activated from name *j* to name *i*, $Y_{ji} = 0$ otherwise.
- C_i : indirect default indicator of name *i*,
- Z_i : global default indicator (direct or indirect) such that :

$$Z_i = X_i + (1 - X_i)\mathscr{C}_i$$

where :

$$\mathscr{C}_i = \mathbb{1}_{\text{at least one } X_i Y_{ji}=1, j=1,...,n}$$

Davis and Lo's contagion model

 $N = \sum_{i=1}^{n} Z_i$: total number of defaults

Distribution of total number of defaults (Davis and Lo)

$$P[N = k] = C_n^k \sum_{i=1}^k C_k^i p^i (1-p)^{n-i} (1-(1-q)^i)^{k-i} (1-q)^{i(n-k)}.$$

Under the assumptions :

- Direct defaults X_i , i = 1, ..., n: iid Bernoulli with parameter p
- Contagion links Y_{ij} , i, j = 1, ..., n: iid Bernoulli with parameter q
- One contagion link alone may trigger an indirect default
- An infected entity cannot contaminate other entities (no chain-reaction effect)

Dominos Effect

- The model becomes a multiperiod model
- One can choose the set of entities likely to contaminate others
- some iid assumptions are released

Contagion incidence on indirect default

• One can change the number of contagions links required to cause a default (here two contaminations required)

Multi-period contagion model : t = 0, 1, 2, ..., T, in period [t, t + 1] :

- n : number of credit references,
- X_t^i : direct default indicator of entity *i*,
- Y_t^{ji} : contagion links are Bernoulli random variables such that Y_t^{ji} = 1 if entity j may infect entity i,
- Z_t^i : default indicator (direct or indirect) such that :

$$Z_t^i = Z_{t-1}^i + (1 - Z_{t-1}^i)[X_t^i + (1 - X_t^i)\mathscr{C}_t^i]$$

- $\mathscr{C}_{t}^{i} = f\left(\sum_{j \in F_{t}} Y_{t}^{ji}\right)$: indirect default indicator of name *i*,
- F_t is the set of names that are likely to infect other names between t and t + 1
- f is a contamination trigger function, for example $f = \mathbb{1}_{x \ge 1}$ (Davis and Lo) or $f = \mathbb{1}_{x \ge 2}$

 $N_t = \sum_{i=1}^n Z_t^i$: total number of defaults at time t

Main result

$$P[N_t = r] = \sum_{k=0}^{r} P[N_{t-1} = k] C_{n-k}^{r-k} \sum_{\gamma=0}^{r-k} C_{r-k}^{\gamma}$$
$$\cdot \sum_{\alpha=0}^{n-k-\gamma} C_{n-k-\gamma}^{\alpha} \mu_{\gamma+\alpha, t} \sum_{j=0}^{n-r} C_{n-r}^{j} (-1)^{j+\alpha} \xi_{j+r-k-\gamma, t}(\gamma).$$

Under the assumptions :

- X_t^i , i = 1, ..., n are conditionally independent Bernoulli r.v. with the same marginal distribution and $\mathbf{X}_t = (X_t^1, ..., X_t^n)$, t = 1, ..., T are independent vectors.
- Y_t^{ji} , i, j = 1, ..., n are conditionally independent Bernoulli r.v. with the same marginal distribution and $\mathbf{Y}_t = (Y_t^{ji})_{1 \le i, j \le n}$, t = 1, ..., T are independent vectors.
- $(X_t)_{t=1,...,T}$ and $(Y_t)_{t=1,...,T}$ are independent.

Similar kind of formulas hold when we have :

finite-exchangeability

• Direct defaults may be finite-exchangeable (does not imply conditional independence as infinite exchangeability, De Finetti's Theorem does not apply here).

evolution over time - non stationarity

• Joint law for Direct defaults and for contagion links may change over time.

heterogeneity (with higher complexity)

- Direct defaults may be dependent and heterogeneous, in a monoperiodic framework.
- Direct defaults may be dependent and heterogeneous, in a multiperiodic framework, but with an exponential complexity (need to consider all possible sets of remaining entities at time *t*).

Probabilistic tools

Waring's Formula - special case of Schuette-Nesbitt Formula

If $B^1,...,B^n$ are *n* dependent Bernoulli r.v. and $\Gamma \subset \{1,\ldots,n\}$ with cardinal *m*,

$$\mathbb{P}\left[\sum_{i\in\Gamma}B^{i}=k\right]=\mathbb{1}_{k\leq m}C_{m}^{k}\sum_{j=0}^{m-k}C_{m-k}^{j}(-1)^{j}\mu_{j+k}(\Gamma).$$

with
$$\mu_k(\Gamma) = \frac{1}{C_m^k} \sum_{\substack{j_1 < j_2 < \dots < j_k \\ j_1, \dots, j_k \in \Gamma}} P\left[B^{j_1} = 1 \cap \dots \cap B^{j_k} = 1\right], \quad k \ge 1$$

coefficients μ_k may be simplified :

- if independence (without requiring iid) : products
- if exchangeability : the sum vanishes

Here we are looking for :

- Directs defaults : $\sum_{j \in \Gamma} X_t^j$ as a function of some coefficients $\mu_{k,t}(\Gamma)$,
- Contagion links : $\sum_{j \in F_t} Y_t^{\sigma(j)}$ as a function of some coefficients $\lambda_{k,t}$,
- Indirects defaults : $\sum_{j=1...k} \mathscr{C}_t^j$ as a function of some coefficients $\xi_{k,t}$,

Calibration on 5-years iTraxx tranche quotes

• Cash-flows of CDO tranches driven by the aggregate loss process (in %)

$$L_{t} = \frac{1}{n} \sum_{i=1}^{n} (1 - R_{i}) Z_{t}^{i}$$

where R_i is the recovery rate associated with name *i*.

We restrict ourselves to the case where for all t:

- $X_t^i \sim \text{Bernoulli}(\Theta)$ where $\Theta \sim \text{Beta}$, $E[\Theta] = p$ and $Var(\Theta) = \sigma^2$, i = 1, ..., n
- Y_t^{ij} are iid $Y_t^{ij} \sim \text{Bernoulli}(q), i, j = 1, \dots, n$
- Only one default is required to trigger a default by contagion

Moreover

• n = 125, r = 3% (short-term interest rate)

$$L_t = \frac{1}{n}(1-R) \cdot N_t$$

 Computation of CDO tranche price only requires marginal loss distributions at several time horizons

Calibration on 5-years iTraxx tranche quotes

Least square calibration procedure : Find $\alpha^* = (p^*, \sigma^*, q^*)$ which minimizes :

$$RMSE(\alpha) = \sqrt{\frac{1}{6}\sum_{i=1}^{6}\left(\frac{\tilde{s}_i - s_i(\alpha)}{\tilde{s}_i}\right)^2}.$$

where

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market prices	\tilde{s}_1	Ĩs₂	<i>S</i> 3	ŝ4	\tilde{s}_5	<i>ŝ</i> ₀
model prices	$s_1(\alpha)$	$s_2(\alpha)$	$s_3(\alpha)$	$s_4(lpha)$	$s_5(\alpha)$	$s_0(\alpha)$

Four calibration procedures :

- Calibration 1 : All available market spreads are included in the fitting
- Calibration 2 : The equity [0%-3%] tranche spread is excluded
- Calibration 3 : Both equity [0%-3%] tranche and CDS index spreads are excluded
- Calibration 4 : All tranche spreads are excluded except equity tranche and CDS index spreads.

Two calibration dates before and during the credit crisis :

- 31 August 2005
- 31 March 2008

31 August 2005

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market quotes	24	81	27	15	9	36
Calibration 1	20	114	7	1	1	29
Calibration 2	-	62	32	18	6	8
Calibration 3	-	55	29	18	7	-
Calibration 4	24	-	-	-	-	36

Annual scaled optimal parameters

	<i>p</i> *	σ^*	q^*
Calibration 1	0.0016	0.0015	0.0626
Calibration 2	0.0007	0.0133	0.0400
Calibration 3	0.0001	0.0025	0.3044
Calibration 4	0.0014	0.002	0.1090

3

31 March 2008

	0%-3%	3%-6%	6%-9%	9%-12%	12%-20%	index
Market quotes	40	480	309	215	109	123
Calibration 1	28	607	361	228	95	75
Calibration 2	-	505	330	228	112	68
Calibration 3	-	478	309	215	109	-
Calibration 4	40	-	-	-	-	123

Annual scaled optimal parameters

	<i>p</i> *	σ^*	q^*
Calibration 1	0.0124	0.0886	0
Calibration 2	0.0056	0.0518	0.0400
Calibration 3	0.0012	0.012	0.2688
Calibration 4	0.0081	0.0516	0.0589

3

specificity of the model

- try to capture explicit microstructure of contagion
- contagion acts directly on random variables, not on probabilities
- one can say with certainty if default of entity *i* is due to entity *j*

some limits of the model

- default rate depends on the number *n* of entities
- contagions only within the considered portofolio
- numerical issues for large number *n* of entities

some perspectives

- recursions to manage numerical issues
- contagions from outside the portofolio
- behavior when time tends to zero and *n* becomes large
- asymptotic results larger interconnected component

We propose a multi-period extension of Davis and Lo's contagion model that accounts for

- possibly dominos or chain reaction effect
- flexible contagion mechanism (ex : more than one default required to trigger a contamination)
- explicitly model business interdependencies

We provide a recursive formula for the distribution of the number of defaults at different time horizons

• When direct defaults and contagion events are conditionally independent

The multi-period setting is required to price synthetic CDO tranches

• The contagion parameter has a significant impact on the model ability to fit CDO tranche quotes

I thank you for your attention.

æ

Appendix I - probabilistic tools

æ

Infinite- exchangeability

 A_1, A_2, \ldots sequence of exchangeable r.v. if for all *n* and for any permutation σ

$$A_1,\ldots,A_n \stackrel{\mathcal{D}}{=} A_{\sigma(1)},\ldots,A_{\sigma(n)},$$

De Finetti's Theorem

 A_1, A_2, \ldots is a sequence of infinite-exchangeable Bernoulli r.v. iff there exist a r.v. $\Theta \in [0, 1]$ such that, conditionally to Θ A_1, A_2, \ldots is an iid sequence of Bernoulli r.v. with parameter Θ

- Here, calculations given Θ but difficulties to simplify
- De Finetti's Theorem does not apply for finite-exchangeability
- Need for other tools

Appendix I - Probabilistic tools

If N is a number of fulfilled events B_i , $i \in \Omega$, A linear combination of P[N = k] will be written :

Schuette-Nesbitt formula

$$\sum_{k \in \Omega} P[\mathbf{N} = \mathbf{k}] f(k) = \sum_{k \in \Omega} \mathbf{S}_{\mathbf{k}} \Delta^{k} f(0)$$

avec $S_{k} = \sum_{j_{1} < \dots < j_{k}} P[B_{j_{1}} \cap \dots \cap B_{j_{k}}]$
 $\Delta f(k) = f(k+1) - f(k)$, difference operator

- events of kind [N = k] given coefficients S_k .
- S_k can be simplified with independence, without requiring i.i.d.
- S_k can be simplified with exchangeability
- events of kind [N = k] as simple as [N = 0] or $[N \ge 1]$

Appendix I - Probabilistic tools

In the particular case where $f(j) = \mathbb{1}_{j=k}$, $j \in \Omega$,

Waring's formula

If $X_t^1, ..., X_t^n$ are *n* dependent Bernoulli r.v. and $\Gamma \subset \Omega$ with cardinal *m*,

$$\mathbf{P}\left[\sum_{i\in\Gamma}X_t^i=k\right]=\mathbb{1}_{k\leq m}C_m^k\sum_{j=0}^{m-k}C_{m-k}^j(-1)^j\mu_{j+k,t}(\Gamma).$$

with

$$\begin{split} \mu_{k,t}(\Gamma) &= \frac{1}{C_{card}^{k}(\Gamma)} \sum_{\substack{j_{1} < j_{2} < \ldots < j_{k} \\ j_{1}, \ldots, j_{k} \in \Gamma}} \Pr\left[X_{t}^{j_{1}} = 1 \cap \ldots \cap X_{t}^{j_{k}} = 1\right], \quad k \geq 1, \\ \mu_{0,t}(\Gamma) &= 1 \text{ (even if } \Gamma = \emptyset). \end{split}$$

Interest in life-insurance framework :

- independence assumptions
- but different ages and non identically distributed lifetimes

Interest for Davis and Lo extension :

- one would like P[N = k]
- on can change more easily iid assumptions
- is simplified with exchangeability assumptions

Idea from so-called Waring's formula

for non iid Bernoulli r.v. A_1, \ldots, A_n , one can get the law of $\sum_j A_j$ as a function of coefficients of kind

$$\mathbf{P}\left[A_1=1\cap\cdots\cap A_i=1\right].$$

- If independence : these coefficients become products
- If exchangeability : these coefficients does only depend on the number of considered r.v.

Here we are looking for :

- Directs defaults : $\sum_{j \in \Gamma} X_t^j$ as a function of coefficients $\mu_{k,t}(\Gamma)$,
- Contagion links : $\sum_{j \in F_t} Y_t^{\sigma(j)}$ as a function of coefficients $\lambda_{k,t}$,
- Indirects defaults : $\sum_{j=1...k} \mathscr{C}_t^j$ as a function of coefficients $\xi_{k,t}$,

æ

we consider here that for all t,

- X_t^i are exchangeables, Bernoulli with hidden parameter Θ_X , $E[\Theta_X] = p = 0.1$, $V[\Theta_X]$ is given
- Y_t^{ij} are exchangeables, Bernoulli with hidden parameter Θ_Y , $E[\Theta_Y] = q = 0.2$, $V[\Theta_Y]$ is given
- hidden parameters are Beta distributed

We consider

- 10 entities (n = 10),
- 10 temporal units (T = 10),
- average direct default probability p = 0.1,
- average contagion link probability q = 0.2.

We define 4 models with common parameters :

Image model 1 : σ_X = 0, σ_Y = 0, f(x) = 1_{x≥1} (i.i.d. case, one contagion link required).

- model 3 : $\sigma_X = 0.2$, $\sigma_Y = 0.2$, $f(x) = \mathbb{1}_{x \ge 1}$ (exchangeable case, one contagion link required).
- Image of the second second

Evolution of $E[N_t]$ as a function of t. i.i.d. case dotted.

Evolution of $V[N_t]$ as a function of t. i.i.d. case dotted.

э

Evolution of $P[N_t \ge 6]$ as a function of *t*. i.i.d. case dotted.

Evolution of $P[N_t \ge 10]$ as a function of t. i.i.d. case dotted.