An extension of Davis and Lo’s contagion model

Areski Cousin, Diana Dorobantu and Didier Rullière
ISFA, University of Lyon

Credit Risk, Systemic Risk, and Large Portfolios

Venice, 30 September 2010 - 1 October 2010
Empirical studies on contagion mechanisms

- Das and al. (2007) or Azizpour and Giesecke (2008): Conditional independence assumption with no contagion effect is rejected by historical default data. The conditional independence assumption is not enough to capture historical default dependency.

- Boissay (2006), Jorion and Zhang (2007, 2009) analyze the mechanism of default propagation and provide financial evidence of chain reactions or dominos effects.

Need for a dynamic model with defaults dependencies and contagion

- Eventual underlying macro-economic factors
- Contagion mechanisms
- Chain reactions and evolution over time
Some contagion models in the credit risk field

- Copula: Schönbucher and Schubert (2001)

In the spirit of Davis and Lo’s contagion model

- First models: Davis and Lo (2001)
- We propose a multiperiod extension of Davis and Lo’s contagion model.
Davis and Lo’s contagion model

Modeling of credit contagion for a pool of defaultable entities

- One-period model
- Credit references may default either directly or as a consequence of a contagion effect

Example: Portfolio with 5 credit references over one period

No direct default ($X_1=0$)

Direct default ($X_2=1$)

Contagion ($Y_{23}=1$)

No contagion ($Y_{24}=0$)
One-period contagion model

- \(n \) : number of credit references,
- \(X_i \) : direct default indicator of name \(i \) (i.e. \(X_i = 1 \) if \(i \) defaults directly, \(X_i = 0 \) otherwise),
- \(Y_{ji} = 1 \) if the contagion link is activated from name \(j \) to name \(i \), \(Y_{ji} = 0 \) otherwise.
- \(C_i \) : indirect default indicator of name \(i \),
- \(Z_i \) : global default indicator (direct or indirect) such that:

\[
Z_i = X_i + (1 - X_i)C_i
\]

where:

\[
C_i = \mathbf{1}_{\text{at least one } x_j Y_{ji} = 1, j=1,\ldots,n}
\]
Davis and Lo’s contagion model

\[N = \sum_{i=1}^{n} Z_i : \text{total number of defaults} \]

Distribution of total number of defaults (Davis and Lo)

\[
P [N = k] = C_n^k \sum_{i=1}^{k} \binom{k}{i} p^i (1 - p)^{n-i} (1 - (1 - q)^i)^{k-i} (1 - q)^{i(n-k)}.
\]

Under the assumptions:

- Direct defaults \(X_i, i = 1, \ldots, n \) : iid Bernoulli with parameter \(p \)
- Contagion links \(Y_{ij}, i, j = 1, \ldots, n \) : iid Bernoulli with parameter \(q \)
- One contagion link alone may trigger an indirect default
- An infected entity cannot contaminate other entities (no chain-reaction effect)
Extension of Davis and Lo’s contagion model

Domino Effect

- The model becomes a multiperiod model
- One can choose the set of entities likely to contaminate others
- Some iid assumptions are released

\[t=0 \quad t=1 \quad t=2 \]

...
Contagion incidence on indirect default

- One can change the number of contagions links required to cause a default (here two contaminations required)
Multi-period contagion model: \(t = 0, 1, 2, \ldots, T \), in period \([t, t + 1]\):

- \(n \): number of credit references,
- \(X_{it}^i \): direct default indicator of entity \(i \),
- \(Y_{ji}^{ii} \): contagion links are Bernoulli random variables such that \(Y_{ji}^{ii} = 1 \) if entity \(j \) may infect entity \(i \),
- \(Z_{it}^i \): default indicator (direct or indirect) such that:
 \[
 Z_{it}^i = Z_{it-1}^i + (1 - Z_{it-1}^i)[X_{it}^i + (1 - X_{it}^i)C_{it}^i]
 \]
 \(C_{it}^i = f\left(\sum_{j \in F_t} Y_{jt}^{ji}\right) \): indirect default indicator of name \(i \),
- \(F_t \) is the set of names that are likely to infect other names between \(t \) and \(t + 1 \)
- \(f \) is a contamination trigger function, for example \(f = \mathbb{1}_{x \geq 1} \) (Davis and Lo) or \(f = \mathbb{1}_{x \geq 2} \)
Extension of Davis and Lo’s contagion model

\[N_t = \sum_{i=1}^{n} Z_t^i \]: total number of defaults at time \(t \)

Main result

\[
P[N_t = r] = \sum_{k=0}^{r} P[N_{t-1} = k] C_{n-k}^{r-k} \sum_{\gamma=0}^{r-k} C_{r-k}^\gamma \\
\cdot \sum_{\alpha=0}^{n-k-\gamma} C_{n-k-\gamma}^{\alpha} \mu_{\gamma+\alpha, t} \sum_{j=0}^{n-r} C_{n-r}^{j} (-1)^{j+\alpha} \xi_{j+r-k-\gamma, t(\gamma)}.
\]

Under the assumptions:

- \(X_t^i, i = 1, \ldots, n \) are conditionally independent Bernoulli r.v. with the same marginal distribution and \(X_t = (X_t^1, \ldots, X_t^n) \), \(t = 1, \ldots, T \) are independent vectors.
- \(Y_t^{ij}, i, j = 1, \ldots, n \) are conditionally independent Bernoulli r.v. with the same marginal distribution and \(Y_t = (Y_{t}^{ij})_{1 \leq i, j \leq n} \), \(t = 1, \ldots, T \) are independent vectors.
- \((X_t)_{t=1, \ldots, T}\) and \((Y_t)_{t=1, \ldots, T}\) are independent.
Similar kind of formulas hold when we have:

finite-exchangeability
- Direct defaults may be **finite-exchangeable** (does not imply conditional independence as infinite exchangeability, De Finetti’s Theorem does not apply here).

evolution over time - non stationarity
- Joint law for Direct defaults and for contagion links may change over time.

heterogeneity (with higher complexity)
- Direct defaults may be **dependent and heterogeneous**, in a monoperiodic framework.
- Direct defaults may be **dependent and heterogeneous**, in a multiperiodic framework, but with an exponential complexity (need to consider all possible sets of remaining entities at time t).
Waring’s Formula - special case of Schuette-Nesbitt Formula

If B^1, \ldots, B^n are n dependent Bernoulli r.v. and $\Gamma \subset \{1, \ldots, n\}$ with cardinal m, then

\[
P\left[\sum_{i \in \Gamma} B^i = k \right] = \prod_{k \leq m} C^k_m \sum_{j=0}^{m-k} C^j_{m-k} (-1)^j \mu_{j+k}(\Gamma).
\]

with $\mu_k(\Gamma) = \frac{1}{C^k_m} \sum_{j_1 < j_2 < \ldots < j_k \in \Gamma} P\left[B^{j_1} = 1 \cap \ldots \cap B^{j_k} = 1 \right]$, $k \geq 1$.

Coefficients μ_k may be simplified:

- if independence (without requiring iid): products
- if exchangeability: the sum vanishes

Here we are looking for:

- Directs defaults: $\sum_{j \in \Gamma} X^j_t$ as a function of some coefficients $\mu_{k,t}(\Gamma)$,
- Contagion links: $\sum_{j \in F_t} Y^{\sigma(j)}_t$ as a function of some coefficients $\lambda_{k,t}$,
- Indirects defaults: $\sum_{j=1}^{k} C^j_t$ as a function of some coefficients $\xi_{k,t}$,
Calibration on 5-years iTraxx tranche quotes

- Cash-flows of CDO tranches driven by the **aggregate loss process** (in %)

\[L_t = \frac{1}{n} \sum_{i=1}^{n} (1 - R_i)Z_t^i \]

where \(R_i \) is the **recovery rate** associated with name \(i \).
Calibration on 5-years iTraxx tranche quotes

We restrict ourselves to the case where for all t:

- $X_t^i \sim \text{Bernoulli}(\Theta)$ where $\Theta \sim \text{Beta}$, $E[\Theta] = p$ and $\text{Var}(\Theta) = \sigma^2$, $i = 1, \ldots, n$
- Y_t^{ij} are iid $Y_t^{ij} \sim \text{Bernoulli}(q)$, $i, j = 1, \ldots, n$
- Only one default is required to trigger a default by contagion

Moreover:

- $n = 125$, $r = 3\%$ (short-term interest rate)
- $R_i = R = 40\%$ for any $i = 1, \ldots, n$

$$L_t = \frac{1}{n}(1 - R) \cdot N_t$$

- Computation of CDO tranche price only requires marginal loss distributions at several time horizons
Least square calibration procedure: Find $\alpha^* = (p^*, \sigma^*, q^*)$ which minimizes:

$$RMSE(\alpha) = \sqrt{\frac{1}{6} \sum_{i=1}^{6} \left(\frac{\tilde{s}_i - s_i(\alpha)}{\tilde{s}_i} \right)^2}.$$

where

<table>
<thead>
<tr>
<th>index</th>
<th>0%-3%</th>
<th>3%-6%</th>
<th>6%-9%</th>
<th>9%-12%</th>
<th>12%-20%</th>
<th>Market prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1(\alpha)</td>
<td>s2(\alpha)</td>
<td>s3(\alpha)</td>
<td>s4(\alpha)</td>
<td>s5(\alpha)</td>
<td>s0(\alpha)</td>
<td>model prices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>index</th>
<th>0%-3%</th>
<th>3%-6%</th>
<th>6%-9%</th>
<th>9%-12%</th>
<th>12%-20%</th>
<th>Market prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1(\alpha)</td>
<td>s2(\alpha)</td>
<td>s3(\alpha)</td>
<td>s4(\alpha)</td>
<td>s5(\alpha)</td>
<td>s0(\alpha)</td>
<td>model prices</td>
</tr>
</tbody>
</table>
Calibration on 5-years iTraxx tranche quotes

Four calibration procedures:

- **Calibration 1**: All available market spreads are included in the fitting
- **Calibration 2**: The equity [0%-3%] tranche spread is excluded
- **Calibration 3**: Both equity [0%-3%] tranche and CDS index spreads are excluded
- **Calibration 4**: All tranche spreads are excluded except equity tranche and CDS index spreads.

Two calibration dates before and during the credit crisis:

- 31 August 2005
- 31 March 2008
Calibration on 5-years iTraxx tranche quotes

31 August 2005

<table>
<thead>
<tr>
<th></th>
<th>0%-3%</th>
<th>3%-6%</th>
<th>6%-9%</th>
<th>9%-12%</th>
<th>12%-20%</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market quotes</td>
<td>24</td>
<td>81</td>
<td>27</td>
<td>15</td>
<td>9</td>
<td>36</td>
</tr>
<tr>
<td>Calibration 1</td>
<td>20</td>
<td>114</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Calibration 2</td>
<td>-</td>
<td>62</td>
<td>32</td>
<td>18</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Calibration 3</td>
<td>-</td>
<td>55</td>
<td>29</td>
<td>18</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>Calibration 4</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>36</td>
</tr>
</tbody>
</table>

Annual scaled optimal parameters

<table>
<thead>
<tr>
<th></th>
<th>(p^*)</th>
<th>(\sigma^*)</th>
<th>(q^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration 1</td>
<td>0.0016</td>
<td>0.0015</td>
<td>0.0626</td>
</tr>
<tr>
<td>Calibration 2</td>
<td>0.0007</td>
<td>0.0133</td>
<td>0.0400</td>
</tr>
<tr>
<td>Calibration 3</td>
<td>0.0001</td>
<td>0.0025</td>
<td>0.3044</td>
</tr>
<tr>
<td>Calibration 4</td>
<td>0.0014</td>
<td>0.002</td>
<td>0.1090</td>
</tr>
</tbody>
</table>
Calibration on 5-years iTraxx tranche quotes

31 March 2008

<table>
<thead>
<tr>
<th></th>
<th>0%-3%</th>
<th>3%-6%</th>
<th>6%-9%</th>
<th>9%-12%</th>
<th>12%-20%</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market quotes</td>
<td>40</td>
<td>480</td>
<td>309</td>
<td>215</td>
<td>109</td>
<td>123</td>
</tr>
<tr>
<td>Calibration 1</td>
<td>28</td>
<td>607</td>
<td>361</td>
<td>228</td>
<td>95</td>
<td>75</td>
</tr>
<tr>
<td>Calibration 2</td>
<td>-</td>
<td>505</td>
<td>330</td>
<td>228</td>
<td>112</td>
<td>68</td>
</tr>
<tr>
<td>Calibration 3</td>
<td>-</td>
<td>478</td>
<td>309</td>
<td>215</td>
<td>109</td>
<td>-</td>
</tr>
<tr>
<td>Calibration 4</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>123</td>
</tr>
</tbody>
</table>

Annual scaled optimal parameters

<table>
<thead>
<tr>
<th></th>
<th>p^*</th>
<th>σ^*</th>
<th>q^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration 1</td>
<td>0.0124</td>
<td>0.0886</td>
<td>0</td>
</tr>
<tr>
<td>Calibration 2</td>
<td>0.0056</td>
<td>0.0518</td>
<td>0.0400</td>
</tr>
<tr>
<td>Calibration 3</td>
<td>0.0012</td>
<td>0.012</td>
<td>0.2688</td>
</tr>
<tr>
<td>Calibration 4</td>
<td>0.0081</td>
<td>0.0516</td>
<td>0.0589</td>
</tr>
</tbody>
</table>
Limits and perspectives

specificity of the model
- try to capture explicit microstructure of contagion
- contagion acts directly on random variables, not on probabilities
- one can say with certainty if default of entity i is due to entity j

some limits of the model
- default rate depends on the number n of entities
- contagions only within the considered portfolio
- numerical issues for large number n of entities

some perspectives
- recursions to manage numerical issues
- contagions from outside the portfolio
- behavior when time tends to zero and n becomes large
- asymptotic results - larger interconnected component
We propose a multi-period extension of Davis and Lo’s contagion model that accounts for

- possibly dominos or chain reaction effect
- flexible contagion mechanism (ex: more than one default required to trigger a contamination)
- explicitly model business interdependencies

We provide a recursive formula for the distribution of the number of defaults at different time horizons

- When direct defaults and contagion events are conditionally independent

The multi-period setting is required to price synthetic CDO tranches

- The contagion parameter has a significant impact on the model ability to fit CDO tranche quotes
I thank you for your attention.
Appendix I - probabilistic tools
Infinite-exchangeability

A sequence of exchangeable r.v. if for all n and for any permutation σ:

$$A_1, \ldots, A_n \overset{D}{=} A_{\sigma(1)}, \ldots, A_{\sigma(n)},$$

De Finetti’s Theorem

A sequence of infinite-exchangeable Bernoulli r.v. is a sequence of infinite-exchangeable Bernoulli r.v. if and only if there exist a r.v. $\Theta \in [0,1]$ such that, conditionally to Θ:

- A_1, A_2, \ldots is an iid sequence of Bernoulli r.v. with parameter Θ

- Here, calculations given Θ but difficulties to simplify

- De Finetti’s Theorem does not apply for finite-exchangeability

- Need for other tools
If N is a number of fulfilled events B_i, $i \in \Omega$,
A linear combination of $P[N = k]$ will be written:

Schuette-Nesbitt formula

$$
\sum_{k \in \Omega} P[N = k] f(k) = \sum_{k \in \Omega} S_k \Delta^k f(0)
$$

avec $S_k = \sum_{j_1 < \ldots < j_k} P[B_{j_1} \cap \cdots \cap B_{j_k}]$

$$
\Delta f(k) = f(k + 1) - f(k), \text{ difference operator}
$$

- events of kind $[N = k]$ given coefficients S_k
- S_k can be simplified with independence, without requiring i.i.d.
- S_k can be simplified with exchangeability
- events of kind $[N = k]$ as simple as $[N = 0]$ or $[N \geq 1]$
Appendix I - Probabilistic tools

In the particular case where \(f(j) = \mathbb{1}_{j=k}, j \in \Omega \),

Waring's formula

If \(X^1_t, \ldots, X^n_t \) are \(n \) dependent Bernoulli r.v. and \(\Gamma \subset \Omega \) with cardinal \(m \),

\[
P \left[\sum_{i \in \Gamma} X^i_t = k \right] = \mathbb{1}_{k \leq m} C^k_m \sum_{j=0}^{m-k} C^j_{m-k} (-1)^j \mu_{j+k, t}(\Gamma) .
\]

with

\[
\mu_{k, t}(\Gamma) = \frac{1}{C^k_{\text{card}(\Gamma)}} \sum_{j_1 < j_2 < \ldots < j_k} P \left[X^{j_1}_t = 1 \cap \ldots \cap X^{j_k}_t = 1 \right], \quad k \geq 1,
\]

\[
\mu_{0, t}(\Gamma) = 1 \quad \text{even if } \Gamma = \emptyset .
\]
Interest in life-insurance framework:
- independence assumptions
- but different ages and non identically distributed lifetimes

Interest for Davis and Lo extension:
- one would like $P[N = k]$
- one can change more easily iid assumptions
- is simplified with exchangeability assumptions
Appendix I - Probabilistic tools

Idea from so-called Waring’s formula

for non iid Bernoulli r.v. A_1, \ldots, A_n, one can get the law of $\sum_j A_j$ as a function of coefficients of kind

$$P[A_1 = 1 \cap \cdots \cap A_i = 1].$$

- If independence: these coefficients become products
- If exchangeability: these coefficients does only depend on the number of considered r.v.

Here we are looking for:

- Directs defaults: $\sum_{j \in \Gamma} X^j_t$ as a function of coefficients $\mu_{k,t}(\Gamma)$,
- Contagion links: $\sum_{j \in F_t} Y^{(j)}_t$ as a function of coefficients $\lambda_{k,t}$,
- Indirects defaults: $\sum_{j=1}^{k} C^j_t$ as a function of coefficients $\xi_{k,t}$,
Appendix II - Basic numerical illustration
we consider here that for all t,

- X_t^i are exchangeables, Bernoulli with hidden parameter Θ_X, $E[\Theta_X] = p = 0.1$, $V[\Theta_X]$ is given
- Y_{t}^{ij} are exchangeables, Bernoulli with hidden parameter Θ_Y, $E[\Theta_Y] = q = 0.2$, $V[\Theta_Y]$ is given
- hidden parameters are Beta distributed

We consider

- 10 entities ($n = 10$),
- 10 temporal units ($T = 10$),
- average direct default probability $p = 0.1$,
- average contagion link probability $q = 0.2$.
We define 4 models with common parameters:

1. **model 1**: $\sigma_X = 0$, $\sigma_Y = 0$, $f(x) = \mathbb{1}_{x \geq 1}$
 (i.i.d. case, one contagion link required).

2. **model 2**: $\sigma_X = 0$, $\sigma_Y = 0$, $f(x) = \mathbb{1}_{x \geq 2}$
 (i.i.d. case, two contagion links required).

3. **model 3**: $\sigma_X = 0.2$, $\sigma_Y = 0.2$, $f(x) = \mathbb{1}_{x \geq 1}$
 (exchangeable case, one contagion link required).

4. **model 4**: $\sigma_X = 0.2$, $\sigma_Y = 0.2$, $f(x) = \mathbb{1}_{x \geq 2}$
 (exchangeable case, two contagion link required).
Evolution of $E[N_t]$ as a function of t. i.i.d. case dotted.
Evolution of $V[N_t]$ as a function of t. i.i.d. case dotted.
Evolution of $P[N_t \geq 6]$ as a function of t. i.i.d. case dotted.
Evolution of $P[N_t \geq 10]$ as a function of t. i.i.d. case dotted.